
Online Diagnosis and Recovery: On the Choice
and Impact of Tuning Parameters

Marco Serafini, Student Member, IEEE, Andrea Bondavalli, Member, IEEE, and

Neeraj Suri, Senior Member, IEEE

Abstract—A sequenced process of Fault Detection followed by the erroneous node’s Isolation and system Reconfiguration (node

exclusion or recovery), that is, the FDIR process, characterizes the sustained operations of a fault-tolerant system. For distributed

systems utilizing message passing, a number of diagnostic (and associated FDIR) approaches, including our prior algorithms, exist in

literature and practice. Invariably, the focus is on proving the completeness and correctness (all and only the faulty nodes are isolated)

for the chosen fault model, without explicitly segregating permanent from transient faulty nodes. To capture diagnostic issues related to

the persistence of errors (transient, intermittent, and permanent), we advocate the integration of count-and-threshold mechanisms into

the FDIR framework. Targeting pragmatic system issues, we develop an adaptive online FDIR framework that handles a continuum of

fault models and diagnostic protocols and comprehensively characterizes the role of various probabilistic parameters that, due to the

count-and-threshold approach, influence the correctness and completeness of diagnosis and system reliability such as the fault

detection frequency. The FDIR framework has been implemented on two prototypes for automotive and aerospace applications. The

tuning of the protocol parameters at design time allows a significant improvement with respect to prior design choices.

Index Terms—Error detection, transient faults, online diagnosis, system reliability, recovery.

Ç

1 INTRODUCTION

A fault-tolerant system is designed to provide sustained
delivery of services despite encountered perturbations.

The ability to accurately detect, diagnose, and recover from
faults1 in an online manner (that is, during system
operation) constitutes an important aspect of fault tolerance.
This Fault Detection followed by Isolation and system
Reconfiguration (FDIR) process has two primary objectives:
to consistently identify a faulty node so as to restrict its effect
on system operations and to support the process of system
recovery via isolation and reconfiguration of the system
resources to sustain ongoing system operations. If FDIR is
performed as an online procedure [32], [33], then this
provides an effective capability of resource management,
responding promptly to the appearance and disappearance
of faults, with a small duration of system susceptibility to
subsequent fault accumulation.

However, the capacity of consistently identifying faulty
nodes does not necessarily imply the ability to select the
best recovery action. For example, an overpessimistic FDIR
can overreact and exclude all nodes encountering transient

faults, thus reducing available resources and impacting
reliability. A possible solution is the use of count-and-
threshold approaches [6], which established a fundamental
basis for online recording and handling of transients. It
enables accumulating “Fault Detection” information over
system operations before triggering the most appropriate
“Isolation and Reconfiguration” actions. The health of a
node is thus determined, based on the persistency and
recurrence of its failures, by postponing its isolation, even if
some errors are observed.

In this paper, we introduce a generic FDIR framework
for integrating existing distributed diagnosis approaches
with a count-and-threshold algorithm. As the relative
occurrences and ratios of permanent, intermittent, and
transient hardware faults are matters of ongoing debate,
especially as technology changes continually affect these
rates [9], we develop a modeling methodology to probabil-
istically study the effects of such rate variations and to
guide the choice of design parameters accordingly.

Our focus is on distributed systems, but the analysis and
derived metrics are general enough to be adapted for the
tuning of any periodic error detection subsystem, similar to
[6], [7]. Despite appearing intuitive, most of the obtained
results have not, to our knowledge, been comprehensively
developed, linking both the diagnostic protocol and the
count-and-threshold aspects.

The process of local detection, global diagnosis, isolation,
and recovery from a given fault instance is a multifaceted
problem. The specific aspects addressed in this paper are
listed as follows:

. The capability of the FDIR processes to accurately
capture the “severity” of the error. For example,
errors of core-system-level functions are more severe
than those of optional application-level functions

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007 1

. M. Serafini and N. Suri are with the Department of Computer Science, TU
Darmstadt, Hochschulstr. 35, 64289 Darmstadt, Germany.
E-mail: {marco, suri}@informatik.tu-darmstadt.de.

. A. Bondavalli is with the Dipartimento di Sistemi ed Informatica,
Università degli Studi di Firenze, Viale Morgagni, 65, 50134 Firenze,
Italy. E-mail: bondavalli@unifi.it.

Manuscript received 22 May 2006; revised 2 Apr. 2007; accepted 5 June 2007;
published online 19 June 2007.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0062-0506.
Digital Object Identifier no. 10.1109/TDSC.2007.70210.

1. In reality, one detects the manifestation of a fault, that is, an “error.”
Thus, error detection is the accurate term to use [19]. Nevertheless, we
utilize the more conventionally accepted term of “fault detection” for the
FDIR terminology.

1545-5971/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society



and, consequently, will result in faster isolation and
reconfiguration. It should be emphasized that the
process of fault detection itself may not necessarily
provide information on the severity of an error,
unless specific error detection mechanisms exist,
which correspond to established severity types.

. The capability to capture the “duration” of an error
(the time period when it is continuously observed)
and its “recurrence” (the frequency of successive
observations). The desired response of the FDIR
operations to a transient, regardless of its severity
level, can be very different from the response to a
permanent fault. For example, should we isolate a
node encountering only transients?

. The impact of different settings of the parameters of
the count-and-threshold algorithm on the resilience
and the reliability of the system. For example, if
error detection is executed too frequently, then the
same fault will be detected multiple times, increas-
ing the likelihood of isolating nodes, regardless of
the transient nature of the fault. This can unnecessa-
rily degrade system redundancy.

These issues motivate our research on FDIR processes.
We highlight the trade-offs in the tuning of the design
parameters, discuss the trends, and propose methods to aid
tuning of the diagnostic process as tailored to specific
system characteristics and requirements. We show how the
approach is applicable to prototype systems for automotive
and aerospace applications. The probability of isolation due
to transient faults could almost be ruled out in both
scenarios by considering that all functions, including
safety-critical ones, show a certain degree of tolerance to
transient outages. However, nodes with dormant faults
activating as seldom as every 10 hours on the average can
be isolated by appropriately tuning our FDIR algorithm.

1.1 Related Work

A variety of approaches exist, which address the FDIR
process (or parts of it), and a complete survey is beyond the
scope of this paper. We limit ourselves to a brief overview
of the main existing work in the field.

The theoretical problem of diagnosis was set up in the
Preparata-Metze-Chien (PMC) model [26]. The focus of this
work and of many related approaches was on characteriz-
ing system configurations, fault sets, and assignments,
where n active components (units) are able to diagnose, in
the presence of up to t faulty units, all the faulty units (one-
step t-diagnosability) or at least one of them (sequential
t-diagnosability). The problem of assignment has been
further developed from many viewpoints, trying to define
sufficient and necessary conditions when only some
combinations of the elements are known. Many extensions
exist to the PMC assumptions, considering the fact that a
fault might not always manifest in a permanent manner [5],
[23] or extending the analysis from multiprocessor systems
to distributed systems [17], [30]. An excellent survey on the
strong similarities between diagnosis and consensus pro-
blems in distributed systems can be found in [2].

An important element for the timeliness of online
diagnosis, especially in real-time systems requiring timely

reaction to faults, is the ability to execute diagnostic tests
without interrupting system operation, that is, without
explicit testing capabilities. A well-known solution is the
comparison approach [4], [24], [28], where multiple nodes
execute the same task, and the outcomes are compared by
other nodes.

If nodes are assumed to be fail silent, then group
membership protocols can be used for FDIR operations.
They ensure that all nodes have a consistent view of the
current set of correct nodes. The first definition of the group
membership problem and a solution in asynchronous
systems were developed within the ISIS project [3]. One of
the first approaches to group membership for synchronous
systems was proposed in [10]. The time-triggered protocol
(TTP) [16] intertwines a membership protocol with clock
synchronization in synchronous systems.

Our previous work [33] introduced a family of distrib-
uted diagnostic algorithms for synchronous systems based
on the Customizable Fault/Error Model (CFEM) [32], where
the fault assumptions can be adapted to meet the fault
hypothesis of the core fault-tolerant protocols of the system
(for example, clock synchronization). One advantage is that
diagnosis is not considered as an offline and fault-free
procedure but as an online core fault-tolerant mechanism
fully integrated in the system fault-tolerant strategy. Instead
of executing dedicated performance-impacting tests like in
the PMC model or constraining the allocation of applica-
tion-level tasks to nodes like in the comparison approach, it
uses error detection information derived by the execution of
fundamental system-level activities like message delivery
and clock synchronization to diagnose the system. This
approach is complementary to graph-based application-
level approaches. The diagnostic protocol is seen as a
special case of consensus under the CFEM. The need for
recording the duration and recurrence of errors and to
assign them different severity levels has been pointed out.

Most previous diagnostic services provide snapshot-
level information about a single manifestation of a fault.
After a fault is detected, nodes are declared as either always
permanent or always transient faulty. An evaluation of the
effect on system reliability of these two different policies
was conducted in [20]. The intuitive result was that optimal
reliability is not attained by either.

In practice, nodes oscillate between faulty and correct
behavior. To handle this, a range of mechanisms collectively
called “count-and-threshold” schemes were established in
our previous work [6], [7]. The idea is that “components
should be kept in the system until the benefit of keeping the
faulty component online is offset by the greater probability
of multiple (hence, catastrophic) faults.” Apart from the class
of permanent faults, when the component always fails every
time it is activated, a basic discrimination is done in the
context of temporary errors spanning intermittents and
transients: the first are due to faults internal to the
component and show a high occurrence rate, which
eventually might turn them to permanent faults, whereas
the second are due to reasons that are external to the
component, generally have an uncorrelated occurrence rate,
and should not determine the exclusion of the component.
Therefore, after detecting a transient, it is advocated to wait

2 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007



and see if the error reappears before isolating the compo-
nent. Error counters for each component are incremented
when the node fails and decremented when it delivers a
correct service. When a chosen threshold value is exceeded,
the corresponding component is isolated.

The fundamental advantages, disadvantages, and trade-
offs involved in using online count-and-threshold mechan-
isms and in defining the related thresholds have been
characterized in [6], where a generic class of low-overhead
count-and-threshold mechanisms, called �-count, is de-
fined. This model was elegantly extended in [7] to include
double-threshold mechanisms, where a component is
temporarily excluded after the first threshold is exceeded
but still given an opportunity to be reintegrated and where
more complex error distributions are considered. The
applicability of the analysis is restricted to the case where
error duration does not exceed the diagnostic period. Also,
the presence of an “error detection subsystem” is assumed,
which, for distributed diagnosis, means the existence of an
underlying error detection, aggregation, and agreement
service to support the threshold counting. The powerful
�-count model has also been implemented in the Generic
Upgradable Architecture for Real-time Dependable Systems
(GUARDS) architecture [25] for distributed diagnosis. A
binary accusation on the node health is shared using
consensus, voted upon, and given as input to the �-function.

Many proposed diagnostic approaches use similar
custom parametric schemes, paired with sophisticated
statistical techniques, to discriminate between transient
and intermittent faults [15], [21]. However, due to their
complexity, these are not usable in an online mode.

1.2 Our Contributions

Most cited works on distributed diagnosis have focused on
establishing the correctness and completeness of the
diagnostic approaches for varied fault models. An often
used assumption is that once a node fails, it must be
isolated as fast as possible. This implicitly rules out the
pragmatic issue that healthy nodes can suffer from transient
outages that can be detected and treated but still do not
require isolation. We introduce and examine a generic
online FDIR framework, which is able to generalize the
previously proposed distributed diagnosis protocols and to
enhance them with count-and-threshold techniques in
order to effectively handle transient faults.

In particular, our aim is to 1) determine the effect of the
duration and recurrence of faults on the effectiveness of the
online diagnosis protocols and 2) ascertain the sensitivity
and the trade-offs of choices of some selected FDIR design
parameters2 in determining the correctness and complete-
ness of the FDIR protocols and in improving system
reliability.

We consider system parameters that can influence the
effectiveness of the FDIR process. For example, in a
synchronous distributed system, every node exchanges
data at an epoch, also known as the communication round. As
error detection takes place over each round, we can also

consider it the minimal achievable diagnostic round. Over
each communication round, the system health is “sampled”
by the different nodes and exchanged by using the
diagnostic protocol. In this context, the assumption that
errors manifest only over a single round, as characterized in
previous analyses, is not adequate. The length of the
diagnostic round is a parameter that, together with other
count-and-threshold parameters, will influence the like-
lihood with which a node is excluded from system
operation. In fact, if the round is too short, then a transient
fault may be perceived as permanent and, consequently,
lead to pessimistic resource isolation. This can be particu-
larly problematic for long-duration missions. On the other
hand, if the round length is too large, then one would
expect large diagnostic latencies in the system. This
increases the probability of coincident errors within the
same round and might be undesirable for critical applica-
tions with short mission times and requirements of rapid
response to perturbations.

A discrimination between transient and intermittent or
permanent faults solves two key problems: the depletion of
system resources (and, consequently, of system resilience to
faults) caused by the isolation of transient faulty nodes and
the reduced coverage of the system fault hypothesis (that is,
the assumption on the number of faults tolerated by the
core system protocols within a given time window) if
intermittent faulty nodes are left operative. Our contribu-
tion is to study the choice of diagnostic round length and
other system parameters within an architectural context to
highlight the correctness, completeness, and reliability
trade-offs. We consider the following design parameters:

. Diagnostic round rate. The rate at which nodes
exchange diagnostic data, aggregate it and, conse-
quently, update penalties and rewards.

. Penalty counter threshold values. The number of
temporally correlated diagnostic rounds, after which
an erroneous node gets isolated.

. Reward counter threshold values. The number of
diagnostic rounds, after which a node (previously
suspected as erroneous) displaying correct behavior
gets readmitted into the system as a “good” node.

. Penalty increments. The penalties assigned after
errors with varied severities are detected.

We provide a generic FDIR framework that can be
instantiated in multiple different implementations. Along-
side, we provide stochastic techniques to examine the main
trends related to the identified parameters. Furthermore, we
report on the use of the FDIR approach and the related
tuning techniques in prototypes for the automotive and
aerospace domains. We discuss how different severity
levels can be established and describe how, by means of a
finer tuning, better settings could be found at design time,
that is, without carrying out measurements on an imple-
mented system.

The paper is organized as follows: Section 2 details the
generic online fault diagnosis process supporting the FDIR
algorithm, which is discussed in Section 3. Section 4
introduces the diagnostic measures and models used to
evaluate the goodness of the design choices related to the
FDIR process. Section 5 details the main trends involved in

SERAFINI ET AL.: ONLINE DIAGNOSIS AND RECOVERY: ON THE CHOICE AND IMPACT OF TUNING PARAMETERS 3

2. We concentrate our analysis on parameters representing phenomena
that are considered here for the first time, whereas we skip others already
studied in [7], since their role is well established.



tuning the parameters. Section 6 reports on the practical
application of the FDIR approach to prototypes from the
automotive and aerospace domains. Section 7 summarizes
our results and insights.

2 A GENERIC FDIR FRAMEWORK

A generic FDIR framework consists of four key steps:

1. collection of local syndromes from internal and
internode local error detection,

2. dissemination of the local syndromes,
3. analysis to consistently diagnose the faulty nodes,

and
4. (possibly) isolation of the faulty nodes and

reconfiguration.

The first three steps are generally carried out by a
distributed diagnostic protocol. We propose to separate
the diagnosis of faults (1-3) from the decision on the
isolation of the node 4) and to isolate a node only if multiple
instances of the diagnostic protocol indicate a sustained
faulty behavior. In the following, we describe each of these
steps in detail.

In order to establish a basis for our analysis, we present a
system model and an associated count-and-threshold
approach to support online diagnosis and FDIR. We
consider a distributed system framework by using a
round-based (synchronous) message dispersal protocol.
Essentially, such a communication model implies that
messages are broadcast and received by the system nodes
periodically at specific times following an a priori determi-
nistic schedule. A nonfaulty receiver node can identify the
sender of an incoming message and can detect the absence
or time deviance (early or late) for an expected message. It is
important to mention that we have chosen a synchronous
system model for simplicity of presentation. Our analysis
developed in this paper can directly be extended to partially
synchronous models (for example, timed asynchronous [11]
or asynchronous augmented with failure detectors [8]), as
long as there are mechanisms for 1) periodic error detection
to form local syndromes and 2) authenticated channels to
ensure that the sender of a message can be correctly
identified.

As a comprehensive example of how the four steps apply
to a distributed diagnostic protocol, we utilize the diag-
nostic protocol defined in [29] as a basic reference. We
consider a CFEM [32], where faults can be either benign, that
is, each node can locally detect the related errors, or
malicious. The malicious faulty nodes can either send
erroneous information symmetrically or asymmetrically.
The latter case is the classical Byzantine case. The ability of a
node to send correct messages in the designated time
windows is used as a periodic diagnostic test. No
assumption is made on the persistence of faults, as the
correct delivery of each message is diagnosed indepen-
dently. The protocol is able to diagnose bursts of multiple
concurrent benign faults and to tolerate malicious faults.

2.1 Error Detection, Dissemination, and Analysis

During error detection, each node collects the evidence on
system health that are locally observed at runtime. Besides

self-checks executed by each node to detect internal errors
and ensure error containment, online internode error
detection is achieved through the constant monitoring of
the message exchange. The result of this online monitoring
occurring during system operation is condensed by each
node into a local syndrome representing its local view of the
correctness of the other nodes.

The granularity of the information stored in the local
syndrome can vary. Different error classes, for example,
missing message, late message, early message, wrong
syntax, and corrupted cyclical redundancy checking
(CRC), can be defined and associated with different severity
levels. Also, errors impacting different system services with
different criticality levels can be reported separately,
allowing different fault-handling actions.

Due to malicious and symmetric faults, this local
detection information is not sufficient to identify and locate
faults. Therefore, local syndromes are disseminated to
achieve a global view. This is periodically done at discrete
points in time at the boundaries of what we call diagnostic
rounds. Generally, the communication rounds and the
diagnostic rounds coincide as local error detection and
dissemination take place during each message exchange
round.

After dissemination, each node analyzes the received
information based on the fault model of the diagnostic
protocol and derives a global and consistent snapshot view of
the system state. The snapshot view assesses whether (and
how) a node is faulty and ensures the following properties
under the given fault assumption:

. Correctness. A correct node is never diagnosed faulty.

. Completeness. All benign nodes are diagnosed faulty.

. Consistency. All nodes agree on the same set of faulty
nodes at each diagnostic round.

All of the local syndromes are collected to build a
syndrome matrix, where each row represents a local
syndrome, and each column contains all the local views
on the health of a certain node. Similar to the second round
of the protocol OMHð1Þ [22], the analysis consists of
performing a Hybrid Majority voting along the columns.
The protocol ensures correctness, completeness, and con-
sistency. In particular, it is able to detect all benign faults
and those asymmetric faults that are detected by at least a
majority of nodes. The presence of malicious faults cannot
always be detected but does not disrupt consistency. A link
fault is equated to a node fault, but the more sophisticated
node-link discrimination approaches such as [13], [27] can
be used as well. However, transient external faults on the
communication network can be filtered out by using our
FDIR algorithm.

2.2 Isolation of Unhealthy Nodes

The diagnostic protocol ensures that each node obtains, at
each diagnostic round, consistent information on the
manifested faults. This is called a snapshot view, as it
refers to the detection of fault manifestations within a single
diagnostic round.

Current approaches define isolation policies solely based
on this snapshot view. Our purpose is to observe the
behavior of the system over a given time interval before

4 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007



taking a decision on whether to isolate a node or not.

Relying on correct, complete, and consistent snapshot views

provided to each node by the distributed diagnosis

protocol, we develop an expanded �-function, extending

on [7], that accumulates this data over successive diagnostic

rounds to discriminate between unhealthy and healthy

(although, at times, faulty) nodes.
Fault models typically used for diagnostic protocols do

not consider the fact that faults can disappear and reappear,

that is, the duration and recurrence of faults. We extend the

fault models used by the diagnostic protocol and assume

that at a given time, nodes can be

. unhealthy, if they have internal faults and fail in a
permanent or intermittent manner, or

. healthy, if they fail only on external transients.

Healthy nodes can become unhealthy during system

operation. We introduce these two terms to distinguish a

node being faulty in a single diagnostic round from a node

showing correlated subsequent failures. The goal of our

FDIR protocol is to isolate only unhealthy nodes, whereas

healthy nodes should be kept operative. In order to make

this discrimination possible, we make two assumptions:

. (A1) Nodes can fail and recover an infinite number
of times.

. (A2) Healthy nodes fail with lower frequency than
unhealthy nodes.

These assumptions do not only arise from intuition but

also reflect experimental results, as in [31].

3 THE PARAMETRIC FDIR ALGORITHM

We propose to use a count-and-threshold algorithm on top
of the diagnostic protocol to reduce the likelihood of
isolation and increase the availability of healthy nodes in
case of external transient faults. Each node executes the
algorithm represented by the flow diagram in Fig. 1a and
accumulates the observations of the health of all nodes
obtained through snapshot views by using two values: a
penalty counter and a reward counter. We describe the
operations of the algorithm on a single node. As every
update of the penalty and reward counters is based on the
consistent snapshot view, it is ensured that all updates are
executed consistently. Therefore, each node has the same
penalty and reward counters for all nodes in the system. A
node can be in one of the four possible states, each
corresponding to the four phases of the FDIR algorithm,
as depicted in Fig. 1b, namely, Error Free, Health Diagnosis,
Isolated, or Recovery.

3.1 Error-Free and Health Diagnosis Phases

In the initial system state, each node is Error Free, and the
values of the penalty and reward counters (p and r in
Fig. 1a) are set to 0. The conditional block labeled “Faulty?”
represents the content of the consistent snapshot view of the
current diagnostic round.

As long as no errors from a node are detected, the
algorithm loops in the Error-Free phase. After the node is
diagnosed faulty for the first time, the system keeps the
target node under observation for a finite time span to
produce an assessment of its health and to isolate it only if
the duration or recurrence of errors exceeds a tolerable rate.

SERAFINI ET AL.: ONLINE DIAGNOSIS AND RECOVERY: ON THE CHOICE AND IMPACT OF TUNING PARAMETERS 5

Fig. 1. The local online FDIR algorithm for each node. (a) Block diagram. (b) States (phases) that a node can visit. *A “permanency counter” can be

put up to exclude a node as a permanent fault if it continues to remain faulty for a specified number of unsuccessful recovery attempts.



This phase is called Health Diagnosis. Each time a node is
diagnosed faulty, the related penalty counter is increased
by a penalty increment reflecting the severity level. Con-
versely, if a node in the Health Diagnosis phase produces
correct messages, then the reward counter is increased by 1
but is set to 0 as soon as another error appears. In Fig. 1a,
the dashed boxes represent updates of the penalty and
reward counters. The Health Diagnosis phase can have two
outcomes (see Fig. 1b): 1) If the penalty counter exceeds a
predefined penalty threshold P , then the node is isolated. 2)
If the reward counter exceeds a predefined reward thresh-
old R, then the diagnostic process is reset by setting both
penalty and reward counts to 0. This process of updating
and checking p and r is performed at each diagnostic round.

If the diagnostic protocol is capable of discriminating
different severity classes of errors hs1; . . . ; sni, then these can
be ordered in growing degree of criticality. Intuitively, a
node showing more severe errors should be assigned higher
penalty increments than other nodes with less severe errors
in order to reach the penalty threshold faster. Therefore,
different penalty increments �p ¼ hp1; . . . ; pni can be asso-
ciated to different severity levels, where p1 < p2 < . . . < pn.
In Section 6, we elaborate on how the choice of varied
penalty increments can be tuned to satisfy desired system
requirements.

We use two counters and two related thresholds to
represent two different kinds of information. Rewards are
related to the correlation between subsequent faults. In the
algorithm in Fig. 1a, snapshot views are evaluated after
each diagnostic round. The reward counter stores the
number of consecutive fault-free diagnostic rounds that a
node under Health Diagnosis displays. If the length of such
rounds is T time units, the reward threshold is thus reached
after R � T time units without faults. In this case, subsequent
faults are considered uncorrelated with the previous. On
the other hand, penalties and the penalty threshold P are
related to the maximum length of tolerated faulty bursts
before a node is isolated, which is P � T time units.

3.2 Isolated and Recovery Phases

Even though the introduction of the Health Diagnosis phase
increases the availability of healthy nodes, the likelihood
that long and bursty transients lead to incorrect node
isolations cannot generally be ruled out, especially in cases
of adverse external conditions or high-severity errors [29].
Therefore, we introduce a Recovery phase after node
isolation, which provides an observation period to handle
any residual faults and also to allow reintegrating a node
that is incorrectly isolated.

If the penalty counter exceeds its threshold, then the
Health Diagnosis phase ends, and the node goes into the
Isolated state; that is, it is declared erroneous, and its
participation on the ongoing computations in subsequent
rounds is restricted. However, even in the Isolated state, the
incriminated node continues, as long as it is viable, to
participate by sending its messages at the prescribed
instants, allowing a selective isolation based on the type
of service that the node provides.

Potentially, the Recovery phase could allow unhealthy
nodes to be reintegrated. Therefore, reintegrated nodes are
assigned a penalty of k > 0 so that successive fault
manifestations will lead to a faster reisolation. The reward

threshold for recovery ðRrÞ does not necessarily need to be
equal to the reward threshold for diagnosis ðRÞ and can be
adjusted, together with k, to handle this trade-off. Similar to
the Health Diagnosis phase, the Recovery phase also
reaches an outcome, either bringing the node back to the
Isolated state or reintegrating it, after a bounded time of at
most Rr rounds.

In some systems, especially long-life systems, diagnosis
is also mandated to signal when a node needs to be
replaced. Representing this case requires that the Recovery
phase in Fig. 1a is executed a finite number of times (for
example, by setting a “permanency counter”), and if the
node is not able to recover, it must be completely excluded.
Such behavior is also recommended to limit the additional
overhead involved in checking the behavior of an unhealthy
node. A variation of the algorithm in this sense can be the
use of a double-threshold approach [7], where a faulty node
can continue accruing penalties after isolation, and if a
second penalty threshold is reached, then the node is
signaled for replacement.

4 MODELING THE FDIR EFFECTIVENESS

In the FDIR process, the nodes of a distributed system are
reconfigured using penalty and reward counters that are
periodically updated at each diagnostic round until a
threshold is reached. Thus, the design issue for online
diagnosis and FDIR considered in this paper is given as
follows:

Given a system with specific transient and intermittent fault

duration and reappearance times, what are the “best” parameter

settings that minimize wrong isolations and maximize correct

isolations? Note that the notion of “best” can change, depending

on the design goals of the system, that is, whether the objective of

the FDIR approach is to maximize the isolation of unhealthy

nodes, minimize the isolation of healthy nodes, or increase the

overall system reliability.
In this section, we define the basis of the model used to

evaluate the effectiveness of the FDIR approach and define
stochastic measures for the FDIR effectiveness. These
measures are functions of the specific aspects of the studied
system (for example, fault duration and recurrence) and of
the design parameters (for example, the diagnostic round
rate and the penalty and reward thresholds).

4.1 Measures for FDIR Effectiveness

Of the four phases of the FDIR algorithm, we call the Health
Diagnosis and Recovery phases transitory phases. The reason
is that a node can remain in these phases only for a limited
amount of time, and a diagnostic outcome is ensured within
bounded time. The role of transitory phases is to discrimi-
nate between healthy nodes hit only by transient faults and
unhealthy nodes showing an intermittently or permanently
faulty behavior. The measures for FDIR effectiveness must
reflect the capability of correct discrimination.

For the Health Diagnosis phase, we define two notions of
completeness and correctness for healthy and unhealthy
nodes, which we assign specific names to distinguish them
from the similarly named properties of the underlying
diagnostic protocols:

6 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007



. Accumulated Correctness (or accuracy) is the prob-
ability that a healthy node in the Error-Free state
entering the Health Diagnosis phase is not isolated.

. Accumulated Completeness (or coverage) is the
probability that an unhealthy node in the Error-Free
state entering the Health Diagnosis phase is isolated.

As Accumulated Completeness trivially equals 1 for
unhealthy nodes displaying permanent faults, we restrict
our analysis to intermittent faults.

Besides Accumulated Correctness and Completeness,
another measure of interest for the Health Diagnosis phase
is the time needed to isolate unhealthy nodes:

. Diagnostic Latency is the interval between a node
becoming unhealthy and its isolation.

Even if Health Diagnosis is a transitory phase and is
terminated in a bounded time, a node can switch between
the Error-Free and Health Diagnosis phases multiple times
before being isolated. In [6], [7], the Health Diagnosis phase
can last for an unbounded period of time. Therefore, two
different measures were defined to capture this aspect: the
overall diagnostic latency from the first fault appearance in
an unhealthy node to its isolation D and the fraction of
unused lifetime of a healthy node NU , that is, the time
between wrong isolation of a healthy node and its eventual
transition to the unhealthy state divided by the time needed
to become unhealthy from the beginning of its operational
life. Our measures can be used to obtain D and NU by
considering each execution of the Health Diagnosis phase as
a Bernoulli trial, where success is node isolation.

Although unhealthy nodes should be kept isolated,
healthy nodes should be reintegrated. Similar measures
can be thus defined to describe the behavior of the
algorithm after a node is isolated:

. Stable Correctness is the probability that an isolated
healthy node entering the Recovery phase is reinte-
grated.

. Stable Completeness is the probability that an
isolated unhealthy node entering the Recovery
phase is not reintegrated.

The FDIR algorithm is a parametric algorithm. In the rest
of this section, we relate the measures introduced in this
section to the settings of the parameters.

4.2 Characterization of the System

We consider that nodes can alternate between periods of
correct and faulty behavior, as assumed in Section 2.2. After

a fault is activated, errors are observable for a time, which
we term Time to Recovery (TTR), before they disappear.
Eventually, errors will reappear either because of new
transient faults or correlated intermittent faults. The time to
error reappearance is called Time to Failure (TTF). This is
depicted in Fig. 2. We can characterize the behavior of a
given specific system by measuring or estimating the
probabilities of error disappearance and reappearance in
each diagnostic round.

The Health Diagnosis phase begins when a previously
Error-Free node is diagnosed faulty. Nodes can pass from
the correct to the failed states and back infinitely often
(assumption A1). The TTR represents the permanence time
in the faulty state before errors disappear and can be
modeled by a continuous stochastic variable X, whose
probability distribution function (pdf) is fXðtÞ, and whose
Cumulative Distribution Function (CDF) is FXðtÞ. Once
recovered, a node will eventually fail again. The TTF
represents the permanence time in the correct state and can
be represented by a similar continuous stochastic variable
Y .

As the count-and-threshold algorithm receives data at
discrete points in time corresponding to the diagnostic
rounds, we study the behavior of the protocol as a discrete
time problem, where the time unit is represented by the
diagnostic round length T . The pdf of the discrete stochastic
variable bX resulting from X is

fbXðiÞ ¼
R iT
ði�1ÞT fXðtÞdt if i > 0

0 if i ¼ 0:

�
ð1Þ

The pdf of the discrete stochastic variable bY can be
obtained analogously.

In each diagnostic round following the manifestation

of a fault, there is a probability, called disappearance hazard

dðiÞ, that the fault disappears. It is the discrete hazard

function of fbXðiÞ, that is, the probability of fault

disappearance at diagnostic round i, conditioned by the

fact that the error did not disappear in the previous

round. It can be calculated as

dðiÞ ¼
fbXðiÞ

1� FbXði� 1Þ :

Analogously, for correct nodes, we can associate a

reappearance hazard mðiÞ to fbY ðiÞ, that is, a probability of

fault reappearance in each diagnostic round.

SERAFINI ET AL.: ONLINE DIAGNOSIS AND RECOVERY: ON THE CHOICE AND IMPACT OF TUNING PARAMETERS 7

Fig. 2. Appearance and disappearance of faults.



We define the stochastic characterization of the specific
system under study as a quadruple hdhðiÞ;mhðiÞ; duðiÞ;muðiÞi
composed by the disappearance and reappearance hazards
at round i of healthy nodes (dhðiÞ and mhðiÞ) and unhealthy
nodes (duðiÞ and muðiÞ), respectively.3 Assumption A2 in
Section 2.2 can now be formalized by assuming the expected
value of the distribution muðiÞ to be much smaller than of
mhðiÞ. The multiple factors that influence dðiÞ and mðiÞ are
discussed in more detail in Section 6.

4.3 Stochastic Models for the FDIR Algorithm

We use the disappearance and reappearance hazards dðiÞ
and mðiÞ to model subsequent failures of a node over time
instead of the logical predicates normally used by the
existing diagnostic protocols. The properties of the protocol
therefore become probabilistic and can be obtained by
means of the stochastic models that we present below. As
correct nodes consistently update penalties and rewards, we
can use a single model to study the execution of the
transitory phases of the FDIR algorithm in each correct node.

The measures of Accumulated Correctness and Com-
pleteness are defined based on the probability of isolation of
healthy and unhealthy nodes, respectively, during an
execution of the Health Diagnosis phase. To calculate them,
we build a model of how the penalties and rewards
associated with a node are consistently updated. We model
the case of unary penalty increments upon errors, but the
analysis can be easily extended to the case of different
increments associated to varied severity levels. In fact, the
probability of isolation when the penalty increment is 1, and
the penalty threshold is P , is the same as if the increment is
pj, and the threshold dP=pje.

Values for dðiÞ and mðiÞ can be either expressed using an
analytical distribution or defined using experimental results
to assign a probability for each value of i. Regardless, it is
possible to model the behavior of the protocol by using a
Discrete Time Markov Chain (DTMC).

If the disappearance hazard is constant,4 that is, dðiÞ ¼ d,
then the probability of isolation of a node after a failure and

a subsequent single execution of the Health Diagnosis
phase can be obtained from the simpler DTMC in Fig. 3.
Each state is depicted as hp; ri, representing that the node
under consideration has accrued consistent penalty counter
p and reward counter r. In the initial state h1; 0i, the node
has just displayed an error. Each transition models
subsequent diagnostic rounds, where errors may be present
or not. The probabilities of error disappearance and
reappearance are d and mðiÞ, respectively. States marked
as hp; 0i follow the detection of an error and, consequently, d
is only used for their outgoing transitions. The other states
follow a correct round and have outgoing transitions
defined in terms of mðiÞ.

In this particular case, the probability of isolation can be
calculated (see the Appendix) as5

Pisol ¼ 1� d �
YR�1

i¼1

ð1�mðiÞÞ
 !ðP�1Þ

: ð2Þ

However, if the disappearance hazard is not constant but
follows a generic distribution dðiÞ, then the complexity of
the model grows, as i must be represented in each state of
the DTMC.6 We can thus model it by using a higher level
formalism such as the Stochastic Activity Network in Fig. 4
and solve it by using a tool like Möbius [12].

The places Faulty and FaultFree in Fig. 4 hold a token
when the node is in the corresponding state. Therefore, in
the initial marking, a token is put in the place Faulty,
whereas the place FaultFree is empty. Counters is an
extended place that stores the tuple hp; ri rather than
simply tokens. The activity DiagnosticRound represents the
execution of one diagnostic round. It has two cases
associated with the probability of detecting a fault. If the
node is faulty, then the probabilities associated with the two
cases are 1� dðiÞ and dðiÞ, respectively, whereas these are
mðiÞ and 1�mðiÞ if the node is fault free. The output gates
FaultDetected and NoFaultDetected update the penalty and
the reward counters and check them against the threshold,
possibly putting one token into the places Isolated or Reset. If
this happens, the activity DiagnosticRound is disabled by the
input gate NotFinished, and the model reaches an absorbing
state. The output gate FaultDetected also adds a token in the
place StripLength, which records the current number of
diagnostic rounds i from fault occurrence (respectively,
disappearance) necessary to determine dðiÞ (and mðiÞ). The

8 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007

Fig. 3. DTMC for constant dðiÞ ¼ d.

Fig. 4. DTMC for the general case.

3. As notation, we add the subscripts h and u for the measures referring
specifically to unhealthy (intermittent) and healthy (transient) faults. When
we refer jointly to both cases, no subscript is added.

4. The fault models of [6], [7], which assume that faults disappears after a
diagnostic round, represent a special case, where dðiÞ is constant and equal
to d ¼ 1.

5. It can be observed that
QR�1

i¼1 ð1�mðiÞÞ can also be calculated as the
probability that a fault reappears before the reward threshold R is reached;
that is, 1� FY ððR� 1Þ � T Þ or, equivalently, 1� FbY ðR� 1Þ (see the Appen-
dix for details).

6. For the reappearance hazard mðiÞ, the parameter i is already implicitly
defined by the current reward counter r.



model has two absorbing states characterized by the
presence of a token in Isolate or Reset, respectively. The
probability that the model reaches the first absorbing state
is Pisol. The number of steps before an absorbing state is
reached gives the Diagnostic Latency in terms of diagnostic
rounds.

Accumulated Correctness and Completeness can be
calculated from Pisol by using the disappearance and
reappearance hazards of, respectively, healthy and un-
healthy nodes. Accumulated Correctness is the probability
of not isolating a healthy node, whereas Accumulated
Completeness is the probability of isolating an unhealthy
node.

The Recovery phase can be modeled using a similar
DTMC and is simpler, as only reward accumulation needs
to be considered. In this case, the probability of reintegra-
tion upon error disappearance is the probability that further
errors do not appear before the Reintegration threshold Rr

is reached:

Preint ¼
YRr�1

i¼1

ð1�mðiÞÞ:

As in the previous case, Stable Correctness and Complete-
ness can be calculated from this expression by using the
reappearance hazard mðiÞ of healthy and unhealthy nodes.
Stable Correctness is the probability of reintegrating healthy
nodes, whereas Stable Completeness is the probability of
not reintegrating unhealthy nodes.

This model is appropriate in those cases where replace-
ment is not considered. There are also cases where a node,
after some attempts to recover, is considered permanently
faulty and is extracted from the system, as no benefit but
only damage can be envisaged from keeping it operative. In
such cases, a slight modification of the model is sufficient in
order to count how many times the node enters the
Recovery phase before being signaled for replacement.

5 IMPACT OF THE DESIGN PARAMETERS ON

HEALTH DIAGNOSIS

The modeling framework that we have defined previously
allows system designers to tune the design parameters
according to the specific system under study. This section
provides an insight into the main issues and trends
involved with the parameter tuning by evaluating the
resulting values of Accumulated Correctness and Comple-
teness and Diagnostic Latency (for brevity, these measures
are also respectively termed accuracy, coverage, and latency in
the rest of the paper). An example of harder tuning in a
different scenario is also described, where the expected TTF
for healthy and unhealthy nodes is similar. Finally, the
impact of the FDIR parameters on reliability is highlighted.

For our trend analysis, we consider a generic auto-
motive system. The average TTR E½X� is 5 ms, and we
consider four discrete distributions of bX: binomial, geo-
metric (where the hazard dðiÞ is constant), Poisson, and
uniform. For finite-support distributions, we assume a
maximum TTR Xmax ¼ 10 ms, as in [14]. The small
differences in the accuracy and coverage obtained for
different distributions of bX confirms that in this case, the
simplified model in Fig. 3 and the related closed-form

analytical expression (2) provide a good approximation.
The TTF (transient) for healthy nodes Yh is assumed to be
exponentially distributed, with an expected value E½Yh� ¼
1; 000 hours, and the TTF (intermittent) for Yu for
unhealthy nodes follows a Weibull distribution [31], with
increasing failure rate ð� ¼ 1:4Þ and an expected value
E½Yu� ¼ 1 hour. Therefore, according to assumption A2 in
Section 2.2, we assume that E½Yh� > E½Yu�. While conduct-
ing sensitivity analysis on each design parameters, we fix
the others to the nominal values P ¼ 5, R ¼ 106, and
T ¼ 5 ms. Table 1 summarizes the considered design and
system parameters with their nominal values. Initially, we
consider unity penalty increments.

5.1 Tuning of the Design Parameters

The analysis confirms that the diagnostic round length has a
strong impact on the measures of interest. The longer the
diagnostic rounds, the higher the probability of observing
an event during a round, either recovery or failure. The
resulting accuracy and coverage are given in Fig. 5a. In this
figure, as in some other following ones, multiple curves
overlap with each other. However, all figures display
conformal trends. We can observe the presence of points
of minimal coverage ðT ¼ 1� 5 msÞ and maximal accuracy
ðT ¼ 10 ms� 1 secÞ. In fact, if the diagnostic rounds are too
short, then nodes do not have enough time to recover before
the penalty threshold is reached and are always isolated. In
this case, the accuracy is 0, and the coverage is 1. The same
result is obtained when the diagnostic round is excessively
long. In this case, the period of correct operation before the
counters are reset becomes too long, and even subsequent
transient faults are considered as correlated. Overall, we
cannot consider a setting of the penalty and reward
thresholds as good per se without considering the diagnostic
round length.

In Fig. 5a, as well as in the subsequent figures, the results
obtained using different distributions of the TTR bX are
similar, especially if both measures are close to 1. Therefore,
when a highly refined tuning is not necessary, the geometric
distribution, where dðiÞ ¼ d, can be adopted for the
analysis. This enables using the closed-form analytical
expression of (2) rather than simulations or numerical
analysis.

The average latency of isolation of unhealthy nodes at
varying values of T is plotted in Fig. 5b. As expected,
increasing the length of the diagnostic round also increases
the time necessary to isolate an unhealthy node. However,
for values of T greater than 100 ms, the latency tends to
grow much less. The reason is that when the coverage is
close to 1, isolation is usually achieved, in a bounded time,
after the first Health Diagnosis following the fault. There-
fore, the latency depends on how many error bursts are
necessary to reach the penalty threshold. For finite-support
distributions, the latency is higher than the one observed for
other distribution, especially when diagnostic rounds are
large enough to make it impossible for a single error burst
to determine node isolation. In general, the longer the tail of
the distribution of the TTR, the shorter the diagnostic
latency.

The impact of the reward threshold R on the average
accuracy and coverage is depicted in Fig. 6a. Healthy and

SERAFINI ET AL.: ONLINE DIAGNOSIS AND RECOVERY: ON THE CHOICE AND IMPACT OF TUNING PARAMETERS 9



unhealthy nodes are discriminated based on their TTF. The
FDIR algorithm is designed such that a node that always
fails before reaching R is always isolated, independent of
the TTR. Thus, proper tuning of R is essential to obtain a
good discrimination. The trade-off faced in this case is that
before resetting the counters, the algorithm must wait long
enough to correlate successive intermittent faults (for
coverage) but not so much that independent successive
transient faults also get correlated (for accuracy). The best
trade-off in our example is found for settings around
R ¼ 107. Penalty and rewards are reset to 0 after R � T ’ 14
hours, which is enough to correlate intermittent faults
(activated every hour on the average) but not to correlate
transient faults (appearing every 1,000 hours on the
average).

The average diagnostic latency for varied values of R is
reported in Fig. 6b. Similar to the previous sensitivity on T ,
the latency converges to a constant value when the coverage
is close to 1. The reason is that once the protocol is set to
wait enough to catch the reappearances of intermittent

errors with a high probability, it will not likely wait for a

longer time if the reward threshold is further increased. The

asymptotic constant value depends on the number of faulty

bursts necessary to reach the penalty threshold and is

dependent on the specific distribution of the TTR that we

consider. In our example, a setting of R ¼ 107 allows

capturing most of the intermittent errors.
Finally, we consider variations of the penalty threshold

P , as illustrated in Fig. 7a. P is the maximum number of

faulty diagnostic rounds that a node is allowed to exhibit

before assessing it as unhealthy. Tuning P can reduce the

probability of incorrect node isolations due to transient

error bursts, but this alone is not sufficient to obtain high

levels (that is, > 0.9) of accuracy and coverage, unless a

proper distinction between healthy and unhealthy nodes is

made by tuning R. As expected, the accuracy for finite-

support distributions (binomial and uniform) is 1 as soon as

the time to isolation for a single faulty burst ððP � 1Þ � T Þ is

larger than their support ðXmax ¼ 10 msÞ.

10 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007

TABLE 1
Design and System Parameters and Their Nominal Values

Fig. 5. Sensitivity analysis for the diagnostic round length T . (a) Accumulated correctness (accuracy) and completeness (coverage). (b) Diagnostic

latency (time to isolation of unhealthy nodes).



By increasing P , more alternating periods of faulty and

correct behavior are needed to achieve isolation of unhealthy

nodes. Therefore, a single error burst will less likely result in

isolation, and the trends of coverage of the diagnostic latency

are opposite (see Fig. 7b).
The current analysis considers unary penalty increments.

For high-severity faults, it is possible to increase the penalty

increment to favor coverage and reduce diagnostic latency,

even if this comes at the cost of reduced accuracy. From an

analysis standpoint, the case of nodes displaying faults with

a related penalty increment pi > 1 when the penalty

threshold is P is equivalent to the case of unary increments

when the penalty threshold equals dP=pie. Also, if a node is

reintegrated and assigned a reintegration penalty k, then

the probability of reisolation in cases of subsequent faults

before the counters are reset can be evaluated as if the

penalty threshold was P � ðkþ 1Þ, and its initial penalty

counter was 1.

5.2 An Example of a Harder Tuning

The previous analysis has shown that by tuning the design

parameters, the protocol can distinguish between the higher

frequency of failure of unhealthy nodes and the lower

frequency characterizing healthy ones. It is intuitive that the

higher the difference in frequency between healthy and

unhealthy nodes, the easier it is to find a correct tuning of

the parameters. To confirm this, we evaluated the case

when the average TTF is one order of magnitude lower

(100 hours instead of 1,000 hours) for healthy nodes and

1 order of magnitude higher (10 hours instead of 1 hour) for

unhealthy nodes. In this case, finding a good trade-off

between accuracy and coverage becomes harder, as shown

in Fig. 8. Different from the previous case, it can be

observed that tunings with high values (greater than 0.9) for

both accuracy and completeness do not exist. Thus, trade-

offs accounting for the relative importance of the two

properties must be pursued. Also, in this case, a more

SERAFINI ET AL.: ONLINE DIAGNOSIS AND RECOVERY: ON THE CHOICE AND IMPACT OF TUNING PARAMETERS 11

Fig. 6. Sensitivity analysis for the diagnostic round length R. (a) Accumulated correctness (accuracy) and completeness (coverage). (b) Diagnostic

latency (time to isolation of unhealthy nodes).

Fig. 7. Sensitivity analysis for the diagnostic round length P . (a) Accumulated correctness (accuracy) and completeness (coverage). (b) Diagnostic

latency (time to isolation of unhealthy nodes).



refined analysis using simulation or numerical analysis
might be required.

5.3 Reliability Issues

To give an example of the impact of the FDIR design
parameters on reliability, we consider a four-node system
tolerating at most one fault at a time, where node
availability is thus highly critical. Although our evaluations
are limited and do not explore the full set of the design
space, some conclusions can be drawn, without the intent of
generalizing much beyond the considered fraction of the
design space.

We consider the parameters as in the previous analysis,
but with small modifications. To enable Markov analysis,
the TTF and TTR of healthy and unhealthy nodes follow an
exponential distribution. Nodes are expected to fail every
1,000 hours on the average and to become unhealthy upon
failure, with a probability of 0.1. For simplicity, the
Recovery phase is not included, and isolated nodes are
assumed to be substituted with an exponentially distributed
delay, with an expected value of 5 hours. It is conservatively
assumed that when a node fails, the probability that the
system fails due to nearly coincident faults is given by the
probability that any other node fails during P rounds,
which is the maximum number of allowed faulty diagnostic
rounds within a single Health Diagnosis phase. In order not
to underestimate the risk of coincident faults, we consider a
conservative scenario where unhealthy nodes fail, on the
average, approximately every 4 seconds. Even under these
conservative assumptions on nearly coincident faults, we
observe that reliability can benefit from delaying the
isolation of faulty nodes.

The Mean TTF (MTTF) of the system resulting from
different tunings of P 2 ½1; 100� andR 2 ½105; 108� is depicted
in Fig. 9. At first, one can perceive how the different design
settings of the FDIR parameters can result in very different
trends. The gain can be as large as one order of magnitude.
The plots confirm that the best tunings of P and R are not at
the extremes. If R is too low, then unhealthy nodes are kept

in the system, and this increases the probability of nearly

coincident faults. On the other hand, an excessive value of R
captures also independent transients faults as correlated and
leads to resource depletion.

Despite conservative assumptions on the likelihood of
coincident faults and due to the low resilience of the
assumed system, an even higher sensitivity is observed

with respect to P . The drift is evident if we compare the
setting P ¼ 1 with P ¼ 10, which allows a relatively small
number of faulty rounds before isolation. This indicates that

the relative importance of optimizing accuracy or coverage
changes, depending on the specific system architecture. In
this example, accuracy turns out to be more critical than

coverage. The case of P ¼ 1 represents the classic FDIR
approach, where all the faulty nodes are considered
unhealthy and, therefore, isolated. The other alternative,

where nodes are always considered to be healthy, can be
approximated by P !1, and it is also not optimal due to

nearly coincident faults. This confirms the results already
available in the literature related to the discrimination of
transient and intermittent or permanent faults (for example,

12 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007

Fig. 8. Hard tuning: sensitivity analysis for T and R (Accumulated Correctness and Completeness). (a) Hard tuning: sensitivity for T . (b) Hard tuning:

sensitivity for R.

Fig. 9. Reliability of a system for varied P and R.



[20]) and indicates the soundness and correctness of our
analysis.

These results prove that the FDIR parameters can have a
considerable impact on the reliability of the system. By
fixing dependability goals (and, hopefully, more detailed
goals for the attributes like safety, reliability, and avail-
ability), it is then possible to look for the required levels of
accuracy, coverage, and latency for a given system. As we
have shown previously, the possibility of finding values
optimizing the contrasting attributes depends very much on
“external” system parameters, which are not under de-
signer control (for example, failure rates), and on other
design parameters such as the completeness of the diag-
nostic protocol and of its fault assumption, which we did
not specifically address in this work because they are not
directly related to the count-and-threshold algorithm. Even
if some parameters are not known, we describe next how
our framework provides the system designers with techni-
ques to study the effect of different design choices under a
range of scenarios.

6 PRACTICAL APPLICATION OF THE FDIR
FRAMEWORK

Our evaluation approach has been applied to tune two
prototypes, an automotive system and an aerospace system,
running on a system implementing our FDIR framework.
All requirements and design parameters used during the
tuning below arose from actual automotive and aerospace
applications [29].

During initial implementation, a reasonable though
approximate setting of the FDIR parameters was estab-
lished, which ensured high coverage of intermittent faults
(> 0.999) only, as long as the related expected TTF was in
the order of minutes. Successive use of the tuning process
documented in this section significantly enhanced the initial
setting. First, the application-level requirements constrain-
ing the diagnostic parameters were considered. Next, a
range of realistic scenarios were defined in order to tune the
unconstrained parameters. Without compromising accu-
racy, the new setting extended the range of unhealthy nodes
isolated with high likelihood to those failing on the average
as seldom as every 10 hours. This could be done at design
time, as no measurement on the system was needed.

6.1 Application-Specific Design Constraints

In the time-triggered platform used for the implementation
all nodes share a common (replicated) broadcast-based bus
using a TDMA access scheme. Nodes consist of a host

computer (Infineon Tricore 1796) and a communication

controller (Xilinx Vertex 4 field-programmable gate array

(FPGA)) providing interface to a generic time-triggered

network (layered TTP). Each node is statically assigned a

time window, called sending slot, to broadcast messages to

all other nodes. Nodes are diagnosed based on their

capability of sending messages during the designated

sending slot. Therefore, the diagnostic round length T

equals a time-division multiple access (TDMA) round. Both

considered that safety-critical domains are characterized by

strict application requirements, which define the range of

the feasible parametric settings. The TDMA round (and,

consequently, the diagnostic round) must be short enough

to allow satisfying all the application-level hard real-time

deadlines.
The diagnostic protocol is also constrained by require-

ments related to the criticality of different applications. In

automotive systems, multiple criticality classes can be

identified. Safety-Critical (SC) functionalities are necessary

for the physical control of the vehicle with strict reactivity

constraints, for example, X-by-wire. Recovery actions must

be timely and always preserve the availability of the

(possibly degraded) service. Safety-Relevant (SR) functional-

ities support the driver, for example, the Electronic Stability

Control and the Driver Assistant Systems. They are not

necessary for the control of the car, but the driver must know

if these are unavailable. Finally, we considered Non-SR

(NSR) functionalities such as comfort and entertainment

subsystems. In the aerospace prototype, only SC function-

alities are running on the system, for example, the High Lift

system related to the control of flaps and the Landing Gear

system. A summary of the requirements is shown in Table 2.
Applications with different criticality classes have

different requirements on the maximum tolerated transient

outage time between the beginning of a faulty burst and the

isolation of the node (and the consequent activation of

recovery actions). As discussed in the previous section,

penalty thresholds greater than 1 increase accuracy and

node availability in the presence of transient faults.

However, during the Health Diagnosis phase of the FDIR

algorithm, an application might be prevented from correctly

exchanging messages if some of its jobs are hosted on a

faulty node that is still kept operative. Therefore, the

maximum tolerated outage represents an upper bound of

the sum of three delays: the detection delay to detect a fault

for the first time, the accumulation delay when faults are

continuously recorded by the diagnostic protocol, but the

SERAFINI ET AL.: ONLINE DIAGNOSIS AND RECOVERY: ON THE CHOICE AND IMPACT OF TUNING PARAMETERS 13

TABLE 2
Application-Specific Requirements on the Diagnostic Protocol



node is still not isolated, and the recovery delay involved in
triggering recovery actions.

The diagnostic protocol operates by detecting if time-
triggered messages are delivered correctly and timely. As in
the prototype system, all messages generated by the
different jobs of a node are encapsulated into a single
message, and the protocol does not discriminate between
faults at different services running on the same node. A
single criticality class, as well as a related penalty increment
pi, is thus assigned to each node according to the tolerated
outage of its highest criticality job.

In the specific setup under consideration, the worst-case
detection delay is four TDMA rounds (10 ms), and local
recovery actions are immediately triggered as soon as a
node is consistently isolated. The penalty threshold is first
defined by considering the class of applications with the
least criticality (NSR). We conservatively considered the
shortest tolerated outage associated with the three criticality
classes identified. In this case, a faulty node must be
isolated after bursts of 500 ms. Considering the detection
delay, the time from detection to isolation must be at most
490 ms, which corresponds to 196 diagnostic rounds. We
consequently set the penalty threshold to P ¼ 196 and the
penalty increment to pNSR ¼ 1. After establishing the
penalty threshold, the penalty increments for application
classes with higher criticality can be derived. The maximum
number of tolerated diagnostic rounds for the other two
criticality classes ðtolfSC;SRgÞ can be similarly calculated by
subtracting the detection delay from the tolerated outage.
The penalty increments must ensure that the penalty
threshold P is reached within tolfSC;SRg diagnostic rounds,
that is, pfSC;SRg ¼ dP � T=tolfSC;SRge. It is remarkable that the
resulting values reported in Table 2 are just slightly more
conservative than the values experimentally identified in
[29], reflecting our conservative assumptions.

6.2 Characterization of the System

Our tuning process allows evaluation of accuracy and
coverage levels resulting from different parametric settings
of the FDIR process. In our case study, P , T , and the penalty
increments are constrained by domain-specific require-
ments. We are thus interested in setting R in order to
correlate the largest range of intermittent faults while
avoiding an excessive reduction of accuracy due to
correlation of successive external transient faults.

The tuning process requires three input parameters
related to the system: the TTR of all nodes, the (transient)
TTF of healthy nodes, and the (intermittent) TTF of
unhealthy nodes. These values can be known from
standards, expertise, or literature. When precise values are
not available, a range of reasonable scenarios must be
examined for sensitivity analysis.

The transient TTF for different classes of faults and
operational conditions has been extensively studied and
sometimes included in standards (see [20] for a survey on
published rates for different types of faults that are typical
of embedded systems). Reported values are all well below a
rate of 10�3 faults=h. In our case, we considered two
conservative rates of 10�2 and 10�3 faults=h to account for
the foreseen trend toward higher rates [9]. The TTF for
intermittent faults is system specific and it depends on

multiple factors such as the specific component being
damaged or the activation patterns of the software. As a
result, this value is unknown in most practical systems.
Therefore, we consider an intermittent TTF following a
Weibull distribution, with � ¼ 1:4 [31], and expected values
ranging ½1 minute� 100 hours�. Regarding the expected
TTR, safety-critical systems are often validated by injecting
temporary faults and observing the capability of the system
to tolerate them. Such tests are supposed to represent real-
world operational conditions. According to the Interna-
tional Organization for Standardization (ISO) 7637 testing
standard for the automotive domain [14], we considered an
expected TTR of 5 ms, which is also a reasonable value for
the aerospace domain.

6.3 Tuning the System to Improve Coverage

The defined scenarios were used to study the coverage and
accuracy levels for the three criticality classes with respect
to different tunings of R and to determine 1) how large R
can be set before accuracy is compromised and 2) what the
largest expected TTF for intermittent faults resulting in high
levels of coverage is.

The value R ¼ 106 was chosen as the first setting in the
context of the experimental validation of the protocol [29],
as it appeared as a good practical trade-off. In fact, it allows
correlating all intermittent faults appearing within a time
window R � T ffi 42 minutes, whereas two distinct transient
faults are incorrectly correlated with a probability lower
than 1 percent in the scenarios that we considered. In the
following, we show that a better tuning can be found by
means of a more extensive probabilistic evaluation.

The plots of accuracy and coverage for the three severity
classes are depicted in Fig. 10 and were obtained using the
simple closed-form expression of (2). Besides the fact that
the main trends are consistent with those identified in the
previous section, some interesting aspects specific to the
application domains under consideration emerge. As
expected, nodes with higher criticality display better cover-
age and worse accuracy.

The value selected during the experimental evaluation of
the protocol R ¼ 106 ensures a very high level of accuracy
(above 0.98) for all criticality classes and transient fault
rates. Unhealthy nodes are isolated with high coverage if
their expected TTF is in the order of minutes. For larger
expected TTF (greater than 1 hour) isolation is unlikely even
if SC nodes are impacted.

In general, we observe that by tuning of R � 108, a
level of accuracy above 0.97 can be reached for all
criticalities, the sole exception being the case of SC nodes
with the conservative transient TTF of 100 hours. In this
case, accuracy drops to around 0.78. On the other hand,
settings of R � 108 result in high coverage (above 0.9996)
for all criticalities classes and for expected intermittent
TTF � 10 hours.

Such tuning highlights that a better setting of R ¼ 108

exists, which significantly improves coverage without
impacting accuracy, especially if the transient TTF can be
safely assumed to be more than 1,000 hours. Due to more
restrictive requirements on the maximum tolerated outage,
SC nodes are more likely subject to wrong isolations
(especially under adverse external conditions when external

14 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007



faults are more frequent than normal [29]). However, the
Recovery phase of the FDIR algorithm can guarantee
eventual reintegration of healthy nodes.

6.4 Determination of the System Parameters

The parametric tuning that we have shown requires, as a
prerequisite, an estimation of two stochastic distributions
that characterize the system: the probability of error
disappearance dðiÞ and the probability of successive error
manifestation mðiÞ.

In our model, we have explicitly considered aspects of
error duration. Conceptually, we have utilized the notion of
decay time, that is, the length of time that an error would be
present if a fault was activated for an instant. Thus, the
error is the effect of an instantaneous fault activation at time
t0, which lasts for a time t0 þ dec.

Errors that have shorter decay times will have less time to
further impact system operations. For example, a lost bit on
a communication link due to a transient fault should be
considered as an error with a short decay time. If a noise
pulse affects the link, then some time will need to pass
before the energy is dissipated from the medium. During
this time, the messages being sent may be corrupted,
depending on the level of noise. Another example would be
a memory module with scrubbing. When an error occurs,
there will be a time period where the error could propagate
and induce further errors. Once the scrubbing mechanism
detects the error and removes it, the immediate danger of
error propagation will have lapsed (even though the
erroneous source may still be present). In general, we can
say that all the local recovery actions that are taken to
handle the effect of errors can influence the distribution of
dðiÞ. Decay rates can be determined if regular and

predictable times exist, where errors can be detected or
removed. Otherwise, it is prudent to assume a worst-case
scenario.

6.5 Severity and Fault/Effect Binding

Beyond decay time, we have discussed how, if a function in
the system core is impacted by a transient, it may be
necessary to deal with it immediately instead of following a
penalty counter-based FDIR procedure. This issue can be
addressed in a number of ways. The first approach would
be to assess a penalty so severe that it causes exclusion
immediately so that further reliance on error detection is
not needed. A second method would be to try identifying
the worst case detection time by a higher level mechanism.
This method may allow for some error propagation until it
begins affecting a critical higher level function. A third
alternative is to schedule more extensive FDIR tasks to
collect more information while imposing greater overhead.

Understanding how faults can manifest as errors
remains a central though extremely complex issue. There
are many techniques such as failure mode and effects
analysis (FMEA) that can be used to carry out this kind of
analysis. In general, binding faults and the visible and
detectable errors that they manifest with can be useful for
two reasons: to assess the severity of the state that the system
is in and to suggest the best recovery or maintenance action

that might be taken.

7 CONCLUSIONS

We have introduced a comprehensive FDIR framework that
combines a diagnostic protocol used to obtain “snapshot”
diagnostic information on faulty nodes at each round with a

SERAFINI ET AL.: ONLINE DIAGNOSIS AND RECOVERY: ON THE CHOICE AND IMPACT OF TUNING PARAMETERS 15

Fig. 10. Tuning of R for the automotive and aerospace prototypes.



count-and-threshold algorithm, which accumulates this
information, to produce a health assessment of the nodes
taking transient faults of varied duration explicitly into
account. The FDIR framework also details the recovery
phase of a system as an organic part of the diagnostic
process, considers the definition of varied severity classes,
and makes proposals for their management.

This work has made contributions in 1) determining and
establishing the effect of the duration and recurrence of
errors on the effectiveness of online diagnosis protocols,
2) ascertaining the sensitivity and the trade-offs involving
some FDIR design parameters in determining the correct-
ness and completeness of the FDIR protocols and in
improving system reliability, and 3) describing an applica-
tion of the approach on two practical systems.

By developing a generic and comprehensive analytic
framework, we have been able to provide methods to guide
and ease the tuning of the parameters. We have shown that
design parameters such as the diagnostic round length,
which influences the performance of the system, can also
considerably impact the system reliability and task-oriented
availability. Thus, depending on the failure modes expected
in a particular environment, the system designer can
optimize the FDIR algorithm to minimize wrong isolations
with the increased task-oriented availability of the system.
We identified the main trends by means of a sensitivity
study, varying the different FDIR parameters within
reasonable bounds. Finally, we have shown the practicality
of the approach by implementing and tuning it onto two
prototypes for automotive and aerospace applications,
addressing open issues such as the determination of proper
severity levels for different classes of errors. Without
violating any application-level constraints, the achieved
probability of node isolation due to transient faults is almost
negligible, whereas nodes with internal dormant faults are
isolated, even if errors appear as seldom as every 10 hours.

APPENDIX

In this section, we solve the DTCM of Fig. 3 and obtain the
result of (2).

Theorem. Consider an FDIR process with penalty threshold P ,
reward threshold R, diagnostic round length T , and unary
penalty increments. If a node with a constant disappearance
hazard dðiÞ ¼ d and reappearance hazard mðiÞ enters the
Health Diagnosis phase, then it is isolated with a probability:

Pisol ¼ 1� d �
YR�1

i¼1

ð1�mðiÞÞ
 !ðP�1Þ

:

Proof. We solve the chain by adding to it two dummy
transitions having probability 1 from the absorbing states
to the initial state h1; 0i, thus modeling an infinite
number of execution of the Health Diagnosis after an
error appears, and solving the new irreducible model at
the steady state. If the time-averaged steady state
probability of the states “Isolated” and “Reset” are,
respectively, �I and �R, then we can derive Pisol as

Pisol ¼
�I

�I þ �R
: ð3Þ

Assuming that �p;r represents the time-averaged
steady state probability of state hp; ri, the flow equations
for the Markov chain are given by

�1;0 ¼ �I þ �R; ð4Þ

�p;0 ¼ ð1� dÞ�p�1;0 þ
XR�1

r¼1

mðrÞ�p�1;r; ð5Þ

�I ¼ ð1� dÞ�P�1;0 þ
XR�1

r¼1

mðrÞ�P�1;r; ð6Þ

�p;1 ¼ d�p;0; ð7Þ

�p;r ¼ ð1�mðr� 1ÞÞ�p;r�1; ð8Þ

�R ¼
XP�1

p¼1

ð1�mðR� 1ÞÞ�p;R�1: ð9Þ

Unfolding (8), we have

�p;r ¼
Yr�1

i¼1

ð1�mðiÞÞ�p;1:

From (7) and by substituting �p:r in (5), we have

�p;0 ¼ 1� dþ d
XR�1

r¼1

mðrÞ
Yr�1

i¼1

ð1�mðiÞÞ
 !

�p�1;0:

From the definition of mðkÞ as the discrete hazard

function of fbY ðkÞ, it follows that

1�mðiÞ ¼
1� FbY ðiÞ

1� FbY ði� 1Þ ;Yr�1

i¼1

1�mðiÞ ¼ 1� FbY ðr� 1Þ;

mðrÞ
Yr�1

i¼1

1�mðiÞ ¼ fbY ðrÞ:
Therefore,

�p;0 ¼ð1� dþ d
XR�1

r¼1

fbY ðrÞÞ�p�1;0;

¼ð1� dð1� FbY ðR� 1ÞÞÞ�p�1;0;

¼ 1� d
YR�1

i¼1

ð1�mðiÞÞ
 !

�p�1;0:

Unfolding and from (6), we have

�p;0 ¼ 1� d
YR�1

i¼1

ð1�mðiÞÞ
 !ðp�1Þ

�1;0;

�I ¼ 1� d
YR�1

i¼1

ð1�mðiÞÞ
 !ðP�1Þ

�1;0:

16 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007



Using �1:0 from (4), we can derive Pisol from (3):

�I ¼ 1� d
YR�1

i¼1

ð1�mðiÞÞ
 !ðP�1Þ

ð�I þ �RÞ;

Pisol ¼ 1� d
YR�1

i¼1

ð1�mðiÞÞ
 !ðP�1Þ

:

tu

ACKNOWLEDGMENTS

The research of Marco Serafini and Neeraj Suri has been
supported in part by the European Commission Depend-
able Embedded Components and Systems (EC DECOS),
Resilience for Survivability in IST (ReSIST), and Deutsche
Forschungsgemeinschaft Technische Universität Darmstadt
Cooperative, Adaptive and Responsive Monitoring in
Mixed Mode Systems (DFG TUD GKMM). The authors
are grateful to the entire Dependable, Embedded Systems
and Software (DEEDS) Group, TUD, for their inputs and
help.

REFERENCES

[1] P. Agrawal, “Fault Tolerance in Multiprocessor Systems without
Dedicated Redundancy,” IEEE Trans. Computers, vol. 37, no. 3,
pp. 358-362, Mar. 1988.

[2] M. Barborak, M. Malek, and A. Dahbura, “The Consensus
Problem in Fault-Tolerant Computing,” ACM Surveys, vol. 25,
no. 2, pp. 171-220, June 1993.

[3] K. Birman and T. Joseph, “Exploiting Virtual Synchrony in
Distributed Systems,” Proc. 11th Symp. Operating Systems Principles
(SOSP ’87), pp. 123-138, 1987.

[4] D.M. Blough and H.W. Brown, “The Broadcast Comparison
Model for On-Line Fault Diagnosis in Multicomputer Systems:
Theory and Implementation,” IEEE Trans. Computers, vol. 48,
no. 5, pp. 470-493, May 1999.

[5] M. Blount, “Probabilistic Treatment of Diagnosis in Digital
Systems,” Proc. Seventh Ann. Int’l Symp. Fault-Tolerant Computing
(FTCS ’77), pp. 72-77, 1977.

[6] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and F.
Grandoni, “Discriminating Fault Rate and Persistency to Improve
Fault Treatment,” Proc. 27th Ann. Int’l Symp. Fault-Tolerant
Computing Symp. (FTCS ’97), pp. 354-362, 1997.

[7] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and F.
Grandoni, “Threshold-Based Mechanisms to Discriminate Tran-
sient from Intermittent Faults,” IEEE Trans. Computers, vol. 49,
no. 3, pp. 230-245, Mar. 2000.

[8] T. Chandra and S. Toueg, “Unreliable Failure Detectors for
Reliable Distributed Systems,” J. ACM, vol. 43, no. 2, pp. 225-
267, Mar. 1996.

[9] C. Constantinescu, “Impact of Deep Submicron Technology on
Dependability of VLSI Circuits,” Proc. IEEE Int’l Conf. Dependable
Systems and Networks (DSN ’02), pp. 205-209, 2002.

[10] F. Cristian, “Reaching Agreement on Processor-Group Member-
ship in Synchronous Distributed Systems,” Distributed Computing,
vol. 4, no. 4, pp. 175-187, Dec. 1991.

[11] F. Cristian and C. Fetzer, “The Timed Asynchronous Distributed
System Model,” IEEE Trans. Parallel and Distributed Systems,
vol. 10, no. 6, pp. 642-657, June 1999.

[12] D.D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J.M.
Doyle, and W.H. Sanders, “The Möbius Framework and Its
Implementation,” IEEE Trans. Software Eng., vol. 20, no. 10,
pp. 956-969, Oct. 2002.

[13] L. Gong, P. Lincoln, and J. Rushby, “Byzantine Agreement with
Authentication: Observations and Applications in Tolerating
Hybrid and Link Faults,” Proc. Fifth Conf. Dependable Computing
for Critical Applications (DCCA ’95), pp. 139-157, 1995.

[14] “Road Vehicles—Electrical Disturbances from Conduction and
Coupling” ISO 7637, Int’l Organization for Standardization, 1997.

[15] R. Iyer, L.T. Young, and P.V.K. Iyer, “Automatic Recognition of
Intermittent Failures: An Experimental Study of Field Data,” IEEE
Trans. Computers, vol. 39, no. 3, pp. 525-537, Apr. 1990.

[16] H. Kopetz and G. Grunsteidl, “TTP—A Protocol for Fault-Tolerant
Real-Time Systems,” Computer, vol. 27, no. 1, pp. 14-23, Jan. 1994.

[17] J. Kuhl and S. Reddy, “Fault Diagnosis in Fully Distributed
Systems,” Proc. 11th Ann. Int’l Symp. Fault-Tolerant Computing
(FTCS ’81), pp. 100-105, 1981.

[18] J. Lala and L. Alger, “Hardware and Software Fault Tolerance: A
Unified Architectural Approach,” Proc. 18th Ann. Int’l Symp. Fault-
Tolerant Computing (FTCS ’88), pp. 240-245, 1988.

[19] J.-C. Laprie, “Dependable Computing and Fault Tolerance:
Concepts and Terminology,” Proc. 25th Ann. Int’l Symp. Fault-
Tolerant Computing (FTCS ’95), pp. 2-11, 1995.

[20] E. Latronico and P. Koopman, “Design Time Reliability Analysis
of Distributed Fault Tolerance Algorithms,” Proc. IEEE Int’l Conf.
Dependable Systems and Networks (DSN), pp. 486-495, 2005.

[21] T. Lin and D. Siewiorek, “Error Log Analysis: Statistical Modeling
and Heuristic Trend Analysis,” IEEE Trans. Computers, vol. 39,
no. 4, pp. 419-432, Oct. 1990.

[22] P. Lincoln and J. Rushby, “A Formally Verified Algorithm for
Interactive Consistency under a Hybrid Fault Model,” Proc. 23rd
Ann. Int’l Symp. Fault-Tolerant Computing (FTCS ’93), pp. 402-411,
1993.

[23] S. Mallela and G. Masson, “Diagnosis without Repair for Hybrid
Fault Situations,” IEEE Trans. Computers, vol. 29, no. 6, pp. 461-470,
June 1980.

[24] M. Malek, “A Comparison Connection Assignment for Diagnosis
of Multiprocessor Systems,” Proc. Seventh Ann. Symp. Computer
Architecture, pp. 31-36, 1980.

[25] D. Powell, J. Arlat, L. Beus-Dukic, A. Bondavalli, P. Coppola, A.
Fantechi, E. Jenn, C. Rabéjac, and A. Wellings, “GUARDS: A
Generic Upgradable Architecture for Real-Time Dependable
Systems,” IEEE Trans. Parallel and Distributed Systems, vol. 10,
no. 6, pp. 580-599, June 1999.

[26] F.P. Preparata, G. Metze, and R.T. Chien, “On the Connection
Assignment Problem of Diagnosable Systems,” IEEE Trans.
Electronic Computers, vol. 16, no. 12, pp. 848-854, Dec. 1967.

[27] U. Schmid, “How to Model Link Failures: A Perception-Based
Fault Model,” Proc. Int’l Conf. Dependable Systems and Networks
(DSN ’95), pp. 57-66, 1995.

[28] A. Sengupta and A. Dahbura, “On Self-Diagnosable Multi-
processor Systems: Diagnosis by the Comparison Approach,”
IEEE Trans. Computers, vol. 41, no. 11, pp. 1386-1396, Nov. 1992.

[29] M. Serafini, N. Suri, J. Vinter, A. Ademaj, W. Brandstätter, F.
Tagliabò, and J. Koch, “A Tunable Add-On Diagnostic Protocol
for Time-Triggered Systems,” Proc. Int’l Conf. Dependable Systems
and Networks (DSN ’07), pp. 164-174, 2007.

[30] K. Shin and P. Ramanathan, “Diagnosis of Processors with
Byzantine Faults in a Distributed Computing System,” Proc. 17th
Ann. Int’l Symp. Fault-Tolerant Computing (FTCS ’87), pp. 55-60,
1987.

[31] D.P. Siewiorek and R.R. Swarz, Reliable Computer Systems: Design
and Evaluation. AK Peters, 1998.

[32] C. Walter, M.M. Hugue, and N. Suri, “Continual On-Line
Diagnosis of Hybrid Faults,” Proc. Fourth Conf. Dependable
Computing for Critical Applications (DCCA ’94), pp. 150-166, 1994.

[33] C. Walter, P. Lincoln, and N. Suri, “Formally Verified On-Line
Diagnosis,” IEEE Trans. Software Eng., vol. 23, no. 11, pp. 684-721,
Nov. 1997.

SERAFINI ET AL.: ONLINE DIAGNOSIS AND RECOVERY: ON THE CHOICE AND IMPACT OF TUNING PARAMETERS 17



Marco Serafini received the Laurea degree
(summa cum laude) from the University of
Florence, Italy. He is currently working toward
the PhD degree at the Technische Universität
Darmstadt, Darmstadt, Germany. His research
interests include dependable distributed sys-
tems, in particular online monitoring, fault loca-
tion, and failure model characterization. He
coordinates the diagnostic activities of the
European Union Dependable Embedded Com-

ponents and Systems (EU DECOS) Project. He is also currently
collaborating with Hitachi on the design, verification, and experimental
validation of safety-critical middleware for generic time-triggered
systems. He is a student member of the IEEE and the IEEE Computer
Society.

Andrea Bondavalli (M’96) is a professor in
the Department of Systems and Informatics,
University of Florence, Italy. Previously, he
was a researcher at the Italian National
Research Council, working at the CNUCE
Institute, Pisa, where he was responsible for
the Dependable Computing Group. He has
been the principal investigator (PI) in many
projects funded by the European Community,
currently IST-2004-26979 HIDENETS and

2005-31413 SAFEDMI, acted in several occasions as an expert for
the European community, and served as the program chair of the
most important conferences in the area, including the 2005 Depend-
able Computing and Communications Symposium—The International
Conference on Dependable Systems and Networks (DCC-DSN), the
19th IEEE Symposium on Reliable Distributed Systems (SRDS ’00),
the 2002 European Dependable Computing Conference (EDCC-4),
the Third Latin-American Symposium on Dependable Computing
(LADC ’07). He is a member of the International Federation for
Information Processing (IFIP) Working Group 10.4 on “Dependable
Computing and Fault-Tolerance,” European Network of Clubs for
Reliability and Safety of Software intensive systems (ENCRESS)
Club, Italy, and the AICA Working Group on Dependability in
Computer Systems. His research activities and interests are the
design and validation of critical systems and infrastructures, in
particular the design of fault-tolerant architectures, mechanisms, and
protocols, as well as their evaluation in terms of dependability
attributes such as reliability, availability, and performability. He is the
author of more than 110 refereed publications in international journals
and conference proceedings. He is a member of the IEEE and the
IEEE Computer Society.

Neeraj Suri received the PhD degree from the
University of Massachusetts, Amherst. He is
currently the chair professor of the Dependable
Embedded Systems and Software Group,
Technische Universität Darmstadt, Darmstadt,
Germany. His earlier academic appointments
include the Saab endowed professorship and
faculty member at Boston University. He is a
member of the International Federation for
Information Processing (IFIP) Working Group

10.4 on Dependability and Microsoft’s Trustworthy Computing Aca-
demic Advisory Board. He has served as the program committee (PC)
chair for the IEEE Symposium on Reliable Distributed Systems
(SRDS), the IEEE International Symposium on High Assurance
Systems Engineering (HASE), the International Service Availability
Symposium (ISAS), and Microsoft-TUD RAF and will serve as the PC
Chair for the upcoming 2008 Dependable Computing and Commu-
nications Symposium—The International Conference on Dependable
Systems and Networks (DCC-DSN). His research interests include the
design, analysis, and assessment of dependable and secure systems,
software, and services. His group’s research activities have garnered
support from the European Commission, the US Defense Advanced
Research Projects Agency (DARPA), Deutsche Forschungsge-
meinschaft (DFG), the US National Science Foundation (NSF),
NASA, the Naval Air Warfare Center (NAWC), the US Office of
Naval Research (ONR), Boeing, Microsoft, Intel, Saab, and Hitachi
among others. He is an associate editor of the IEEE Transactions on
Dependable and Secure Computing, the IEEE Transactions on
Software Engineering, the ACM Computing Surveys, and the
International Journal of Security and Networks and has been an
associate editor of the IEEE Transactions on Parallel and Distributed
Systems. He is also a recipient of an US NSF Faculty Early Career
Development (CAREER) award. He is a senior member of the IEEE
and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

18 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007


