
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

The Journal of Systems and Software 83 (2010) 1780–1800

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

A software integration approach for designing and assessing dependable
embedded systems

Neeraj Suria,∗, Arshad Jhumkab, Martin Hillerc, András Patariczad,
Shariful Islama, Constantin Sârbua

a TU Darmstadt, Germany
b University of Warwick, UK
c Volvo Technology Corporation, Sweden
d Budapest University of Technology and Economics, Hungary

a r t i c l e i n f o

Article history:
Received 31 October 2008
Received in revised form 21 April 2010
Accepted 22 April 2010
Available online 15 June 2010

Keywords:
Embedded systems
Dependability
Software integration
Assessment
Decision theory

a b s t r a c t

Embedded systems increasingly entail complex issues of hardware–software (HW–SW) co-design. As the
number and range of SW functional components typically exceed the finite HW resources, a common
approach is that of resource sharing (i.e., the deployment of diverse SW functionalities onto the same
HW resources). Consequently, to result in a meaningful co-design solution, one needs to factor the issues
of processing capability, power, communication bandwidth, precedence relations, real-time deadlines,
space, and cost. As SW functions of diverse criticality (e.g. brake control and infotainment functions) get
integrated, an explicit integration requirement need is to carefully plan resource sharing such that faults
in low-criticality functions do not affect higher-criticality functions.

On this background, the main contribution of this paper is a dependability-driven framework that helps
to conduct the integration of SW components onto HW resources such that the maintenance of system
dependability over integration of diverse criticality components is assured by design.

We first develop a clustering strategy for SW components into Fault Containment Modules (FCMs)
such that error propagation via interaction is minimized. Subsequently, the rules of composition for
FCMs with respect to error propagation are developed. To allocate the resulting FCMs to the existing
HW resources we provide several heuristics, each optimizing particular attributes thereof. Further, a
framework for assessing the goodness of the achieved HW–SW composition as a dependable embedded
system is presented. Two new techniques for quantifying the goodness of the proposed mappings are
introduced by examples, both based on a multi-criteria decision theoretic approach.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction and problem perspectives

For embedded systems, ranging from service-critical cell phones
to safety-critical aerospace/automotive control, their functional
and extra-functional attributes (e.g., performance, dependability;
Avizienis et al., 2004, timeliness, power, etc.) are increasingly
defined by the software components (SW-Cs). Given the drivers for
low cost, low power, shorter development time and to accommo-
date continuing functional upgrades, the trend is to move from the
traditional federated (Rushby, 1999) to integrated embedded archi-
tectures. In the federated paradigm each SW function is allocated to
its own HW node, while in the integrated architecture several SW
functions (having various requirements) share a set of common HW
nodes.

∗ Corresponding author at: TU Darmstadt, Computer Science, Hochschulstr.
10/S2|02 E217, Darmstadt, Germany. Tel.: +49 6151 16 3513; fax: +49 6151 164310.

E-mail address: suri@cs.tu-darmstadt.de (N. Suri).

While a federated approach using dedicated and partitioned-
by-design hardware and separate networks for each function is
desirable for cleanly partitioned functionality and fault-tolerance,
realistically it is prohibitive expensive from a resource (power,
space, weight, development cost, etc.) consideration. Consequently,
integrated approaches (such as the initial IMA approach of Lee
et al., 2000; Younis et al., 2004; Islam et al., 2009, etc.) are often
advocated for integrating diverse software components (SW-C)
onto shared HW resources for cost reasons. The SW-Cs differ
not only in functionality, but also in extra-functional require-
ments (e.g., criticality, dependability, timeliness). For example,
the integration for flight control system involves placing dis-
play, sensor, collision avoidance, and navigation SW-C onto a
shared HW platform1 – the plane’s main computer. Hence inte-
grating mixed-criticality SW-C’s requires careful attention that

1 E.g., Airplane Information Management System (AIMS) in the Boeing 777
addresses composite information management functions.

0164-1212/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2010.04.063



Author's personal copy

N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800 1781

their fault-tolerance (FT) and real-time (RT) requirements are not
compromised with proper fault-containment assured across the
integrated system.

As the diverse SW-Cs interact in the spatial and temporal dimen-
sions, their access to shared resources along these two dimensions
must also be carefully controlled. To meet this objective, Rushby
(1999) advocated a design concept called p artitioning, which calls
for well-defined boundaries across modules to ensure the continu-
ity of operation in the presence of errors. The goal of partitioning
is to create error containment units such that the behavior of one
partition is unaffected by the (faulty) behavior in another partition.

In this work, we utilize the basic models of partitioning and
IMA (Lee et al., 2000) integration, to develop a powerful quantifi-
able notion of partitioning, termed as influence and separation, for
designing an integrated embedded system. Influence and separa-
tion, respectively quantify the degree of linkage or distance across
SW-C’s. In general it is needed that the safety-critical SW-Cs are
shielded from lower criticality SW-Cs, but not vice-versa. For exam-
ple, it might be acceptable (in terms of safety) for a flight control
subsystem to corrupt the entertainment subsystem in a plane, but
there will be catastrophic consequences if the temperature mea-
sure subsystem corrupts the collision avoidance subsystem. In such
a context, partitioning is equivalent to maximum separation or
minimum influence.

Using the key concepts of influence and separation, we develop
a systematic integration framework for (a) constructing SW-C’s
and (b) their mapping onto the targeted HW platform, specifically
for designing integrated dependable real-time embedded systems.
Such a framework explicitly needs to support dependability-aware
specifications and integration, and provide assurance for the cor-
rectness of design and implementation. Additional issues include
supporting SW evolution, reuse, and cross-platform portability.

With dependability being our primary design objective, the pro-
posed integration framework emphasizes the handling of faults in
SW, and, where possible, on minimizing their number, scope, and
their effects. In the HW arena, an established approach is to create
fault containment regions 2 at and across architectural, informa-
tion flow, and timing levels. We seek an analogous approach for
SW partitioning, utilizing established solutions as replication and
design diversity with additional coverage for SW/HW interactions
to specifically provide for:

• Ensuring the desired level of non-interference below a thresh-
old influence level, of operation between SW modules, and
providing effective guidelines for support of non-interference.
However, for high critical processes executing on the same
processor there is always a need of partitioning within each
processor or processor core to restrict spatial and temporal inter-
actions.

• Delimiting the scope of a fault, restricting the possible sites for
correlated3 faults. In contrast to the fault containment regions
approach for HW, the SW approach must consider aspects such
as process migration, memory sharing, and inter-function logical
and temporal dependencies.

• Selecting an appropriate level of integration to design for,
and ascertaining and quantifying trade-offs involved over the
integration process. A key aspect described in this paper is the
assessment of the mapping process.

2 A fault containment region represents the system boundary where the effect of
a fault is to be contained.

3 The failure of a module due to the failure of another module is called a cascading
failure.

In the next section we outline the basics of our approach and
subsequently describe the various strategies contained therein in
the following sections.

1.1. Approach and our contributions

The composition of dependable SW is often a complex process
involving conflicting demands of performance and reliability to
be handled concurrently. Compositionally, it is desirable to have
software partitioned into Fault Containment Modules (FCMs)4 with
associated characteristics and having these FCMs interacting in a
prescribed manner. Given such a partitioning, systematic compo-
sition of partitions into an integrated design simplifies the study
of error containment over an evolving design. In (Jhumka et al.,
2002c), we developed a framework that provides guidelines for
composition of FCM partitions, and in (Jhumka et al., 2002b), we
extended the framework for test case generation to ascertain the
safe composition of those partitions.

This paper proposes a framework for the synthesis of depend-
able SW allowing for integration of SW-Cs associated with
attributes such as criticality, timeliness and reliability. The paper
specifically addresses the dependability-driven mapping (focuses
on minimizing influences across modules) and presents some
heuristics for realizing viable mappings. A mapping is defined as
(i) assigning different SW-Cs to suitable HW nodes such that plat-
form resource constraints and dependability requirements are met
(resource allocation) and (ii) ordering process executions in time
(scheduling) (Islam et al., 2006). After the integration processes,
once a solution or a set of contending solutions are obtained, the
quality of the obtained solution(s) need to be evaluated against
system requirements. Therefore, sound methods for assessing the
goodness of each obtained mapping are required to select the best
one from the contenders. We propose rigorous and systematic
approaches for assessing good designs and selecting the near-
optimal solution.

Accordingly, this paper makes the following contributions:

(1) A dependability-driven design methodology for distributed
embedded systems, where composition of smaller entities into
basic FCMs, mapping of FCM components onto HW platform
and the mapping assessment process are the key properties.
Dependability is ensured through replication of high critical
SW-Cs. Once a partitioned FCM structure is obtained, it needs to
be allocated onto HW nodes satisfying a set of constraints. We
also describe the technique of reducing the influence between
different modules thereby maximizing dependability. To this
end, a set of heuristics optimizing desired dependability fea-
tures are developed.

(2) An approach to transform standard object-oriented designs
into hierarchical FCM structures. As the application may not
have been designed with dependability as overriding goal, there
may be a need to transform a given SW module into an FCM,
which may be achieved through techniques such as Error Detec-
tion Mechanisms (EDMs), Executable Assertions (EAs) (Hiller,
2000; Saib, 1978) and Error Recovery Mechanisms (ERMs).

(3) Quantified inter-module interaction. Since unwanted inter-
actions between different modules may exist, we quantify the
respective interactions among them, and cluster them such that
error propagation is minimized, while SW- and HW-constraints
are respected.

(4) A set of rules allowing composition of basic FCMs into reli-
able hierarchical FCM structures. The transformation of a

4 FCMs are, at a general level, analogous to the fault containment regions used in a
HW context. These are discussed in Section 3.



Author's personal copy

1782 N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800

Fig. 1. Abstract view of system level design steps.

standard object-oriented design, implementation, and main-
tenance into a reliable FCM structure is subject to specified
constraints on the language features, data structures, and
design features used in the application.

(5) Two approaches for assessing the “goodness” of HW–SW
mappings. They account for the constraints imposed by the
SW-Cs as well as by the HW platform and system preferences.
The first approach is a search-based technique called as “random
exploratory technique”, yielding a true/false result, depending on
whether the mapping satisfies the system requirements. The
second approach strengthen the first one by introducing a 9-
step interactive decision procedure that systematically guides
in selecting the best available mapping.

Overall, we envision the process to systematically guide the design
and development of SW and its mapping for dependable RT embedded
systems. However, this can also be applied as a post-pass to existing
embedded system designs.

This systematic process’ steps are depicted in Fig. 1. The system
level design is started by specifying the system and constructing
the HW and SW models separately out of the defined specifica-
tion. Then the SW components are mapped onto the available
HW resources. The mapping is decomposed into two subprob-
lems: allocation and scheduling. The design flow includes activities
such as system specification, SW, HW and constraints modeling,
dependability- and real-time-driven SW–HW integration, design
optimization and the prototyping of the proposed design. Some
design steps are performed and refined iteratively (i.e., finding a
mapping and its optimization). The co-design space optimization
enables the exploit of search spaces by investigating alternative
mappings and their optimizations to be able to find an (near-
)optimal mapping from the global design space. All these steps are
detailed onwards in the different sections of this paper.

1.2. Paper organization

Section 2 starts by presenting the related work in the area of
software integration. Then, Section 3 presents the system model,
the constraints model and the fault model assumed in this work.
Section 4 presents the techniques for defining SW FCMs. The inte-
gration rules for SW FCMs are introduced in Section 5, which also
describes the measures of influence and separation among mod-
ules. Section 6 describes general aspects of the mapping process
and also a set of heuristics for realizing the mappings, each opti-
mizing a certain criteria. An example of a real mapping is given in
Section 7.

In order to quantitatively assess the goodness of each heuristic-
driven mapping, Section 8 introduces the utility of decision theory
for integration, and also discusses the motivation and relevance of a

goodness function. Section 9 then expands on the presented exam-
ple and applies a decision theory-based framework to determine
the goodness of the different mappings to select the best available
one. Section 10 summarizes the decision procedure and provides
some insights on the procedure and on some of its limitations.
Section 11 concludes the paper.

2. Related work in software integration

Varied techniques have already been used for solving the
resource allocation problem, e.g., constraint propagation (Ekelin
and Jonsson, 2001; Kuchcinski, 2003), inform branch-and-bound
and forward checking (Kuchcinski, 2003; Wang et al., 2004)
and mixed integer programming (Rajkumar et al., 1998). These
approaches typically perform the mapping (allocation and schedul-
ing) straightforwardly applying the above mentioned techniques.
A disadvantage of these approaches is that usually they do not put
additional efforts to reduce the search space a priori while solv-
ing the problem thus limiting their applicability to handle only
a few constraints. (Ekelin and Jonsson, 2001) applies symmetries
exclusion to reduce the search space which is more desirable in a
homogeneous system. An enhancement of the Quality-of-Service
(QoS) based resource allocation model (Rajkumar et al., 1998) is
presented in (Ghosh et al., 2003), where a hierarchical decomposed
scheme by dealing with smaller number of resources is described
enabling QoS optimization techniques for large problems. Tasks
replication is used as a QoS dimension in order to provide fault
tolerance.

The major requirements for designing embedded systems are
to meet both RT requirements and to provide dependability (FT,
avoiding error propagation, etc.). Commonly used approaches typ-
ically address RT and FT on a discrete basis (Wang et al., 2004; Ghosh
et al., 2003). AIRES (Automatic Integration of Reusable Embed-
ded Systems) (Wang et al., 2004; Kodase et al., 2003) describe
the allocation of SW components onto HW platforms for RT and
embedded applications satisfying multiple resource constraints.
They also provide a schedulability analysis. The method has been
implemented into a Model Driven Development (MDD) analysis
tool that evaluates whether those constraints are satisfied. Based on
constraint programming, (Kuchcinski, 2003) presents an approach
to constraint-driven scheduling and resource assignment. They
develop a constraint solver engine which satisfies a set of con-
straints. However dependability/FT is not considered in any of
these approaches. Moreover when scheduling for RT systems is per-
formed, a predetermined allocation or a simple allocation scheme
is used (e.g., Lee et al., 2000). If the scheduling is performed without
assuming any pre-allocation it may significantly increase the com-
putation complexity and can make the problem intractable (cannot
be solved in polynomial time; Garey and Johnson, 1979). Also if
the allocation and scheduling are considered separately, important
information (e.g., considering constraints) used from one of these
activities is missed while performing the other. On the other hand,
usually FT is applied to an existing scheduling principle such as
rate monotonic or static off-line either by using task replication
(Oh and Son, 1994) or task re-execution (Kandasamy et al., 1999).
Existing approaches typically do not address all the constraints or
use a limited fault model where dependability is essential. Suri et
al. (1998) specifically addresses the dependability driven mapping
(focuses on minimizing interaction) and presents the heuristics for
doing the mapping. However the focus is on design stage SW objects
to aid integration. A survey of various SW development processes
addressing dependability as extra-functional requirements at both
late and early phases is described in Mustafiz and Kienzle (2004).
Yin et al. (2006) provides a tool suite for the design and analysis of
large-scale embedded RT systems.



Author's personal copy

N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800 1783

Fig. 2. The SW model: SW (FCMs) layers across (replicated) SW-Cs.

The DESERT tool suite (Mohanty et al., 2002; Neema et al., 2003)
utilizes a generic, multi-level abstraction framework for the design
space exploration problem. It supports the modeling of design
spaces and the automated search for design that meet the require-
ments. The space explosion problem is handled by using iterative
refinement techniques starting from an abstract problem model
towards detailed, implementation level solutions. The tool can be
integrated into existing development and analysis tools as a generic
solver engine. DESERT has been used in several projects in the auto-
motive domain.

Embedded virtualization (Baldin and Kerstan, 2009; Wind River,
2010) is an emerging concept of the industry, inspired by the suc-
cess of server and desktop virtualization solutions. Its key goals are
similar to that of the partitioning, namely the spatial and tempo-
ral separation of software components sharing the same hardware
resources, moreover, it enables the utilization of different operating
systems in the virtual machines allowing the integration of subsys-
tems of mixed criticality while maintaining the error containment
regions. With the increasing capacity (and core count) of embed-
ded processors, the management of computing resources becomes
also an important benefit of virtualization. Several academic and
industrial implementations of the technology are already available.

3. System model

We utilize a system model partitioned into the constituent SW
and HW models, the functional and extra-functional constraints
model, and the fault model. For ease of presenting the constitution
of SW FCM, the SW model is decomposed into a multi-level model.
The HW platform is the execution environment of SW-Cs, whereas
the constraints model defines a set of constraints that need to be
satisfied during the mapping. The fault model describes an antici-
pated set of both SW and HW faults. In the following we detail all
applied models.

3.1. The SW model

We utilize a four-level SW model: processes, tasks, o bjects and
methods (cf. Fig. 2). This choice of a four-level model is used to con-
form to conventional SW programming models. In reality, the user
can choose any n-level model, depending on the needed degree of
abstraction. We assume a system consisting of multiple processes,
with shared-memory- or message-passing-based communication,
executing in a multi-node/OS environment.

In the SW hierarchy presented in Fig. 2, a process represents
a heavyweight thread of control. Each process consists of a set
of single-threaded tasks, each with a separate conceptual code

and data space (most likely with physical overlays, at least in
cache), and a private program counter and stack. Processes may
send messages which use, reserve, or release resources (e.g., for
performing input/output-related operations). At this level, we con-
sider a process to have the following properties: (i) process name
– each process has a unique name; (ii) timing requirements –
earliest start time EST, computation time CT, deadline D; (iii)
bandwidth requirements for inter process communication; (iv)
criticality requirements – reflecting how critical a process is; and
(v) dependability requirements – the degree of replication dci for
ith process as needed to provide the required level of FT.

Processes of a function can be modeled as a weighted directed
acyclic graph, where vertices represent the properties of the pro-
cesses and the edges between processes represent the value of the
error propagation probabilities.

Tasks are lightweight threads of control. Each task consists of
a set of objects, with calls only within a task or from task pro-
cedures to per-processor replicated system utilities with known
behavior. Tasks within the same process communicate via mes-
sages. An object may not possess an independent thread of control.
It consists of a data space and a set of functions called methods that
describe the behavior of the object. Each object is a named SW-C
callable through its methods. Related objects belong to the same
task. A method is likewise a named and callable SW-C, it can be a
procedure or a function. A method does not have a thread of control.
We detail these SW stratifications further in Section 4.

3.2. The HW model

While we envision our approach to aid in system level SW/HW
co-design, this paper initially considers a basic HW inter-node
topology with all nodes able to communicate with each other, e.g.,
as commonly applied in automotive and avionic control systems.
A HW node is a self-contained computational element (single- or
multiprocessor) connected to the network (e.g., a bus topology)
with a communication controller along with additional resources,
e.g., sensors, actuators, etc. The communication controller man-
ages the exchange of messages with other nodes. We assume node
processors to have access to equivalent sets of resources.

3.3. The constraints model

The constraints define the conditions that limit the possible
mappings from a dependability, real-time or resource perspec-
tive. A set of constraints need to be satisfied for a mapping to
be valid (Islam et al., 2006). We define the following types of
constraints: (i) binding constraints – processes that need to be allo-
cated onto specific nodes due to the need of certain resources (e.g.,
sensors or actuators). This constraint can be referred to as type
matching between the processes requiring sensors/actuators and
the HW nodes attached with sensors/actuators; (ii) dependability
constraints – separation of replicas to different nodes; (iii) schedu-
lability constraints – maintaining timing requirements and (iv)
computing constraints – available resources, such as the amount
of memory available for processes.

3.4. The fault model

The occurrence of faults is considered (a) within an FCM and
(b) over communication across them. The consequence of a fault is
an error (deviances from the functional or temporal specifications)
which can propagate from a source module to a target module
explicitly via an erroneous message sent by a faulty job or implicitly
via some shared resource. Fault/error occurrence and transmission
probabilities are taken to be independent of the locations of the
source/target processes. We disregard indirect error interactions



Author's personal copy

1784 N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800

arising from unrelated FCMs. The probability of indirect transmis-
sion of faults can be well approximated by direct fault introduction
and transmission probabilities, and the probabilities of faults can
be approximated independently of dynamic context, that is, are
unaffected by the presence of uninvolved FCMs. Specifically, fault
occurrences within a FCM can be approximated using field data, or
using mathematical modeling tools, such as stochastic modeling,
or extreme value theory (Kaufman et al., 2002). Also, direct or indi-
rect error transmission probabilities can be approximated using
the methods presented in Section 5.3 and in Section 5.4, where we
develop the i nfluence, and separation metrics for direct and indi-
rect fault propagation respectively. For HW faults, we assume both
transient (the types of faults which appear for a short duration of
time) and permanent faults (the types of faults which may causes
permanent damage to a component).

4. SW FCMs at different levels: an overview

As we deal with white-box SW, we first endeavor to charac-
terize the behavior of SW FCM at each level (Fig. 2). A given SW
FCM, at a given hierarchy level, is created by establishing isolations
from other FCMs it might interact with are clearly isolated from
it, thus satisfying restrictions on how FCMs at a given level can
interact. Each FCM delineates the specific classes of errors at each
FCM layer. For example, at the process level, two processes can be
assigned to disjoint memory areas; at the method level, techniques
such as executable assertions (EAs) can be used to check the validity
of data being passed between procedures. Once an FCM is created,
verification tests are conducted to ensure that its interactions with
other FCMs do not violate any overall SW/FCM specifications, for
example, EAs placed in one module being defeated by subtle omis-
sions of other EAs placed in other cooperating FCMs (Jhumka et al.,
2002a), i.e., whether the EAs are consistent with each other.

In this paper, our notion of FCMs corresponds to some
well-known programming language paradigms, such as objects,
processes, etc. However, depending on the level of detail needed,
the system designer may increase or decrease the number of lev-
els in the hierarchy. For example, if the system designer feels that
if a fault occurs at the method level, and that fault can be masked
at the object level in such a way that one does not need to focus
on the method level, then such an abstraction can be used, i.e., 3-
layers instead of the proposed 4-layers. This analogously applies
to HW–SW interactions. To illustrate this, consider the following
example: a fault occurs at the HW level (for example, in a transis-
tor). This results in an error at the gate level, and the fault also
manifests itself as an error in the SW layer. Depending on the
abstraction required, there are two possibilities, (i) either the error
is handled at the gate level, or (ii) at the SW level. If the error is han-
dled at the SW level, then one does not need to focus on the HW
level. Thus, we focus on higher level FCMs, rather than low level
FCMs. For each FCM level, we outline the requisite error classes as
follows:

• Process-level (top level) FCM: The process level FCM is the top-
most level in the hierarchy of Fig. 2, and represents a heavyweight
(e.g., UNIX-like) process. Each such process has its own code and
data, plus associated characteristics such as criticality and tim-
ing constraints. Faults and errors to be handled at this level arise
from sharing HW resources. Examples include memory space
overlapping (m emory footprints), timing, scheduling and com-
munication faults. The communication can take place in two
different ways (intra-process and inter-process) depending on
the placement of processes. If the communicating processes are
located on the same processor it is termed intra-process commu-
nication and inter-process communication otherwise. The error

propagation is considered at the inter-process communication
level.

Techniques for constraining fault/error scope are required to
ensure that a fault or error within one process does not lead to
a correlated fault/error in another. This may require processes to
be shielded, both spatially and temporally, using techniques like
separating the memory blocks used for their execution, or ensur-
ing against overuse of resources, (e.g., CPU) using techniques such
as the one described in (Lipari et al., 2000).

• Task-level FCM: The task level FCM is the second level in the
hierarchy. Tasks are lightweight threads that can share data and
memory, each with its own stack and program counter. A group
of tasks which share data and text belong to the same process
FCM.

At task level, faults occurring in one task may affect other
tasks within the same process FCM. For example, one task’s delay
in generating or communicating results may cause another to
miss its deadline. Also, many problems faced at process level
are faced as well at the task level, e.g., memory footprints, pri-
ority inversion, etc. Well-known SW techniques can be applied
for error containment (e.g., N-version programming or Recov-
ery Blocks) and error detection (e.g., EAs for data errors; Hiller,
2000; Saib, 1978. In Hiller et al. (2004), the concepts of error
permeability of tasks were introduced. Informally, the perme-
ability metric of a task is an indication of the relative ease with
which that task allows errors to propagate. To constrain error
propagation, error handling mechanisms, such as replication, or
error detection and recovery mechanisms, can be used. As always,
replication is an expensive alternative. Consistency protocols are
needed to keep the tasks consistent. Thus, as advocated in Hiller
et al. (2004), adding software mechanisms, such as EAs provides
a cost-effective way to detect (and subsequently contain) errors.
If two process level FCMs need to communicate, they spawn task
level FCMs within the same process, (as in socket-based commu-
nication). Thus, communication level faults get addressed only at
task level.

• Object-level FCM: The object level is the third level in the soft-
ware hierarchy of Fig. 1. An object is a dynamic entity (exists at
run-time), and is an instance of a class. An object is a named and
callable SW entity. A group of functionally-related objects with
associated characteristics form a task. For example, a temper-
ature sensor in a furnace reads the temperature, passes it on to
another object, which does some processing with this input. Then,
an appropriate message is sent to another object for action. As
these three objects are closely coupled, they are merged to form
a task. Objects are characterized by a set of attributes, which is
divided into two distinct categories of (a) operations, and (b) data
attributes.

There are three types of objects, namely actors, agents and
servers. Actors always make calls to other objects and their meth-
ods are never externally invoked. Servers service requests passed
onto them and never make any method calls. Agents both send
messages to other objects and service requests passed onto them.

One type of fault to be tolerated at this level is the passing of
erroneous data through the object’s methods via Remote Method
Invocation (RMI), i.e., an object sending an erroneous message to
another object.

• Method-level FCM: A method is an object attribute that will
either query or modify the state of that object. It is a named and
callable SW entity. Making a remote call to a method is semanti-
cally equivalent to sending a message to the object to which this
method belongs.

Methods (procedures) are categorized as either being risky,
if they are parameterized, or safe, if they are not, since errors
to be tolerated at this level manifest themselves as erroneous
parameter values. Possible techniques to contain errors are use



Author's personal copy

N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800 1785

of redundant inputs or EAs to monitor validity of the input values.
Another type of error may be related to control flow, which can
then be taken care of through, e.g., signature checking.

5. Basic integration of SW FCMs

The realization of an integrated system using this approach is a
two-phase process. The first step entails decomposition (and possi-
ble transformation) of a SW function into FCMs and their systematic
– vertical and horizontal – integration. In this section we describe
these aspects. The second step involves assigning the SW FCMs
to processors satisfying the defined constraints, a step which is
described in Section 6.

The dependability-driven integration problem takes a set of SW
modules, most likely functionally clustered, and partitions them
into different hierarchical FCMs. As this functional decomposition is
not designed for fault isolation, transformations might be required
to obtain a final procedure and task decomposition into FCMs. Also,
FT requirements may require adding redundancy at any level of
the FCM hierarchy. So far we have expanded the SW modules to
demarcate their exact operations, and to identify their interactions.
As our goal is the integration of SW-Cs, we now develop techniques
for systematic assimilation of the obtained FCM modules. As the
dependability of SW is our key integration criteria, we now propose
rules for composing the SW FCMs of Fig. 2 to ensure that errors are
not propagated but contained and tolerated, with a specified and
quantifiable degree of confidence. The importance of constructing
these rules relies mainly on confining the fault/error propagation
between different hierarchy layers of SW FCMs (see Fig. 2). The
introduction of these composition rules for the integration does not
add additional complexity as well as does not introduce additional
constraints in the process. We do not also restrict the application
scope.

We consider two kinds of SW integration: Vertical (Global)
integration and Horizontal (Local) integration. Vertical integration
addresses systematic composition of locally consolidated FCMs into
an FCM at the next higher level of hierarchy (hence global). Vertical
integration is thus hierarchical, integrating SW FCMs at one level
into larger FCMs within the defined FCM hierarchy, e.g., combining
methods to form an object.

Alternatively, horizontal integration addresses interactions
across locally consolidated FCMs. The intent is to understand inter-
actions and error propagation across SW-Cs within a parent SW
(hence local) that are desired to be integrated in the embedded
environment. Modules are combined by grouping, i.e., the FCMs
retain their respective interfaces. Grouping, in an object-oriented
context, may be achieved via inheritance where more specialized
classes (objects) are created.

5.1. Vertical (Global) integration of FCMs within a SW component

Vertical integration involves FCMs at different levels of FCM
hierarchy within a specified SW-C. The clustering of FCMs at one
level into FCMs at a higher level needs to satisfy the following rules:

R1a: Any number of FCMs at one level can be integrated to form an
FCM at the next higher level.

For example, one or more methods can be integrated to cre-
ate an object, and one or more objects to create a task. This
creates a layered integration DAG (Directed Acyclic Graph).
We will use the terms parent, child, and s ibling in this context.

R1b: Each task should possess, at least, either an actor with a periodic
thread of control or an aperiodic one though not a random one.
They should also possess at least an agent object as well as a
server object.

This ensures that tasks fundamentally cooperate to obtain
results. It also provides a certain guideline as to which FCMs
can be integrated with each other. The reason why we can-
not have only agents is that none of the agents may possess
a thread of control, for which we have the actor object. Thus,
having actors, and agents are necessary. Having server objects
is only necessary when none of the agents is providing a
given service. However, since we are interested in trans-
forming an existing object-oriented design, initial verification
performed should have already verified the need for server
objects. For transformation purposes, no additional server
object is needed.

R2: The integration DAG is a tree.
This rule allows the fault containment boundary of FCMs

to be well-defined. Also, this rule does not hamper reuse
since an object is a dynamic concept. Thus, even when two
different tasks need to access the same object (class), two
separate copies (instances) can be created. The code size does
not increase, hence does not decrease the efficiency of code
generation. Also, if two separate tasks need to cooperate by
sharing a common object (i.e., having pointers to the same
object in memory), thus violating this rule, it can be circum-
vented by using the Clone method, for example as in Java
(Flanagan, 1999), creating identical copies for each task. Cre-
ating identical cloned copies creates the impression of having
consistent objects. However, since each copy belongs to a
given task, then no cross-boundary access is needed, thus
enhancing fault containment in presence of faults.

R3: Future integration by merging: An FCM can be integrated only
with its siblings.

For example, two methods in different objects cannot be
integrated. This prevents methods not related to an object
to be integrated within the same object.

The rationale for R2 and R3 follows. As the FCM hierarchy is
created to clearly demarcate FCMs and their interactions, if, for
example, an object FCM has two parents (which in object-oriented
terms may imply that there may be two pointer references to an
object), then it may suffer from what is called aliasing that occurs
when an object can be accessed through different names. Hence,
boundaries become unclear and it becomes very difficult to prove
any properties and the number of possible sites which can poten-
tially corrupt the object FCM increases. What should be clear here
is that since object is a dynamic concept, it should not have two par-
ents or else problems may arise. However, this by no means implies
that two tasks cannot share the same class. One possible technique
to tackle this problem is the use of the Clone method.

A method level FCM cannot have two parents since, if another
object FCM accesses the method, then there is a possibility of cor-
ruption of the data space if the method is risky (see Section 4).

Furthermore, sharing of a common code segment by two FCMs of
different criticality is not desirable. Therefore, care should be taken
when programming to avoid the effects of problems such as alias-
ing. Also, faults are allowed to propagate only in certain predefined
ways at each level; otherwise, the sorts of faults affecting one level
could possibly be propagated via its parent and affect higher levels.
Due to this, each level represents a different level of abstraction,
which simplifies verification and validation of FCMs at all levels.
Also, verification and validation of module dependability can be
performed independently of other modules at the same level.

R4: If a method FCM is needed by more than one parent, then a copy of
that method is replicated and integrated separately with the other
parent(s). For other FCMs (at other levels), a reference is made to
the required FCM.



Author's personal copy

1786 N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800

Fig. 3. Error propagating from input of FCMS to output of FCMT .

If a method is needed by two different objects, rather than
communicating between them (and possibly corrupting the
other object data space), a copy of the method FCM is cre-
ated and integrated with the new parent. On the other hand, a
pointer reference is made to an object, by having a new instance
declaration in the new parent task.

R5: Whenever an FCM is modified, its parent FCM, and only its parent,
needs to be tested, including the interfaces with its siblings.

This follows directly from rules R2 and R3, since a change in
any FCM affects its interactions with its siblings, but not with
children of other parents. Thus, there is a possibility of intro-
ducing new errors and transmitting these to its siblings; these
interactions need to be tested, to ensure that faults can be con-
tained even after the modification. However, due to the nature
of the hierarchical composition, only the parent is affected;
because different levels deal with different kinds of fault, not
even more remote ancestors must be checked.

With R5, we get the very desirable property of fault contain-
ment. However, this gives rise to the problem of designing error
detection mechanisms (such as EAs) that can detect all harm-
ful errors. In fact, in Jhumka et al. (2002a), we introduced the
concept of globally consistent assertions, and globally consistent
executable assertions can be shown to be complete, i.e., they
detect all errors that can potentially harm the system. Thus,
adding such detection mechanisms will ensure that errors do
not propagate beyond a predetermined boundary.

5.2. Horizontal (Local) integration of FCMs across different SW
functions

In the previous section, we have considered issues involved in
integrating FCM modules at one level to yield larger FCM modules
(at a higher level) within a given SW function i.e., vertical integra-
tion. We now consider factors that affect horizontal integration, i.e.,
consolidating SW FCMs at the same level.

Horizontal integration especially aids in understanding how
FCMs, at the same level interact with each other, and assists in
determining the impact a fault or error in one FCM has on another
FCM by quantifying the influence across FCM’s. There are two pos-
sibilities of quantitatively assessing the impact of an error in one
source FCM (FCMS) on a target FCM (FCMT ), namely (i)FCMS has a
direct influence on FCMT or (ii)FCMS indirectly influences FCMT .

For each of the following, we define corresponding metrics that
capture the level of interaction involved.5 At this point, we are
mostly interested in the interaction between two arbitrary FCMs
at the same level, FCMS and FCMT , especially of the impact of a fault
in FCMS on FCMT .

5 We use the notation FCMS for the S th FCM at the current level, i.e., if we are
considering influence at the method level, then FCMS is the S th method of the object.

Definition 1. Influence of a source FCM (FCMS) on a target FCM
(FCMT ) is defined as the probability (of error propagation) of FCMS

a ffecting FCMT when no other FCM at that same level is considered.
The influence of FCMS on FCMT is denoted by FCMS � FCMT .

The influence metric quantifies the direct interaction of FCMs
in terms of the impact a fault originating in FCMS has on FCMT . But
two FCMs may interact indirectly via other FCMs. For this scenario
we propose the separation metric.

Definition 2. Separation of FCMs is the probability (of error propa-
gation) of one FCM (FCMS) not affecting another FCM (FCMT ) when a
ll other FCMs at the same level are considered. Separation between
FCMS and FCMT is denoted by FCMS � FCMT .

5.3. Measuring the influence between FCMs

To measure the influence of FCMS on FCMT , all factors F by which
FCMS can affect FCMT (e.g., shared memory, message passing) need
to be determined. For each factor Fi, a corresponding probability (pi)
is evaluated. This probability represents the possibility of an error
in FCMS to affect FCMT via Fi. Generally, the error manifestation
process consists of three basic phases, as shown in Fig. 3, namely
(1) fault (or error) occurring in FCMS , (2) error transmission to the
input of FCMT and (3) error transmission resulting in error in FCMT .

In Jhumka et al. (2001), we have developed an approach that
helps in experimentally estimating, using fault injection, the influ-
ence values between FCMs. To model the error occurrence (phase
1) and transmission phases (phases 2 and 3), two metrics are
defined, namely (a) error manifestation probability– p1

i
, and (b) error

sensitivity– p2
i
. Error manifestation probability characterizes the

source FCM (FCMS), and error sensitivity the target FCM (FCMT ),
as illustrated in Fig. 3.

In general, a (transient) error occurs at (one of) the inputs of the
source module and may propagate via Fi to the inputs of the target
module, where an error may occur. The probability of an error to
propagate out of Fi, denoted by pIk

i
, is as follows:

0 ≤ pIk
i = Pr{i|Ik} ≤ 1 (1)

where pIk
i

is the probability of an error in Ik, the k th input of the
FCM, to propagate out via Fi.

5.3.1. Error manifestation probability – p1
i

We define the error manifestation probability, p1
i
, of a source FCM

(FCMS – see Fig. 3, phases 1 and 2) as the probability of an error
occurring at the input of FCMS to propagate, via Fi, to the input
set of the FCMT . This metric is important as it provides pertinent
information of how often FCMS allows errors to propagate. An FCM
with high error manifestation probability is a potential candidate
for replication or be equipped with EDMs and ERMs. As each input
is assumed to have equal likelihood of being erroneous, we can



Author's personal copy

N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800 1787

expand and simplify Eq. (1) to obtain an overall expression for Error
Manifestation Probability, denoted by p1

i
:

p1
i = (Pr{I}/N) ·

N∑
k=1

Pr{Fi|Ik}, (2)

where N is the number of inputs of FCMS , and Pr{I} the probability
of an error occurring in the input set I of the FCM. In fault injection
experiments, Pr{I} = 1 whereas, if field data or life testing has been
performed, Pr{I} can be modified accordingly. Also, in case the error
probability distribution is known for the inputs, the (1/N) weight
for each input is readjusted to reflect the distribution.

5.3.2. Error sensitivity – p2
i

Once the error has propagated via Fi to the input set of FCMT ,
the probability of an error occurring in the state of FCMT is known
as error sensitivity, denoted by p2

i
. This metric’s importance is in

generating information regarding how vulnerable FCMT is to errors
propagating from FCMS . Target FCMs with high error sensitivity
should be protected from errors propagating from source FCMs
which is another likely candidate for replication or be equipped
with EDMs and ERMs. More details about error propagation in SW
is found in Jhumka et al. (2001).

Now that we have introduced estimates of the error manifes-
tation probability p1

i
and the error sensitivity p2

i
, we can calculate

the probability Ii
S,T associated with each factor Fi for an error to

propagate from FCMS to FCMT . This probability is defined as follows:

Ii
S,T = p1

i · p2
i (3)

Intuitively, this probability gives an indication of how tightly
coupled are two directly cooperating FCMs. To increase fault
containment, this value should be decreased (possibly below a cer-
tain threshold, as governed by the system requirements). Having
obtained individual influence probabilities (through different fac-
tors), the overall influence IS,T is thus obtained as:

FCMS � FCMT = 1 − [(1 − I1
S,T )(1 − I2

S,T ) . . . (1 − In
S,T )] ⇒ IS,T

= 1 −
n∏

i=1

(1 − Ii
S,T ) (4)

Note that the value of influence is asymmetric, i.e., FCMS �
FCMT /= FCMT � FCMS . For example, one task may use the results
provided by another task, but not vice-versa. If FCMs are rep-
resented by nodes in a graph, then labeled unidirectional edges
represent the influence between them, allowing for graphical rep-
resentation of error propagation in the system.

At this point, we have divided the influence metric into two
sub-metrics which can be estimated on an experimental basis
using fault injection. The error transmission probability is esti-
mated using the following procedure: (i) in each input Ik of FCMS

we inject an error (one input at a time, i.e., no multiple errors),
(ii) We observe the state and output signals of FCMS and the state
and outputs of FCMT and use Golden Run Comparison (i.e., com-
paring an injection run with a golden reference run) in order to
detect when errors have occurred in either one. Let the number
of injection runs where errors in the output of FCMS and in the
state and output of FCMT have been detected be denoted nerr,S and
nerr,T respectively. The total number of injection runs is denoted
ninj . Then, we can estimate the error manifestation probability as
p1

i
= nerr,S/ninj and the error sensitivity as p2

i
= nerr,T /ninj . We have

performed experiments on a real embedded software for an aircraft
arrestment system which shows that such an approximation and
the analytical model correlate (Jhumka et al., 2001).

Once influence values are determined, the next step is to reduce
influence between FCMs so that overall system dependability is
enhanced. Since the modules may not have been designed with
dependability as main driver, transformations (such as addition of
error handling mechanisms) may be needed to convert the modules
into real FCMs. In the following sections, we describe potential tech-
niques usable for reducing the influence at various FCM levels. The
two metrics, error transmission probability and error transparency,
allow identification of vulnerable modules to be protected against
propagating errors. Once identified, identification of specific loca-
tions for EDMs and ERMs is facilitated.

For the simplicity of the presentation without loss of generality,
we neglect the feedback loops of influence in the structure of the
SW graph (introduced in the next section). However, our definition
can be extended in a straight forward way to cover these cases as
well. This problem can be seen as similar to a network flow prob-
lem (Ahuja et al., 1993). This problem is represented as a weighted
directed graph (WDG) G = (V, E) where the edges E are represented
with the capacity of flow and vertices V represent the nodes of the
network. It has a source node and a sink node where the overall
flow is defined as the net flow entering the sink node.

The analytical model of calculating the influences across mod-
ules also resemble the error detection probability in inputs and
outputs of combinatorial and sequential circuits using random
testing (David, 1998; Ismaeel and Breuer, 1991). According to
Ismaeel and Breuer (1991), the probability of detecting an exist-
ing input/output circuit fault for m input vectors is 1 − (1 − q)m,
where q is the probability that a single random input/output vector
detects a fault.

5.4. Measuring separation

To this point, we have focused mainly on FCMs directly inter-
acting with each other. However, FCMs may also interact indirectly
via other FCMs. To capture this kind of interaction, we introduce
the s eparation metric, which is complementary to the influence
metric.

To measure separation between FCMs at level i, a labeled DAG (s
eparation analysis graph) is created containing one source node and
one sink node; nodes represent FCMs at that level, with an edge for
each influence pair, from the influencing FCM (source node) to the
influenced FCM (target node). Edges are labeled with the influence
value. Other nodes in the separation analysis graph represent FCMs
through which the source and target FCMs interact. When separa-
tion between pairs of FCMs are determined, a separation graph can
be built to visually represent the separation information available,
allowing for vulnerability assessment in the system (Jhumka et al.,
2001). The total separation, including transitive contributions, can
be calculated as follows:

FCMS � FCMT =(1−IS,T ) · �k(1−IS,kIk,T ) · �l,m(1 − IS,lIl,mIm,T ), (5)

where IS,T denotes the influence between FCMS and FCMT . At some
point, higher-order terms are likely to be small enough to be neg-
ligible. The separation value gives an accurate estimate of the
interaction between FCMs, as all FCMs at the same level get con-
sidered. Reduction of influence between two FCMs will increase
their separation; it is possible to increase separation by reducing
influence between other FCMs through which the two interact.

5.4.1. Reducing influence at method level
At the method level, the main error transmission mechanism is

through data space. Since the scope of the data is confined within
the boundaries of the object, there is very limited parameter pass-
ing between methods in an object. When parameters are passed
(e.g., recursion, or object-valued parameters), one way to reduce



Author's personal copy

1788 N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800

influence of one method on the other is via combined use of redun-
dancy and voting techniques to detect errors in data or using EDMs
and ERMs.

5.4.2. Reducing influence at object level
One way an object influences another is through parameter

passing. Thus, a possible approach to reduce influence is to have
run-time checks on the parameters such as EAs. Another possible
problem may be passing of object-valued parameters, necessitating
avoidance of aliasing.

5.4.3. Reducing influence at task/process level
Influence factors at task/process level include (a) shared memory

(f1), (b) errors in message passing (f2), (c) timing faults (f3), and
others. f1 depends on how much memory is shared and how often;
f2 depends on how good the EDMs and ERMs are; and f3 depends on
the scheduling policy used. If non-preemptive scheduling is used,
then a timing fault (e.g., a task in an infinite loop) can cause all
other tasks also to fail. However the probability of transmission of
the timing fault can be minimized by using preemptive scheduling.
Note that most techniques used at the task level are also relevant
at the process level.

6. Systematic allocation of SW modules onto HW nodes

We now describe the systematic allocation approach of assign-
ing different SW modules onto suitable HW nodes. The co-location
of HW and SW now specifically entails consideration of SW FCM
attributes such as dependability, criticality, and timing specifica-
tions, as they relate to the available HW paradigms. In a general
sense, the overall problem is one of constrained resource mapping
of specified HW and SW elements such that overall dependability
requirements are achieved.

6.1. SW and HW graphs

To facilitate the mapping, two graphs are created, one for SW
FCMs, and one for the available HW resources, that have been struc-
tured using a HW fault containment regions model.

6.1.1. SW graphs
For the SW model, a WDG of process-level FCMs is created,

since by assumption, all tasks, objects and methods for a given
process are necessarily co-located. Consequently, the SW graph
consists of a set of processes and their interactions and communi-
cations. Inter-process communication is characterized by a WDG,
G = (J, E), having the process types as vertices V, and an edge
between processes js and jt , if they communicate. At process level
the timing properties is represented as (ti), which is the triple of
ti(ESTi, CTi, Di).

EST is the earliest possible time that a process can start its exe-
cution. CT is defined as the amount of time required by a process
to complete the execution on a particular processor. CT depends on
functional complexity of the process and on the speed of the pro-
cessor running it. D denotes the deadline by which a process or an
application must finish the execution. A system designer estimates
the values of these properties based on expertise.

In such a graph G eij ∈ E is an edge between two process vertices
(vi, vj) ∈ V , which is the notion of both of influence (Iij) and com-
munication data (bi,j) (bytes) between processes. Iij denotes the
cumulated conditional probability of error propagation from the
source process js to the target process jt , either via message pass-
ing or shared resources, assumed that js is in a erroneous state. An
estimation of determining this values has already been described in
the previous section. bi,j is the volume of data required for commu-
nication between processes, for instance measured by the maximal

total size of information to be transferred per execution cycle. In
case a process from the SW graph needs to be replicated for FT
requirements, a new vertex is created in the graph for the replica.
Replicas are connected by edges of weight 0; there is no edge in
the case of non-influence. We assume at this point that protocols
ensuring replica consistency (such as atomic broadcast; Cristian et
al., 1985, etc.) do not introduce additional influence on a target FCM.

6.1.2. HW graphs
For the HW graph, a set of nodes N = {n1, . . . , nk} can be mod-

eled as an interconnection HW graph that represents limited HW
quantity provided by the processor. The measure of limitation can
be in time (e.g., a certain amount of CPU time is assigned) or in
space (e.g., a certain memory region is assigned to a partition). The
selection of the HW instances depends on parameters like compu-
tation, type of CPU, power consumption, failure rate, size and cost.
We consider a generalized HW resource graph and try to ascer-
tain (a) if there is a feasible assignment of SW onto HW resources
meeting overall system properties,6 and, if that is possible, then (b)
what is a good mapping? Essentially, we are interested in finding
a suitable mapping (not necessarily the optimal one but hopefully
a near-optimal one) satisfying the attributes of the different SW
functions.

6.2. FCM attributes

Each FCM has an associated set of attributes (e.g., critical-
ity, dependability) that need to be combined during integration.
Although different attributes are combined differently, the result-
ing FCM will usually have the most stringent component values
(e.g., max criticality, max dependability), or an aggregate (e.g.,
sum of throughputs). Attributes must also be considered when
integrating SW FCMs with HW. They can force (or forbid) certain
FCMs being combined. The use of FCM attributes while inte-
grating SW and HW is presented below. We first describe the
process of utilizing the obtained influence parameters. Next, we
propose heuristics demonstrating the viable integration options,
and develop approaches to assess the obtained mappings.

6.3. Collocating SW nodes

As the intent is consolidation of SW, we start the process by
first conducting integration (vertical [global] and horizontal [local])
within the SW graph to obtain the smallest SW graph in order to
map onto the HW. This is the process of clustering the SW nodes
into a smaller group. The process of combining multiple SW nodes
into clusters to be co-located on a processor involves several con-
siderations, such as influence values between two communicating
FCMs, satisfaction of constraints, e.g., timing constraints. Also, two
nodes connected by an edge of weight 0 cannot be combined, as
the nodes contain replicas of the same SW module, and must be
mapped onto distinct HW nodes.

As FCMs are added to the cluster, internal influences disappear
(Fig. 4 for FCMs within the dotted area). When processes p2 through
p6 are combined, their internal influences are no longer visible;
however, the influence of the combined processes (those within
the cluster) on process p1 is still significant. If several cluster nodes
had individual influences on a common neighbor, those influence
values need to be combined; for example, in Fig. 4 influences of
processes p2 and p4 on process p1 must be combined. The resulting
influence of the cluster C, made up of different processes (denoted
by FCMi), on node/process FCMt (a target FCM such as p1 which is

6 For example, if SW fault-tolerance requires three concurrent copies, then a 2-
node HW configuration is a problem.



Author's personal copy

N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800 1789

Fig. 4. Combining SW nodes.

shown in the outside of the cluster of Fig. 4) is given by:

FCMC � FCMt =1 −�i(1 − (FCMi � FCMt)) ⇒ IC,t = 1 − �i(1 − Ii,t)

(6)

First we calculate the value of separation (1 − (FCMi � FCMt))
between cluster process FCMi and the target FCMt and then the
resulting influence of the cluster on the target process is calcu-
lated as shown in Eq. (6). This equation can also be used to evaluate
the overall influence of a node external to a given cluster (e.g., P7
on Cluster C). At the end of cluster formation process, there can
be multiple clusters (as some FCMs could not be combined to one
particular cluster because of timing constraints say, leading to a
non-schedulable cluster). These clusters can then be directly allo-
cated onto available HW nodes provided that the HW nodes have
the available resources to host the corresponding cluster. This can
be checked by verifying if the sum of the memory requirements of
all the processes in a cluster is less than or equal to the memory
capacity of the HW node. We describe this process in detail using
an illustration in Section 7.

6.4. Dependability-driven SW–HW Mapping

Since there may be several ways in which a SW graph can be
mapped onto a HW graph, we need to define what constitutes a
good mapping.7 This helps in making the right choices during the
mapping process and also in ascertaining trade-offs. The impor-
tance of various criteria may differ, depending on the application
under consideration, but these criteria include:

• Satisfaction of constraints: this is the satisfaction of hard con-
straints which implies the absolute constraints on behavior,
whether semantic, temporal, or others. While some constraints
can be evaluated a priori, others can only be checked after assign-
ment; if so, this is always the primary concern.

• Containment of faults: as our main objective is to achieve
dependability by design we endeavor to minimize the influences
between different modules. The influences among FCMs form-
ing a single cluster is zero. Assigning highly interacting SW FCMs
on the same node reduce the fault/error propagation probability
across nodes, i.e., the fault/error does not propagate but contained
within one node. Low influence values between nodes implies
good fault/error containment.

• Criticality: when criticality is significant, the selected critical
processes should be assigned to distinct HW nodes, and only be
combined with other non-critical processes, irrespective of influ-
ence. This ensures that critical processes do not affect each other
when faults occur. However, the risk of non-critical tasks affect-
ing a critical one needs to be ascertained and minimized as well,

7 A good mapping supposes the creation of a feasible mapping, hopefully a near-
optimal one.

possibly through techniques such as partitioning (Rushby, 1999)
and multi-level security (Totel et al., 1998).

• Resource utilization: resources should be utilized from differ-
ent points of view, e.g., utilizing the communication/bandwidth
resources, utilizing the number of processors, utilizing load
balancing and power. Load balancing is the technique where pro-
cesses are evenly distributed among the processors to leave as
much slack as possible in the mapping. This slack can be uti-
lized for fault-tolerant systems where dynamic checkpointing or
re-execution of processes is applied in presence of faults.

The above mentioned criteria also instigate the selection of
attributes in case of multi criteria decision procedure analysis. At
this point, there can be one or more suitable mappings satisfying
some of the above criteria. Thus, the problem of determining the
goodness of the possible SW ↔ HW mapping(s) arises.

6.5. Attribute evaluators

We first quantify the amount of each attribute in each mapping.
Here, we assume that we have n evaluators, one for each attribute.
Applying the n evaluators to a mapping results in an n-dimensional
vector. Note that the quantity of each attribute needs not range
from 0 to 1, since it is dependent on the evaluators used. More
formally, denoting the ith attribute by ai, the ith attribute evaluator
by Ei, and the quantity of the ith attribute by qi, then Ei(ai) = qi. A
mapping is then represented as (q1, q2, . . . , qn).

We subsequently determine a goodness function for the
attribute vector, based upon the system requirements. Each map-
ping (more specifically, its vector representation) is a point in an
n-dimensional space. Among all the points defined by the different
available mappings, our purpose is to find the highest one (which
may not be any of the maxima of the surface). A trade-off is positive
only when going upwards along the surface.

Onwards, Section 8 presents a decision procedure that helps
in determining the best available mapping as well as its goodness
value.

6.6. Mapping SW to HW resources – basic approaches

Considering the FT requirements and the need for, say, threefold
replication, the initial SW graph is augmented with three identi-
cal SW nodes, linked with 0 edge weights expressing a complete
isolation between them. Each of these replicated SW nodes can
thereafter be treated separately. Since, invariably, the SW graph
has a much greater number of nodes than the HW graph, the SW
graph must be condensed (cluster formation) to construct a SW-
to-HW assignment consistent with the system specifications. The
problem to be solved is: Given a graph with directed weighted edges,
group the nodes into sets such that the sum of weights between the
sets is minimized (dependability-driven). This particular problem
is often NP-hard (cannot be solved in a tractable manner where
a solution can be found in polynomial time; Garey and Johnson,
1979). Consequently, heuristic solution techniques are often uti-
lized. Note also that the clustering process needs to be aware of the
HW restrictions imposed by the design. Specifically, even if a given
cluster is optimal but violates the restriction imposed by the HW,
then the cluster will be rejected. In general the heuristics process
considers the processes with most important attributes first (Islam
et al., 2009) in the mapping process. In this paper we provide some
heuristics on how to build the SW cluster.

• Heuristic H1: Combine the two nodes with the highest value of
mutual influence (which implies a high level of interaction, and
should be mapped onto the same HW node). Repeat for the next
higher value of mutual influence, and continue this process until



Author's personal copy

1790 N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800

Table 1
Processes (and criticalities) in GAP.

Process System Criticality

p1 Radar Warning Very high
p2 Display High
p3 Navigation High
p4 Radar Control Medium
p5 Tracking Medium
p6 Weapon Medium
p7 Built-in Test Low
p8 Data Bus Low

Table 2
Example attributes of SW modules.

Process Criticality FT EST D CT

p1 20 3 3 10 2
p2 10 2 7 10 1
p3 10 2 5 14 5
p4 4 1 2 20 4
p5 1 1 12 17 2
p6 3 1 7 14 6
p7 1 1 10 15 1
p8 1 1 12 20 4

the required number of nodes is obtained. A variation of this is
to pair all nodes based on influence values and then to repeat the
process as needed.

• Heuristic H2: Start with the most important node, and combine it
with any adjacent nodes below a certain threshold of importance
(and/or above a certain influence). For n HW nodes, identify the
n most important SW nodes, and define their spheres of influ-
ence. Map each group onto a different HW node. Importance is a
function of the different attributes that the mapping satisfies.

These heuristics basically determine how the SW nodes will be
clustered together. Once a sufficiently concatenated SW graph is
obtained, the next step is to determine the mapping satisfying the
constraints of the SW nodes with the HW resources. For example,
the processes in the cluster must all be schedulable so that their
precedence and deadline constraints are met. If this is not possible
on any HW resource, the current partition must be rejected. Since
we are assuming homogeneous processors, the mapping is straight-
forward. In other cases, more complex heuristics are needed for the
mapping (Suri et al., 1998; Islam et al., 2009). In Islam et al. (2006)
we present a heuristic based systematic resource allocation algo-
rithm for the consolidated mapping of safety critical and non-safety
critical applications onto distributed computing platform such that
their operational delineation is maintained over integration. Using
a real application example in the next section we illustrate the
mapping process employing the heuristics H1 and H2.

7. Illustrating a real SW–HW mapping

We now consider a real-life representative application example
of an aircraft system that combines navigation, radar and partial
flight control functions (Locke et al., 1991).8 The different processes
and their criticalities are listed in Table 1. Using the heuristics H1
and H2 defined in Section 6.6, and a set of p rocesses from the GAP
model (attributes detailed in Table 2), we demonstrate the general
techniques. The same set of example processes is used across dif-
ferent techniques, to highlight and compare different methods for
combining nodes.

8 We consider the Generic Avionics Platform (GAP), which is a model of an avionics
mission computer system.

Fig. 5. Schedulability analysis.

We assume a predetermined resource (HW) graph which can
be parameterized. However, first we try to perform the mapping
considering a fixed set of HW resources. If a feasible mapping is
not found with the given resources then we parameterize the HW
model by adding new HW nodes. To create a mapping, we need to
reduce the number of nodes in the SW graph by combining nodes.
Once the required number of SW nodes is obtained, we match
nodes in the SW graph with nodes in the HW graph. If HW nodes
have identical characteristics, the actual mapping of the reduced
SW graph onto the HW graph is straightforward, unless commu-
nication costs between SW modules (or between SW modules and
external resources) need to be considered. If the communication
costs are too high, then dilation of the mapping may be consid-
ered to address performance. Further heuristics can be used to
map SW nodes with high communication costs onto (the same or)
neighboring HW nodes.

We outline the HW–SW integration and mapping process with
an example. Table 2, lists the set of p rocesses p1, p2, . . ., p8 with
specific replication (FT), criticality and real-time specifications.
Processp1 has a high criticality value (C), and has to be replicated
three times to be run in a TMR (Triple Modular Redundancy) mode
(FT = 3). Processesp2 and p3 are of intermediate criticality, with
FT = 2. The rest of the tasks p4, . . . , p8 require no duplication. The
other attributes of each process are timing constraints, including
EST, task completion time D and CT. The parameters have been cho-
sen to illustrate limits on combining nodes. The timing constraints
might also prevent combining specific nodes. For example, Fig. 5
illustrates a situation when two SW nodes (p10 and p11) with tim-
ing requirements 〈2, 10, 4〉 and 〈7, 14, 6〉 (〈EST, D, CT〉) are already
combined to be assigned onto a given processor. If we try to com-
bine another SW node (p9) of timing requirements 〈5, 11, 5〉 with
this cluster then they cannot be scheduled on the same processor
due to timing constraints violation. Thus, p9 must be clustered with
other nodes.

Note that criticality and replication of the processes (Table 2) do
not have to be directly related. If, for instance, a process has sub-
stantial state, the replication may result in more risks because of
synchronization and communication (and perhaps inhibit rather
than promote correct operation and completion). In this case,
another method the ensures fault free operation have to be con-
sidered instead.

Initially, eight SW nodes are created, one for each process of
Table 2, linked through edges weighted by influences on other pro-
cesses. For this example, influences have been randomly assigned;
in reality, techniques such as those used in Jhumka et al. (2001)
would be used to generate real values.

Fig. 6(a) is a graph containing all the processes from Table 2. In
Fig. 6(b) the node p1 is replicated 3 times to satisfy its fault toler-
ance requirements. Edges with neighbors are also replicated. The
three replicas are linked with edges with influence value 0. The
total number of nodes of the SW graph in Fig. 6(b) is 12.

Let us assume that the available HW topology to be a strongly
connected network with 6 HW nodes. Thus, the 12-node SW graph
need to be reduced in size to map onto the 6 HW nodes, using the
techniques discussed in Section 6.6; the choice of technique used
depends on the most important attribute of the application. When



Author's personal copy

N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800 1791

Fig. 6. (a) Initial SW nodes and (b) illustrating influence in SW node linkages.

combining any two nodes, we must nonetheless check the values of
all attributes, since certain combinations of nodes may be infeasi-
ble. For example, if p2 and p6 are scheduled on the same processor,
then p3 cannot be scheduled on that processor due to conflicting
timing requirements; as a result, the corresponding nodes cannot
be combined. Several well-known scheduling algorithms can be
used to check the feasibility of scheduling sets of these p rocesses
on the same processor (Stankovic et al., 1994). During the HW–SW
mapping process, we have presented the constraints satisfaction
technique including schedulability analysis in Islam et al. (2006,
2009).

Integration trade-off: While combining SW nodes, some trade-
offs might be necessary. For example, it may be preferable to map
two critical processes onto different HW nodes, but that may how-
ever not be possible since both have to be replicated (for FT), and
the number of HW nodes is limited. Specifically, if the HW has four
nodes, and two critical processes need to be triplicated, then two
sets of these replicates must be mapped onto the same node. Other
problems might include the need for a resource present on only
one processor (i.e., satisfaction of binding constraints) or a need of
a large communication band.

The next section presents three possible approaches of using
the heuristics H1 and H2 (as defined in Section 6.6) to conduct the
HW–SW mapping/integration. Here we are primarily interested in
illustrating viable integrations. After developing the basic assess-
ment procedure for a given integration, in Section 9 we will re-visit
these three possible integrations to assess the goodness of the inte-
gration achieved by these three approaches.

7.1. Combining Nodes using Heuristic H1: Approach A

As the provision of dependability is a primary concern, the cri-
teria for fault containment predominate (Chillarege et al., 1995;
Randell, 1975). Thus, combining nodes with high mutual influence

values (sum of influences in each direction) reduces the probability
of errors being transmitted across HW nodes, creating fault contain-
ment regions in HW. The graph in Fig. 6(b) can be directly reduced
based on influence values.

First, the two nodes with the highest mutual influence (p7 and
p8) are combined. A portion of the resulting graph is shown in
Fig. 7. The new influence attributes for the combined processes are
obtained through iterative use of Eq. (4). Next, the two nodes with
the next higher value of mutual influence are combined (p5 and
p7,8), and so on. Figs. 7 and 8 show successive stages of this pro-
cess. Note that the processes with 0 influence [(p1a, p1b, p1c), (p2a,
p2b), and (p3a, p3b)] get mapped to distinct HW nodes. These pro-
cesses have been replicated according to their level of criticality.
Fig. 8 shows a six-node HW graph after several stages of SW node
combinations. The resulting mapped nodes in the graph satisfy the
objectives. Depending on the size of the HW graph, the SW graph
can be further reduced; this however raises the issue of trade-offs
in integrating SW beyond a HW resource threshold.

7.2. Scheduling Critical Processes on Separate Nodes: Approaches
B and C

Since mapping of more than one critical process on the same
HW node might lead to conflicts in resource usage, a system might
require extremely critical processes to be mapped onto separate
HW nodes. Also, minimizing the number of critical processes sched-
uled on one given processor also minimizes the number of c ritical
processes lost due to a crash fault of that processor. These critical
processes can also be allocated separate portions of memory to avoid
faults due to memory cell malfunction. This guides the process by
which the graph in Fig. 6(b) can be integrated into six nodes with
total criticality on each HW node reduced as much as possible. The
processes are considered and ordered according to the importance
of FCM attribute in this case according to the criticality. Approach B

Fig. 7. Using influence to combine the SW nodes to match the HW resources.



Author's personal copy

1792 N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800

Fig. 8. Reducing SW graph to match HW resources: Mapping A.

using heuristic H2 is thus as follows:

B1 List processes in descending order of criticality.
B2 Combine most critical process with least critical process, the sec-

ond most critical process with the second least critical process,
and so on.

B3 If there are no conflicts (attributes other than criticality causing
infeasibility, or attempts to combine replicates), the resulting
graph will have half as many nodes as the original graph.

B4 If a high criticality processph cannot be combined with a low crit-
icality processpl due to conflicts (e.g., timing constraints), then
combine ph with the process preceding pl in the criticality list.

B5 In the next stage, the sets of processes can be ordered based on
a summary criticality (e.g., the highest criticality, or the sum).
The previous steps can then be repeated until a desired number
of nodes is obtained.

In this example, p1a is combined with p8, p1b with p7 and so on
until the last two remaining nodes are p3a and p3b. These two nodes
are replicated and cannot be combined, thus leading to a conflict
(due to FT constraint). To resolve this, the next higher criticality
processp2b is combined with p3b with p3a is combined with p4. The
resulting graph is shown in Fig. 9(a).

However, in some applications, the criticality of all processes
might be similar in value, and the influences between processes
might be small. For such applications, other attributes (such as
timing) can be used to generate or refine the mapping. One such
technique, Approach C, is:

C1 Compute an ordered list of SW nodes.
C2 Place the nodes which should preferably be mapped onto the

same node adjacent to each other.
C3 Next, map SW nodes onto a HW node starting at the top of the

list maintaining their compliance to the specified constraints.

Fig. 10. Generic assessment framework.

For example, the graph in Fig. 6(b) can be straightforwardly
reduced to Fig. 9(b) if only the timing attributes are considered.

8. Quantification and assessment of a mapping’s goodness

We have described the basic framework for developing the SW
graph and conducting the SW/HW mappings based on the proposed
heuristics. Once the different possible mappings are available, as
explained in Section 6.4, the system designer needs to choose the
best mapping (satisfies the minimum system requirements) among
the contending ones. In this paper we have described heuristics
for creating the mappings. However, without loss of generality
mappings can also be generated by using other meta-heuristics
and algorithms, e.g., Multi Variable Optimization (MVO) approach
(Islam and Suri, 2007), PSA (Pareot Simulated Annealing) (Czyzak
and Jaszkiewicz, 1998), Evolutionary algorithms (Zitzler et al.,
2003; Jhumka et al., 2005), Tabu search (Izosimov et al., 2005).
The resulted contending mappings can be dependability driven, RT
driven, dependability and RT driven, etc. Thus, there is a need to
develop two specific aspects, namely:

(1) Means to quantify the goodness/QoS of the achieved mapping,
and

(2) Ability to assess the relative suitability of each heuristic (and
any other subsequent heuristics), given a certain specific appli-
cation and/or criteria.

The generic framework for assessing the goodness of mappings
is depicted in Fig. 10. The overall objective is to be able to identify
and ascertain the trade-offs involved over each mapping strategy.

In the subsequent sections, we utilize a decision theoretic
approach to develop two new techniques to assess the mappings.
The first method, termed as the Random Exploratory Technique
addresses the goodness of the mapping in an intuitive manner,
analogous to a search procedure. We then present a step-by-step
decision procedure that provides a formal framework for quanti-
tatively assessing the goodness of the mappings. The interactive

Fig. 9. (a) Criticality-oriented integration: Mapping B and (b) Mapping C.



Author's personal copy

N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800 1793

Fig. 11. Dominance and effectiveness frontier.

decision procedure presented in Section 8.3.1 is an application of
decision theoretic principles. Overall, the decision procedure takes
a set of possible mappings, and tries to evaluate their relative mer-
its, with regards to the relevant attributes. The decision procedure is
a heuristic that allows quantification of the mappings, i.e., evaluat-
ing the goodness of each mapping, whereby the best compromised
mapping among the contenders is chosen. Given that we are not
looking for an optimal mapping (but hopefully a near-optimal one),
a heuristic or a metaheuristic that induces a partial ordering over
the set of mappings is adequate. The novelty with the decision
procedure is that it helps the system designer in structuring the
attributes of interest as per their importance. For reason of space,
the definitions are omitted, but they can be found in Keeney and
Raiffa (1993).

For the clarity of discussion, we only present two terms, namely
(i) dominance, and (ii) effectiveness frontier. A vector V1 dominates a
vector V2 iff there exists one element of V1 which is strictly greater
than the corresponding element of V2, with all other elements of
V1 being greater than or equal to each corresponding element of
V2. The set of dominating vectors is called the effectiveness frontier.
These are depicted in Fig. 11. The points of vector VC1 on effective-
ness frontier C1, which also known as Pareto optimal set dominates
all other points in the graph as well as dominates the points of
vector VC2 on curve C2.

8.1. Decision theory: overview and relevance

Decision theory provides a framework for reasoning about pref-
erences and is based on the axioms of probability and utility.
Probability theory provides a framework for coherent assignment
of beliefs with incomplete information whereas utility theory intro-
duces a set of principles or simple axioms/rules for consistency
among preferences and decisions (Horvitz et al., 1988).

In this study, we are primarily concerned with outcomes in
the presence of certainty. Decision under uncertainty means that
choice of a given alternative does not guarantee a known outcome,
but rather entails selection of a given probability distribution of
outcomes.

In the presence of certainty, certain properties hold. First, there
is the axiom of orderability, which asserts that all pairs of alterna-
tives are comparable, even when described by vectors of attributes.
Thus, given two alternatives Ai and Aj , the decision maker either
prefers Ai to Aj (Ai 
 Aj), or prefers Aj 
 Ai, or is indifferent (Ai ≈ Aj).
Second, there is the axiom of transitivity, assuring that if Ai 
 Aj ,
and Aj 
 Ak, then Ai 
 Ak. Similar conditions happen when one or
both of the relationships are indifference.

In the presence of certainty, we then have a weak preference
ordering, thus the existence of a scalar value function, G, mapping
all possible alternative attribute vectors Vi to scalar values G(Vi),
such that the decision maker will always prefer the outcome with
the highest scalar value (depends on whether the attributes are pos-
itively (highest value) or negatively (lowest value) oriented). This
value function is sometimes known as the worth or u tility function;
in this paper, it is termed as the goodness function G. Thus, we need
to determine a goodness function G that can compute the good-
ness value of a mapping. Intuitively, the goodness function will be
system-dependent, since different systems may warrant different
trade-offs. The trade-off study cannot be dissociated from determi-
nation of the goodness function, since the goodness of a mapping
will depend on the quality of the trade-offs made. However, the
influence values that underpin our dependability-driven software
integration approach are certain. Thus, no uncertainty is involved
when computing all possible mapping alternatives.

In the presence of uncertainty, however, neither orderability nor
transitivity need hold. Even with certainty, the computation of a
precise goodness function may still be infeasible. Thus, we present
new heuristic approaches below. There are two possible ways for
resolving trade-offs:

• The system designer informally weighs the trade-offs, or
• The designer formalizes the goodness structure and uses this to

evaluate the contending alternatives (if any) to determine the
best alternative.

We present strategies to handle each option. For the informal
approach, we present a technique, termed random exploratory tech-
nique, that qualitatively determines a mapping as good. The result
is an informal approximation to the goodness of the mapping.

The second approach is a systematic structure for determining a
(heuristic) goodness function through a 9-step decision procedure.
A salient feature of the procedure is that it is iterative, so that a
goodness function that is as precise as possible can be obtained.

8.2. Random exploratory technique

This case works well if there are a limited number of contending
mappings to evaluate. We assume that the mappings are already
in (attribute) vector form. As an example, consider a hypothetical
vector V1 (on a scale of 0–1) that contains these attribute values
for the following attributes: (i) fault containment9(FC) = 0.5, (ii)
criticality (CR) = 0.3, (iii) load balancing (LB) = 0.4, and (iv) slack
(S) = 0.2. Hence, the 4-attribute vector V1 is (0.5, 0.3, 0.4, 0.2). Then,
from system specifications, the system designer generates an aspi-
ration vector (Va) that is indicative of the system’s requirements.10

Let Va = (q1, q2, q3, q4), where q1 . . . q4 are aspiration values. Using
the aspiration vector, mappings dominated by Va are removed since
they do not satisfy system’s requirements. From the remaining vec-
tors, the subset of dominated mappings is also removed.

At this point, there are one or more contending mappings. From
the system requirements, for a particular vector Vi the system
designer informally decides on the attributes for which a trade-
off can be made in Vi, such that there is no preference ordering
between Va and Vi. More specifically, let Va = (q1, q2, q3, q4) and
Vi = (q5, q6, q7, q8). Assume also that q1 = q5, q2 = q6, q3 < q7 and
q4 > q8. The above problem is then summarized as follows: is
trading-off some of q4 for more of q3 in Va ok, such that Vi is
obtained? If t rue, then mapping Vi is good since it is not dominated

9 This is a function of influence.
10 The system designer may indicate the minimal requirements of the system.



Author's personal copy

1794 N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800

and is as preferable as Va. Otherwise, Vi is rejected as a bad map-
ping. Another mapping Vj is then considered and the same process
performed.

Another possibility is for the system designer to manually gen-
erate a new mapping by adjusting the current one.11 From the
resulting mapping, the system designer proceeds with the same
decision process as above. Usually, this will be a subjective judg-
ment, allowing trade-offs to be conducted. Note that this involves
determining a vector in the effectiveness frontier by randomly
probing the frontier – hence its name, random exploratory tech-
nique – rather than determining any sort of optimum value. Also,
given required system specifications, the trade-offs (even if highly
informal and applicable only in the present case) can lead to pref-
erence among elements of the effectiveness frontier, which can be
included explicitly during goodness assessment.

This technique of determining the goodness of a mapping is not
intended to be accurate, but rather to provide a yes/no answer as
per the goodness of mappings. There are some important char-
acteristics about this technique. It can be used as a stand-alone
technique to ascertain the goodness of the mapping. It can also be
used in conjunction with the more formal approach explained in
the next section, as a preprocessing computation to prune the set
of alternatives.

Next, we present a formal approach to determining the good-
ness of the mapping by defining a formal framework to derive a
goodness function.

8.3. Systematic decision procedure

This is a heuristic process which introduces a step-by-step deci-
sion procedure and systematically guides the system designer in
selecting the best available mapping. We first describe the forma-
tion of a utility or value function (in our case goodness function)
and then in the next Section 8.3.2 we depict the 9-step decision
procedure based on the multi criteria decision theoretic analysis.

8.3.1. A formal structure for the goodness function
In this section, we are concerned about structuring the prefer-

ences to simplify the trade-off analysis. As we are concerned about
multi attribute optimization, we provide a brief overview of the the-
ory underpinning generation of multi-attribute utility functions.
We refer the readers to Keeney and Raiffa (1993) for details about
2- and 3-attributes optimization. Very often, real-world cases deal
with more than three attributes. We assume that we have n eval-
uators, E1, E2 . . . En, evaluating attributes a1, a2 . . . an respectively,
such that (E1(a1), E2(a2), . . . En(an))=(q1, q2, . . . qn).

A goodness function, G, may be expressed in additive form

G(q1, q2, . . . , qn) =
n∑

i=1

�i × Gi(qi) (7)

where Gi s are single-attribute goodness functions (Keeney and
Raiffa, 1993), and

∑n
i �i = 1 iff the attributes are mutually pref-

erentially independent, i.e., trade-off between pairs of attributes is
independent of the values of other attributes. The higher the value
of �i, the higher the importance of the corresponding attribute, i.e.,
ai. Thus, to determine a goodness function, each �i needs to be
determined, subject to the constraint

∑n
i �i = 1. Also, each func-

tion Gi needs to be determined by the system designer. Determining
accurate Gi is not an easy process. However, we present some guide-
lines about how to generate these functions in Section 9.6.3.

11 This entails reassigning some processes to other processors to emphasize other
attributes.

Fig. 12. Our 9-steps approach to finding the best mapping.

8.3.2. An interactive decision procedure for determining goodness
In this section we present a decision procedure that helps choos-

ing the best mapping from a set of contenders. Thus, to construct a
goodness function, a number of steps needs to be followed. Fig. 12
depicts these steps in a visual fashion. The different steps are high-
lighted, together with the iterative process of selecting the best
possible mapping.

During this process the knowledge of the user on the system
is utilized hence an interactive procedure. The 9-step proce-
dure presented below is a general approach for determining an
(approximate) goodness function to ease trade-offs, and is detailed
below. We will first state the step operations as depicted in
Fig. 12, and then explain any connotations/assumptions that may
apply.

S1 Determine all the attributes to be considered. For example,
attributes can be fault containment (i.e., (mutual) influence),
criticality, load balancing, and so on. Arrange them in order of
decreasing importance. Determine, for each of them, whether
they are positively-oriented (higher preference for higher score)
or negatively-oriented.

For simplicity, we note the following assumptions (1) in
the balance of the process description: all attributes are
positively-oriented, (2) attributes can be ordered in importance,
independent of values, subject to the requirements of the system
(3) all attributes, taken atomically, have an optimal value of 0
or 1, i.e., are uniformly positive or negative.

S2 Run the heuristics, Hi, to obtain a set of possible mapping alter-
natives. Represent each of them as an n-attribute vector. If more
alternatives are needed, a search tree representing the alloca-
tion space can be generated, subject to some constraints such
as system and temporal constraints. The cost associated with
generating all possible mapping alternatives is linear with the
number of alternatives to be considered. Also, since we are
interested in near-optimal allocation, i.e., a good allocation,
exponential complexity for generating such mappings can be
avoided. Overall, the cost is not very high.

S3 Determine a vector of attributes that best represents the sys-
tem’s requirements. This vector contains aspiration values and
can be seen as a constraint vector. The assumption here is the
availability of evaluators, Ei. This helps in determining if this
mapping is dependability- or criticality-driven, etc., depending
on the assignments of values to each attribute. Note that this



Author's personal copy

N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800 1795

Fig. 13. (a) Dependability-driven: Mapping A, (b) criticality-driven: Mapping B and (c) Mapping C.

vector is doing double duty – both a constraint vector, and a
measure of level of importance.

S4 Remove all vectors that are dominated by the aspiration vector,
since they do not satisfy the system requirements. From the
remaining vectors, remove all those that are dominated, since
these do not lie on the effectiveness frontier (i.e., cannot be the
best alternative). This aids reducing the number of alternatives
to be considered.

S5 For each attribute, determine the minimum and maximum val-
ues from the remaining alternatives. This is done to help in
determining normalized single-attribute functions (range from
0 to 1). There is a minor assumption here: namely, that, given
a (min, max) range, the set of values actually encountered will
form a reasonably large subinterval of these. In some cases the
range of values is [0, n], but with very high probability the value
will be very close to, for example, sqrt(n).

S6 Determine the individual goodness value function and the over-
all goodness function. We need to check for consistency of the
goodness function with respect to the aspiration vector pro-
vided in S4. The preference structure should be respected.

S7 For each mapping in the set of remaining contenders, insert
the attribute values in the goodness function to obtain their
respective goodness value.

S8 Select the alternative with the highest goodness value.
S9 If the mapping offers values which can be traded off, then mod-

ify the values in S3. Re-execute S4 through S9. Again, there is
clear double duty in the aspiration vector. Note that in S6, when
determining the goodness function, the �i’s provide a first round
of trade-off. However, since determining a precise goodness
function is intractable, S9 allows a further iteration through the
procedure such that a goodness function as precise as possible
is obtained.

Once a goodness function has been determined, we plug in dif-
ferent mapping vectors to obtain the best available solution. At this
stage, we re-use the example of Section 7 to illustrate the complete
9-step decision procedure.

9. Practical utility of the decision procedure: a real example

In order to consistently relate the decision process to the ear-
lier developed heuristics of Section 8.3, we re-utilize the 8-process
example presented in Table 2 of Section 7 to illustrate the appli-
cability of our decision procedure presented in Section 8.3.1 to
determine the goodness of mapping.

9.1. Step 1: selecting attributes

Since our aim is to assess the design of dependable real-time
embedded system, the attributes are considered from those per-
spectives. For embedded systems, there are generally multiple

different attributes (dependability, power, space, etc.) to be con-
sidered. We consider the following attributes, in decreasing order
of importance.

Fault containment (afc) refers to how well errors are contained
within the system. Low influence values imply good fault contain-
ment between modules. As our prime driver is dependability, the
importance of fault containment is uppermost. From the concepts
of error permeability introduced in (Hiller et al., 2004), a relative
(or normalized) measure of the error containment capability of a
software module can be obtained.
Criticality (acr) indicates how critical tasks are allocated. High crit-
icality values imply that high criticality processes are not located
on the same HW resource.
Slack (asl) represents how unloaded any processor is. This aspect of
the mapping is considered since having some s lack in the system
for later upgrades is desirable.
Load balancing (alb) denotes statistical variance of loads on var-
ious processors in the system. This attribute, here, is of lesser
importance than fault containment and criticality, but neverthe-
less is considered as a performance aspect.
Communication (aco) represents the communication volume
between processors. This attribute is considered from a perfor-
mance point of view and the inverse of the communication volume
is therefore considered, so that high communication attribute val-
ues represent low communication volumes.

Note that all the attributes here are taken to be positively ori-
ented, i.e., the higher the value of an attribute, the greater quantity
there is of this attribute. Step 1 is now complete as we now have a
sorted attribute list.

9.2. Step 2: mapping alternatives

Fig. 13(a) shows the resulting mapping after the SW graph in
Fig. 6(b) has been condensed to match the number of proces-
sors using heuristic H1. On the other hand, Fig. 13(b) shows the
state of the processors after running the criticality-driven heuris-
tic H2 on Fig. 6(b) (resulting in the same graph as in Section 7.2).
Fig. 13(c) shows the mapping where dependability and criticality
were not the most important attributes (as in Section 7.2). Overall,
Figs. 13(a)–(c) shows the different contending alternatives and are
denoted as Mapping A, Mapping B and M apping C respectively. To
complete Step 2, we summarize the three contenders as attribute
vectors.

We assume the existence of relevant attribute evaluators, since
although obtaining them is a straight forward process, it depends
on the system designer’s preference. For example, consider the
attribute fault containment: a possible attribute evaluator may
be to take the inverse of the minimum influence value between
any two nodes (i.e., resulting in maximum fault containment).



Author's personal copy

1796 N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800

Table 3
Different mapping alternatives.

Mapping contenders Design assessment criteria

Fault containment (qfc) Criticality (qcr ) Slack (qsl) Load balancing (qlb) Communication (qco)

Mapping A 0.75 0.10 0.10 0.15 0.30
Mapping B 0.15 0.80 0.18 0.75 0.10
Mapping C 0.10 0.15 0.30 0.25 0.50

Another example, considering the communication attribute: one
possible attribute evaluator for communication may be the inverse
of the number of messages or the inverse of the size of sent
and received messages per process execution time. Each map-
ping properties is shown in Table 3 and summarized as follows:
VX = (qfc, qcr, qsl, qlb, qco). Let VA = (0.75, 0.1, 0.1, 0.15, 0.3), VB =
(0.15, 0.8, 0.18, 0.75, 0.1) and VC = (0.1, 0.15, 0.3, 0.25, 0.5).

Step 2 is complete. The problem now is, given these three map-
pings, which one should the system designer single out as the best
one? Fig. 14 shows the performance profiles of the three map-
pings. The figure visually highlights the relative importance of each
attribute (on a scale of 0–1; any other scale will work as well) in
the three situations.

9.3. Step 3: aspiration vector

In this step, the designer needs to indicate the minimal require-
ments of the system. From system specifications, information
pertaining to which processes should be kept separated, etc. are
provided. Using this information and the attribute evaluators, the
system designer approximates the system requirements in the aspi-
ration vector. Assume that the values for the desired preference are
Va = (0.6, 0.25, 0.15, 0.1, 0.05). This vector only indicates an initial
level of preference that may be refined, such that this vector reflects
a more accurate set of requirements of the system. This process of
refining the preference levels is called preference refinement.

9.4. Step 4: eliminating dominated alternatives

Using this aspiration vector from Step 3, we remove all map-
pings which are dominated. In our example, all of them will remain
since none of them is dominated by the aspiration vector, and
also none of the different alternatives is dominated by another
one. Let us consider another Mapping D represented by the vec-
tor VD = (0.4, 0.20, 0.10, 0.10, 0.03). This mapping is dominated
by the aspiration vector Va = (0.6, 0.25, 0.15, 0.10, 0.05) in all vari-

Fig. 14. Performance profiles for the three mappings.

Table 4
Minimum and maximum values for each attribute

Attributes Minimum Maximum

Fault containment 0.10 0.75
Criticality 0.10 0.80
Slack 0.10 0.30

Load balancing 0.15 0.75
Communication 0.10 0.50

ables and therefore, Mapping D is not a contender for the best and
is removed from the list.

9.5. Step 5: determining min max

Table 4 summarizes the required information. At this stage, the
list of contenders contain only those lying on the effectiveness fron-
tier.

The next step is the crucial one in the decision procedure, as
it derives the goodness function that encapsulates the preference
(requirements) structure.

9.6. Step 6: assessing the individual goodness function

There are several techniques/methods one can apply to assess or
estimate the individual goodness function Gi. In this work, we apply
the midvalue splitting technique (Keeney and Raiffa, 1993) in order
to determine the value of the attribute’s goodness function, which
is a comparatively easily applicable method and appropriate for our
considered system model. The idea here is to find the s ubjective
middle point of different attribute values. We now outline salient
sub-steps for generating the generalized goodness function.

9.6.1. Testing for mutual preferential independence
Testing for mutual preferential independence means to deter-

mine whether a trade-off between any pair of attributes is
independent from the value of any other attributes. If q1, q2, and
q3 are three attributes, then trade-offs between q1, q2 are inde-
pendent from the attribute q3, similarly trade-off between q3, q2
should be independent from the value of q1. To better understand
this concept, consider the following example: Assume there are n
nodes in the system, with node N1 having a high computation load,
and all other nodes N2 . . . Nn have low computation loads. Also, the
processes running on N1 are such that they have a high degree of
interaction, such that the mutual influence value between them
is high. Any possible trade-off would entail reassigning some of
the processes on N1 to other nodes, thereby balancing the load in
the system at the expense of having decreased fault-containment,
since highly interacting processes will then be located on differ-
ent nodes. This is irrespective of whether another node Ni has two
high criticality processes running on it, i.e., high criticality value of
the system. In this sense, the trade-off between fault-containment
and load balancing is irrespective of the criticality value. Hence,
these attributes are mutually preferentially independent. Observe
that we do not imply that the attributes are independent, however,
intuitively, the mutual preferential independence implies that, for
a given trade-off, instead of looking at all the attributes at the same



Author's personal copy

N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800 1797

Fig. 15. Graphs of (a) Gfc vs. qfc (b) Gcr vs. qcr .

time, the system designer can focus only on the attributes of inter-
est. Usually, a small amount of dependency can be ignored within
a sufficiently local region of the comparison space (Prasad and
McDermid, 1999). However, if there is any dependency between
attributes it can be balanced in the overall goodness function
where individual functions are added weighing the trade-offs. In
the goodness function, we try to adjust some dependency between
attributes in order to make the decision procedure applicable. Due
to this the goodness functions of the attributes are additive and
the presented step-by-step method can be applied to find the best
mapping.

9.6.2. Testing for additivity
If the mutual preferential independence condition is satisfied,

then this implies that the preference structure is additive (Keeney
and Raiffa, 1993), i.e., the goodness function, G, from Eq. (7), can be
expressed as follows:

G(qfc, qcr, qsl, qlb, qco) = �fc · Gfc(qfc) + �cr · Gcr(qcr) + �sl · Gsl(qsl)

+ �lb · Glb(qlb) + �co · Gco(qco) (8)

• Gfc, . . . , Gco are single attribute value functions,
• Gi (worst qi) = 0 and Gi (best qi)=1, i ∈ {fc, cr, sl, lb, co}
• 0 < �i < 1, i ∈ {fc, cr, sl, lb, co} and

∑
i

�i = 1

Note that if the mutual preferential independence condition
does not hold, other value functions may be more appropriate for
modeling the dependent attributes, such as polynomial or prob-
abilistic value functions (Luce et al., 1990). However, these are
mostly of theoretical importance and have hardly been used in
practice since the axioms in their representation theorems are
much more complicated.

9.6.3. Determining goodness function Gi

We now sketch how to decide on function Gfc by using the
midvalue splitting technique. The procedure equally applies for
deriving any other goodness function.

• First, determine the range over which fc is defined – Table 4, and
we obtain the maximum qfc = 0.75 (mapping A) and minimum
qfc = 0.10 (Mapping C).

• Second, we normalize Gfc by letting Gfc(0.10) = 0 and Gfc(0.75) =
1.

Next, we want to find the subjective middle point that we will
denote m0.5. The property of m0.5 is such that (0.10, m0.5) and (m0.5,

0.75) are differentially value-equivalent, i.e., we seek this value m0.5
such that we are willing to pay the same amount to go from 0.10
to m0.5 and from m0.5 to 0.75. In this case, assume that the value
of m0.5 = 0.29. This midvalue definition is iterated over different
ranges. Repeating the process for the range [0.10, m0.5] results in
m0.25. The same is done over the range [m0.5, 0.75] for obtaining
m0.75. If more accuracy is needed, we continue on finding the mid
value point of different intervals. Also, once we have determined
m0.25, m0.5 and m0.75, we can always find the subjective midpoint
of the range [m0.25, m0.75] to determine whether m0.5 is accurate
enough so as to filter out any inconsistencies in the values chosen.
Let m0.25 = 0.16 and m0.75 = 0.45.

Being a subjectively defined value, we are not aware of any
algorithm for computing the subjective middle point of a given
interval. Informally, considering the above example, maximum
qfc = 0.75, and minimum qfc = 0.10, which in effect means that the
best the designer can get for fault-containment is 0.75, and the
worst 0.10. The subjective middle point, informally, represents the
cut-off point where the designer is half-satisfied.

The graph in Fig. 15(a) illustrates the function Gfc (qfc) for the
computed values of m0.25, m0.5 and m0.75. The same process is
repeated for each of the different single attribute value function.
A similar procedure is repeated comparing values for Gcr vs. qcr , Glb

vs. qlb, Gsl vs. qsl and Gco vs. qco – as shown in Figs. 15(b)–16(c).

9.6.4. Determining trade-off factors �i

There are a variety of techniques that can now be used to deter-
mine the various �i’s. We first present some notations. Let wi and
bi be the worst and best values of the ith attribute. Thus, we have
wi ≤ qi ≤ bi.

The sorted list from Step 1 provides the relative ordering among
the �i’s as: �fc ≥ �cr ≥ �sl ≥ �lb ≥ �co.

However we still need to obtain more refined (in)equalities
among the attributes to determine their respective values. First,
using the preference given in S4, this establishes the relations
across the attributes. More formally, it is done as follows: Com-
pare these two different profiles, P1 = (qfc , wcr , wsl , wlb, wco) and
P2 = (wfc , bcr , wsl , wlb, wco), where wj identifies the worst value in
attribute j, and bj denotes the best value in attribute j (S5). Now,
we start varying the value of qfc such that the indifference con-
dition results, i.e., the system designer is indifferent to P1 and P2
(they are on the same indifference curve; Keeney and Raiffa, 1993).
Suppose the indifference conditions occurs at qfc = 0.30. Thus, we
can deduce that �fc · Gfc(0.30) = �cr , since Gi(wi) = 0 and Gi(bi) =
1, for any attribute i. Specifically, G(P1) =

∑
i ∈ {fc,cr,sl,lb,co}�i ∗

Gi(qi) = �fc ∗ Gfc(0.30), Gi(wi) = 0, for i ∈ {fc, sl, lb, co}. For profile P2,
we obtain G(P2) =

∑
i ∈ {fc,cr,sl,lb,co}�i ∗ Gi(qi) = �cr ∗ Gcr(bcr) = �cr ,

since Gcr(bcr) = 1. Since the function Gfc has already been deter-



Author's personal copy

1798 N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800

Fig. 16. (a) Graph of Glb vs. qlb , (b) Gsl vs. qsl and (c)Gco vs. qco .

mined, we can evaluate Gfc(0.30) from Fig. 15(a), which is equal to
0.51. Since P1 and P2 are on the same indifference curve, we get
an equation involving �fc and �cr , i.e., �fc ∗ Gfc(0.30) = �cr ⇒ 0.51 ∗
�fc = �cr . The same process is repeated, until the series of equations
are obtained. We now determine the proportional relationships
between �sl and �fc; between �lb and �fc; and between �co and �fc .
Assume in particular that �fc ∗ Gfc(0.16) = �sl ⇒ 0.25 ∗ �fc = �sl;
�fc ∗ Gfc(0.12) = �lb ⇒ 0.10 ∗ �fc = �lb; and �fc ∗ Gfc(0.12) = �co ⇒
0.10 ∗ �fc = �co. We substitute the values of �cr, �sl, �lb,and�co into∑

�i = 1. After solving the equations obtained simultaneously, we
get �fc = 0.51; �cr = 0.26; �sl = 0.127; �lb = 0.05; and �co = 0.05.

Usually, the ratio between the values from the preference vector
from Step 4 should give a rough estimate as to the ratio between
the different �i’s, provided all attributes are measured on the same
scale. If not, they could be scaled and compared. Having obtained
�i, and Gi for each attribute, we can compute the goodness function,
which in this case will be (from Eq. (8)):

G(qfc, qcr, qsl, qlb, qco) = 0.51 · Gfc(qfc) + 0.26 · Gcr(qcr)

+ 0.127 · Gsl(qsl) + 0.05 · Glb(qlb)

+ 0.05 · Gco(qco) (9)

Note that the function is additive, since the attributes are mutu-
ally preferentially independent. The values of individual goodness
functions corresponding to the value of attributes for each mapping
are determined from the graphs of Figs. 15(a)–16(c).

9.7. Step 7: Calculating Overall Function

The overall goodness values of the different mappings are (using
Eq. (9)):

• G(VA) = 0.51 · Gfc(0.75) + 0.26 · Gcr(0.10) + 0.127 · Gsl(0.10) +
0.05 · Glb(0.15) + 0.05 · Gco(0.3) = 0.51 ∗ 1 + 0.26 ∗ 0 + 0.127 ∗
0 + 0.05 ∗ 0 + 0.05 ∗ 0.68 = 0.54 (Mapping A)

• G(VB) = 0.51 · Gfc(0.15) + 0.26 · Gcr(0.80) + 0.127 · Gsl(0.18) +
0.05 · Glb(0.75) + 0.05 · Gco(0.10) = 0.51 ∗ 0.15 + 0.26 ∗ 1 +
0.127 ∗ 0.50 + 0.05 ∗ 1 + 0.05 ∗ 0 = 0.45 (Mapping B)

• G(VC ) = 0.51 · Gfc(0.10) + 0.26 · Gcr(0.15) + 0.127 · Gsl(0.30) +
0.05 · Glb(0.25) + 0.05 · Gco(0.5) = 0.51 ∗ 0 + 0.26 ∗ 0.24 +
0.127 ∗ 1 + 0.05 ∗ 0.40 + 0.05 ∗ 1 = 0.26 (Mapping C)

Fig. 17 shows the overall goodness profile of the three mappings
and illustrates how the different attributes contributed to the over-

all goodness value. Note that emphasizing other attributes than in
this example may result in different goodness profiles.

9.8. Step 8: decision making on the best alternative

We select Mapping A as it results in the highest goodness
value, when dependability is our main concern. This is con-
sistent given that the heuristic used to generate Mapping A is
dependability-oriented. Hence, the final mapping profile is: VA =
(0.75, 0.10, 0.10, 0.15, 0.30).

9.9. Step 9: refinement

Step 9 characterizes the overall refinement allowing for refine-
ment of the goodness function for improving the trade-off
provisioning. In this example, the trade-off study is not really
appropriate as we have three alternatives which are far apart
attribute-wise. Better illustration of trade-offs would be achieved,
if heuristics H1 or H2 were used to generate the mappings. How-
ever the inherent intractability of obtaining a precise goodness
function may warrant several iterations through the decision pro-
cedure for refinement. The aspiration vector is reassessed and S4
to S9 re-executed. Care should be taken so that the newly gener-
ated goodness function closely reflects the changes made. Based on
these changes and on the goodness value of the new mapping (if
applicable at all), trade-offs can be better ascertained. This step also
enables the decision maker to reflect on the solution at hand and

Fig. 17. Performance/goodness profiles for the three mappings.



Author's personal copy

N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800 1799

allows him/her to consider making some trade-offs, by readjusting
the preference structure, i.e., it enables an interactive and iterative
decision procedure.

10. Applicability and utility of the 9-step decision
procedure

Designing integrated dependable systems entails mapping the
fault containing processes to HW and choosing the best available
mapping. This implies using a framework able to handle the con-
flicting requirements of processes. Decision theory provides a basis
upon which trade-offs can be resolved so that the best available
option is derived, via an optimization function, termed here as
goodness function. Trade-offs are arbitrated through the system
requirements that are encoded in the goodness function.

We thus introduced two techniques for assessing the good-
ness of mappings. The first, random exploratory technique, is a
search-based technique that systematically probes the effective-
ness frontier (Pareto optimal set) of the mapping set. The second
technique is a 9-step interactive decision procedure that systemati-
cally guides the designer in formalizing the system requirements.
This allows determination of the goodness function that encap-
sulates these requirements as the goodness function of individual
attributes (Gi) and the importance of individual attributes (�i). This
function has the property of creating a weak preference ordering
among the different mappings, such that the best available map-
ping is the one with the highest goodness value. Value trade-offs
are thus easily resolved in this framework.

The real novelty of this approach is the creation of an inter-
polation surface whereby trade-offs can be accounted for. We are
currently investigating different techniques of generating differ-
ent interpolation surfaces that make trade-offs more explicit, i.e.,
instead of looking at midpoints for a single attribute, one can
look at pairs of attributes in such a way that trade-offs are more
explicit. We also assumed evaluator functions to obtain attribute
vectors. One aspect currently under investigation is determining
the attribute evaluators that work best for dependable embedded
systems.

However, a good (best) mapping may still not satisfy the require-
ments of the system, for inaccurate parameters, i.e., �i and Gi are
not fully accurate, since generation of a precise goodness function
may be intractable. To address this issue, the decision procedure
is iterative, such that current mapping information can be reused
to perform preference refinement. Hence, step 9 allows refinement
to be performed, forcing the designer to re-assess system require-
ments. The remaining steps force the designer to assess decisions
within the given framework.

Overall, this decision procedure has the property of making
the trade-offs explicit. Depending on the nature of the integration
(dependability-driven, performance-driven, etc.), different map-
pings may be chosen as the best one (i.e., the goodness profiles of
the mappings will be different). In this paper, given the dependabil-
ity focus, a dependability-driven mapping (Mapping A) was selected
as the best one. However, if criticality was the more important
attribute, Mapping A may not have been the best one. Also, had the
integration process required that both dependability and criticality
be of primary importance, the decision procedure would arbitrate
using requirements information pertaining to the other attributes
to obtain the best available mapping. A trade-off analysis among the
mappings generated by heuristics H1 and H2 would help determine
the better heuristic for dependability-driven SW integration.

On the other hand, the main limitations of this 9-step decision
procedure are (i) to get accurate results, the decision procedure
needs to be iterated several times until a proper preferential struc-
ture is obtained that will result in a more accurate goodness

function, and (ii) to obtain the graph of the different single-attribute
functions (as well as the aspiration vector), in-depth knowledge
of system requirements is needed. Also, there may be a need
for several designers to provide the aspiration vector such that
inconsistencies be filtered out at an early stage. This will help in
determining more accurate single-attribute functions.

11. Summary

Our approach for developing integrated dependable SW made
the following contribution: (a) formulation of a hierarchical struc-
ture for partitioning of SW modules, (b) composition strategies for
creating integrated SW modules, (c) quantification of interaction
between SW modules, and (d) development of techniques of map-
ping SW modules onto HW, (e) proposing the random exploratory
technique, and (f) introduction of a decision procedure for deter-
mining the goodness of mappings. Specifically,

• We started with a standard object-oriented design which may or
may not have been designed with dependability as main focus.
We decomposed the object-oriented design into smaller mod-
ules, which are then transformed, if necessary, into FCMs. These
FCMs have the property that they contain errors with high prob-
ability within their boundary at any abstraction level.

• Using the vertical (global) composition strategies, bigger modules
were obtained while the horizontal (local) integration (influence)
deals with indication of error propagation among FCMs to detect
any vulnerabilities.

• Once process FCMs were obtained (whose fault containment
capabilities are well-defined at this point), they were mapped
onto HW nodes. To achieve this, heuristics based systematic map-
ping process has been provided.

• Given that different heuristics will give rise to different map-
pings, to obtain the mapping that best meets the requirements of
the system, we proposed two decision procedure techniques. The
first, Random Exploratory Technique, is analogous to a search pro-
cedure. The second was a formal decision procedure, derivable
from system requirements.

Overall, the framework presented here is not dependent on the
number of levels of hierarchy introduced by the decomposition pro-
cess. Rather, one crucial aspect is evaluation of influences between
FCMs at each level. Also, another crucial point is the evaluation
of the different mappings obtained from different clustering algo-
rithms. Thus, the impact of different clusters on the integration
process can be visualized using the different profile obtainable
from our framework. The best mapping identified through the
profiling technique is the one that satisfies both hardware con-
straints, and also dependability and other associated constraints,
such as load balancing, etc. In the future, we plan to address rela-
tive trade-offs between approaches with more detailed models to
include domain/application-specific trade-offs. It is also of interest
to develop a trade-off analysis across HW and SW requirements,
especially when design restrictions are provided on the choice of
available HW platform.

Acknowledgments

The authors would like to thank S. Winter for his assiduous work
on earlier versions of this paper. Also, S. Ghosh’s contributions and
discussions on Sections 1–7 are highly appreciated. Similarly, A.
Balogh significantly contributed to the improvement of Section 2.

References

Ahuja, R.K., Magnanti, T.L., Orlin, J.B., 1993. Network Flows: Theory, Algorithms and
Applications. Prentice Hall.



Author's personal copy

1800 N. Suri et al. / The Journal of Systems and Software 83 (2010) 1780–1800

Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C., 2004. Basic concepts and tax-
onomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing 1 (1), 11–33.

Baldin, D., Kerstan, T., 2009. Proteus, a hybrid virtualization platform for embedded
systems. Journal of Analysis, Architectures and Modelling of Embedded Systems,
185–194.

Chillarege, R., Biyani, S., Rosenthal, J., 1995. Measurement of failure rate in widely
distributed software. In: International Symposium on Fault-Tolerant Comput-
ing, p. 424.

Cristian, F., Aghili, H., Strong, R., Dolev, D., pp. 200–206 1985. Atomic broadcast:
from simple message diffusion to byzantine agreement. In: Information and
Computation.

Czyzak, P., Jaszkiewicz, A., 1998. Pareto simulated annealing–a metaheuristic
technique for multiple-objective combinatorial optimization. Journal of Multi-
Criteria Decision Analysis 6 (7), 34–47.

David, R., 1998. Random Testing of Digital Circuits: Theory and Applications. Marcel
Dekker.

Ekelin, C., Jonsson, J., 2001. Evaluation of search heuristics for embedded system
scheduling problems. In: International Conference on Principles and Practice of
Constraint Programming. Springer-Verlag, London, UK, pp. 640–654.

Flanagan, D., 1999. Java in a Nutshell: A Desktop Quick Reference. O’Reilly & Asso-
ciates, Inc., Sebastopol, CA, USA.

Garey, M.R., Johnson, D.S., 1979. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co, New York, NY, USA.

Ghosh, S., Rajkumar, R.R., Hansen, J., Lehoczky, J., 2003. Scalable resource allo-
cation for multi-processor qos optimization. In: International Conference on
Distributed Computing Systems. IEEE Computer Society, Los Alamitos, CA, USA,
pp. 174–185.

Hiller, M., 2000. Executable assertions for detecting data errors in embedded control
systems. In: DSN, pp. 24–33.

Hiller, M., Jhumka, A., Suri, N., May 2004. Epic: profiling the propagation and effect
of data errors in software. IEEE Transactions on Computers 53 (5), 512–530.

Horvitz, E.J., Breese, J.S., Henrion, M., 1988. Decision theory in expert systems and
artificial intelligence. International Journal of Approximate Reasoning 2 (3),
247–302.

Islam, S., Lindström, R., Suri, N., 2006. Dependability driven integration of mixed
criticality sw components. In: ISORC, pp. 485–495.

Islam, S., Suri, N., 2007. A multi variable optimization approach for the design of inte-
grated dependable real-time embedded systems. In: International Conference
on Embedded and Ubiquitous Computing, vol. 4808, pp. 517–530.

Islam, S., Suri, N., Balogh, A., Csertán, G., Pataricza, A., 2009. An optimization
based design for integrated dependable real-time embedded systems. Journal
of Design Automation for Embedded Systems 13 (4), 245.

Ismaeel, A.A., Breuer, M.A., 1991. The probability of error detection in sequential cir-
cuits using random test vectors. Journal of Electronic and Testing 1 (4), 245–256.

Izosimov, V., Pop, P., Eles, P., Peng, Z., 2005. Design optimization of time-and
cost-constrained fault-tolerant distributed embedded systems. In: DATE. IEEE
Computer Society, Washington, DC, USA, pp. 864–869.

Jhumka, A., Hiller, M., Claesson, V., Suri, N., 2002a. On systematic design of globally
consistent executable assertions in embedded software. In: LCTES-SCOPES, pp.
75–84.

Jhumka, A., Hiller, M., Suri, N., 2001. Assessing inter-modular error propagation in
distributed software. In: SRDS, pp. 152–161.

Jhumka, A., Hiller, M., Suri, N., 2002b. An approach to specify and test component-
based dependable software. In: HASE, pp. 211–220.

Jhumka, A., Hiller, M., Suri, N., 2002c. Component-based synthesis of dependable
embedded software. In: FTRTFT, pp. 111–128.

Jhumka, A., Klaus, S., Huss, S.A., 2005. A dependability-driven system-level design
approach for embedded systems. In: DATE, vol. 1. IEEE Computer Society, Los
Alamitos, CA, USA, pp. 372–377.

Kandasamy, N., Hayes, J.P., Murray, B.T., 1999. Tolerating transient faults in statically
scheduled safety-critical embedded systems. In: SRDS, vol. 0. IEEE Computer
Society, Los Alamitos, CA, USA, p. 212.

Kaufman, L.M., Johnson, B.W., Dugan, J.B., 2002. Coverage estimation using statis-
tics of the extremes for when testing reveals no failures. IEEE Transactions on
Computers 51, 3–12.

Keeney, R., Raiffa, H., 1993. Decisions with Multiple Objectives: Preferences and
Value Tradeoffs. Cambridge University Press.

Kodase, S., Wang, S., Gu, Z., Shin, K.G., 2003. Improving scalability of task allocation
and scheduling in large distributed real-time systems using shared buffers. In:
Real-Time and Embedded Technology and Applications Symposium, IEEE 0, p.
181.

Kuchcinski, K., 2003. Constraints-driven scheduling and resource assignment. ACM
Transactions on Design Automation of Electronic Systems 8 (3), 355–383.

Lee, Y.-H., Kim, D., Younis, M., Zhou, J., McElroy, J., 2000. Resource scheduling in
dependable integrated modular avionics. In: DSN. IEEE Computer Society, Wash-
ington, DC, USA, pp. 14–23.

Lipari, G., Carpenter, J., Baruah, S., 2000. A Framework for Achieving Inter-
Application Isolation in Multiprogrammed, Hard Real-Time Environments.

Locke, C.D., Vogel, D., Mesler, T.J., 1991. Building a predictable avionics platform
in ada: a case study. In: Proceedings of Real-Time Systems Symposium, pp.
181–189.

Luce, R., Krantz, D., Suppes, P., Tversky, A., 1990. Foundations of measurement 3:
Representation, axiomatisation and invariance.

Mohanty, S., Prasanna, V.K., Neema, S., Davis, J., 2002. Rapid design space exploration
of heterogeneous embedded systems using symbolic search and multi-granular
simulation. SIGPLAN Notices 37 (7), 18–27.

Mustafiz, S., Kienzle, J., 2004. A survey of software development approaches address-
ing dependability. In: FIDJI, pp. 78–90.

Neema, E., Sztipanovits, J., Karsai, G., 2003. Constraint-based design-space explo-
ration and model synthesis. In: Proceedings of EMSOFT, vol. 2855 of LNCS.
Springer, pp. 290–305.

Oh, Y., Son, S.H., 1994. Enhancing fault-tolerance in rate-monotonic scheduling.
Real-Time Systems 7 (3), 315–329.

Prasad, D., McDermid, J., 1999. Dependability evaluation using a multi-criteria deci-
sion analysis procedure. Dependable Computing for Critical Applications 7,
339–358.

Rajkumar, R., Lee, C., Lehoczky, J.P., Siewiorek, D.P., 1998. Practical solutions for qos-
based resource allocation problems. In: IEEE Real-Time Systems Symposium, pp.
296–306.

Randell, B., 1975. System structure for software fault tolerance. In: Proceedings of
the international conference on Reliable Software. ACM, New York, NY, USA, pp.
437–449.

Rushby, J., 1999. Partitioning for safety and security: requirements, mechanisms,
and assurance (CR-1999-209347).

Saib, S.H., 1978. Executable assertions - an aid to reliable software. In: Proceedings
of the 11th Asilomar Conference Circuits Systems and Computer, pp. 277–281.

Stankovic, J.A., Spuri, M., Natale, M.D., Buttazzo, G., 1994. Implications of classical
scheduling results for real-time systems. IEEE Computer 28, 16–25.

Suri, N., Ghosh, S., Marlowe, T.J., 1998. A framework for dependability driven soft-
ware integration. In: ICDCS, pp. 406–415.

Totel, E., Blanquart, J.-P., Deswarte, Y., Powell, D., 1998. Supporting multiple levels
of criticality. In: International Symposium on Fault-Tolerant Computing, vol. 0.
IEEE Computer Society, Los Alamitos, CA, USA, p. 70.

Wang, S., Merrick, J.R., Shin, K.G., 2004. Component allocation with multiple resource
constraints for large embedded real-time software design. In: Real-Time and
Embedded Technology and Applications Symposium, vol. 0. IEEE Computer Soci-
ety, Los Alamitos, CA, USA, p. 219.

Wind River, 2010. Wind River Hypervisor. http://www.windriver.com/
products/hypervisor/.

Yin, X., Kiskis, D.L., Mihalik, D., Shin, K.G., 2006. Integration of an analysis tool for
large-scale embedded real-time software into a vehicle control platform devel-
opment tool chain. In: ESA, pp. 53–59.

Younis, M.F., Aboutabl, M., Kim, D., 2004. Software environment for integrating criti-
cal real-time control systems. Journal of systems Architecture 50 (11), 649–674.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V., 2003. Per-
formance assessment of multiobjective optimizers: an analysis and review. IEEE
Transactions on Evolutionary Computation 7 (2), 117–132.

Neeraj Suri is a Chair Professor at TU Darmstadt, Germany at the DEEDS
Group in the Dept. of Computer Science. His professional details are available at
www.deeds.informatik.tu-darmstadt.de/suri.

Arshad Jhumka obtained his PhD from TU Darmstadt, DEEDS Group. Cur-
rently he is a Reader at the Univ. of Warwick, UK. Details are available at
www.dcs.warwick.ac.uk/people/academic/Arshad.Jhumka/.

Martin Hiller obtained his PhD from the DEEDS Group. He is currently a Product
Area Manager - Embedded Architecture at Volvo Technology Corporation, Sweden.

András Pataricza is a Professor at Budapest University, Hungary. His professional
details are available at www.mit.bme.hu/ pataric/.

Shariful Islam obtained his PhD from TU Darmstadt, DEEDS Group. He is currently
at Innoventis GmbH, Germany.

Constantin Sârbu obtained his PhD from TU Darmstadt, DEEDS Group. Currently
he is a post-doctoral fellow at TU Darmstadt http://www.deeds.informatik.tu-
darmstadt.de/dinu/index.html.


