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1 Introduction

The RSA cryptosystem makes use of modular exponentiation for encrypting and decrypting and,
intrinsically, multiplication of integers. The lenght of which is the one of the RSA-modulus. In
this paper, we describe the multiplication algorithms Karatsuba, Toom Cook and Schönhage,
in order to calculate the number of multiplications of base words (MOB). In our calculations
the additions of base words are included. A multiplication of two base words is considered as
a unit of computation. One addition of two base words is considered as q times one unit of
computation. The value q (0 < q ≤ 1) depends on the architecture or platform.

We use Zimmermann’s version of the Schönhage algorithm [Zim92] and suggest an improve-
ment. In Zimmermann’s version a parameter κ must be fixed in advance, which has been
experimentally chosen for some sizes of the integers to be multiplied, and therefore part of our
contribution is to show which adequate value for such κ can be selected in order to make less
MOB using the Schönhage algorithm in compare with the use of the other ones for big integers.
Our result is that the Schönhage algorithm is the best amongst the examined ones for numbers
whose length is greater than or equal to 217 bits.

2 Notation

Let ν0 ∈ Z
+ and B = 22ν0 . A base word is an x such that 0 ≤ x < B. Let z ∈ Z

+, the base-word

length (or simply the length) of z is the number ℓB(z) of base words needed to represent such
z. In a similar way we define the bit length ℓ2(z) of z. We define ℓB(0) = ℓ2(0) = 1 and for
z ∈ Z

− we define ℓB(z) := ℓB(−z) and ℓ2(z) := ℓ2(−z).
Let sa = am−1 · · · a1a0 be a not null bit string. We consider it as the integer a =

∑m−1
j=0 aj2

j

and we say that its bit length is ℓ2(sa) = m and its base-word length is ℓB(sa) = ⌈ m
2ν0

⌉2ν0 . So,

if we want to add two integers α =
∑n1−1

j=0 αj2
j and β =

∑n2−1
j=0 βj2

j , we can consider the bit
strings sα = αm−1 · · ·α1α0 and sβ = βm−1 · · · β1β0, where m = max{n1, n2} and αi = βj = 0
for i ≥ n1 and j ≥ n2. In this way we can define the number of additions of base words for a
couple of integers of bit length m as addB(m) = ⌈ m

2ν0
⌉.

We take a multiplication of two base words as a unit. We suppose that an addition of two
base words is equivalent to q multiplications of two base words, where 0 < q ≤ 1 depends on
the implementation. Therefore the addition of two m-bit integers is equivalent to qaddB(m)
multiplications of base words.
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If x, n,B ∈ Z
+, such that B > 1 and x =

∑m
j=0 xjB

j, then xBn =
∑m

j=0 xjB
j+n will be

denoted by x <<B n, an n B-block right shift. The symbol | represents the bitwise or.

3 Multiplication algorithms and MOB

We describe some multiplication algorithms and calculate the number of multiplications of
base words for each one of them, in order to compare those quantities with each other. In all
subsections we assume B = 22ν0 for a previously set ν0 ∈ Z

+, which defines our base words. We
suppose that the two integers to be multiplied in each algorithm have the same length N .

3.1 Näıve algorithm

The complexity of this algorithm is O(N2). In Figure 1 a description of this algorithm can be
found. Four multiplication must be made, one addition of integers of size ℓ′ and one addition
of size 2ℓ′ as well. We could write this as 4 mult and 1 addB(ℓ

′) and 1 addB(2ℓ
′). Note that one

addition of integers of size ℓ′ and one addition of size 2ℓ′ is equivalent to
⌈

ℓ′

2ν0

⌉

+
⌈

2ℓ′

2ν0

⌉

= 3
⌈

ℓ
2ν0

⌉

additions of base words. And then we have that MOB(Na, ℓ) is 4rMOB(Na, ℓ
2r +2ν0

∑r−1
i=0

cr−i

2i )+

3q
(

ℓ
2ν0

(2r − 1) +
∑r−1

i=0 4i
∑i

j=0
ci−j+1

2j

)

, where 0 ≤ ci < 1 ∀i. For instance, if ℓ = 2ν0+ν , where

ν ≥ 0 is an integer, then ci = 0 ∀i and MOB(Na, ℓ) = 4ν + 3q(4ν − 2ν).

3.2 Karatsuba algorithm

The complexity of this algorithm is O(N log2 3). In Figure 1 a description of this algorithm
can be found. Three multiplication must be made, two additions of integers of size ℓ′

2 , two
additions of integers of size ℓ′ and one addition of size 2ℓ′ as well. Note that two additions of
integers of size ℓ′

2 , two additions of integers of size ℓ′ and one addition of size 2ℓ′ are equivalent to

2

⌈

ℓ′

2

2ν0

⌉

+2
⌈

ℓ′

2ν0

⌉

+
⌈

2ℓ′

2ν0

⌉

= 5
⌈

ℓ
2ν0

⌉

+
(⌈

ℓ
2ν0

⌉

mod 2
)

additions of base words. Therefore, we have

that MOB(Ka, ℓ) is 3rMOB(Ka, ℓ
2r +2ν0

∑r−1
i=0

cr−i

2i )+10q
(

ℓ
2ν0

· 3r−2r

2r +
∑r−1

i=0 3i
∑i

j=0
ci−j+1

2j

)

+

Cr(ℓ)q, where 0 ≤ ci < 1 ∀i and 0 ≤ Cr(ℓ) ≤
3r−1

2 . For instance, if ℓ = 2ν0+ν , where ν ≥ 0 is an
integer, then ci = 0 ∀i, Cr(ℓ) = 0 and MOB(Ka, ℓ) = 3ν + 10q(3ν − 2ν).

3.3 Toom-Cook algorithm

The complexity of this algorithm is O(N log3 5). In Figure 1 a description of this algorithm can
be found. This is a faster algorithm; it is better than the Karatsuba one for integers of bit length
greater than or equal to 214, under the assumption that the size of a base word is 25 bits. This
behaviour is owned to the linear system which must be solved and which increases the overhead
of the algorithm. In the Toom-Cook algorithm represented in Figure 1 five multiplication must
be made, 12 additions of integers of size ℓ′

3 , 6 additions of integers of size 2ℓ′

3 and one addition of
integers of size 2ℓ′ as well. If we define c1 = t 1

2

−γ4−16γ0, c2 = t1−γ4−γ0 and c3 = t2−16γ4−γ0,

because of all elements in the equation that must be solved are integers, c1 and c3 must be even.
Therefore, we can set c′1 = c1

2 and c′3 = c3
2 and then the solution for the linear system is

3γ1 = c1 − 6c2 + c′3
γ2 = −c′1 + 5c2 − c′3

3γ3 = c′1 − 6c2 + c3
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Note that 5x = (x <<2 2) + x and 6x = ((x <<2 1) + x) <<2 1 and then we have 9 additions
of numbers of size 2m

3 .

Therefore, the solution of the linear system requires 9 additions more of integers of size ℓ′

3 .

Note that 12 additions of integers of size ℓ′

3 , 15 additions of integers of size 2ℓ′

3 and one

addition of integers of size 2ℓ′ is equivalent to 12

⌈

ℓ′

3

2ν0

⌉

+ 15

⌈

2ℓ′

3

2ν0

⌉

+
⌈

2ℓ′

2ν0

⌉

= 48
⌈

ℓ
3·2ν0

⌉

addi-

tions of base words. And then we have that MOB(T3, ℓ) is 5rMOB(T3, ℓ
3r + 2ν0

∑r−1
i=0

cr−i

3i ) +

48q
(

ℓ
2ν0+1 · 5r−3r

3r +
∑r−1

i=0 5i
∑i

j=0
ci−j+1

3j

)

where 0 ≤ ci < 1 ∀i. For instance, if ℓ = 2ν0+ν , where

ν ≥ 0 is an integer, then ℓ = 3ν log3 22ν0 and MOB(T3, ℓ) = 5ν log3 2 + 24q(5ν log3 2 − 2ν) + C(ℓ),
where C(ℓ) < 18q5ν log3 2.

3.4 Schönhage algorithm

The complexity of this algorithm is O(N log N log log N). This algorithm takes advantage of
the Fast Fourier Transform (FFT) whose complexity is O(M log M), where M is the number of
elements to be transformed. The FFT is computed in the ring R = Z/(2m + 1)Z, where m is a
power of two and ζp = 2q is a p primitive root of unit in R if pq = 2m.

Proposition 3.1 Consider the function n(κ) =
⌈

2ν0+ν+1−2κ + κ+3
2κ

⌉

2κ for an integer κ and

fixed real numbers ν and ν0. If

1.
⌈

ν0

2

⌉

≥ 3, then for
⌈

ν0

2

⌉

≤ κ ≤
⌊

ν0+ν
2

⌋

we have that n(κ) is a non increasing function and

therefore n(
⌊

ν0+ν
2

⌋

) ≤ n(κ).

2. κ ≥ 4, then for
⌈

ν0+ν
2

⌉

+ 1 ≤ κ < ν0 + ν we have that n(κ) is an increasing function and

therefore n(κ) ≥ n
(⌈

ν0+ν
2

⌉

+ 1
)

.

For the proof of part 1 we have that if 3 ≤
⌈

ν0

2

⌉

≤ κ, then κ+3
2κ < 1. If κ ≤ ν0+ν

2 then
2κ+1 ≤ 2ν0+ν+1−κ and therefore 3 · 2κ ≤ 2ν0+ν+1−κ + 2κ.

Now, if 3 ≤
⌈

ν0

2

⌉

≤ κ, κ + 1 ≤
⌊

ν0+ν0

2

⌋

, then n(κ + 1) = 2κ+1 + 2ν0+ν+1−κ−1 = 1
2(2κ +

2ν0+ν+1−κ) + 3
2 · 2κ ≤ n(κ). And therefore n

(⌊

ν0+ν
2

⌋)

≤ n(κ) for all integer 3 ≤
⌈

ν0

2

⌉

≤
κ ≤

⌊

ν0+ν
2

⌋

. Note that in this case 2κ+log23 ≤ n(k) < 2κ+1+log2 3 and if ν0 + ν > 6, then

ν0 + ν > 3
2 (k + 1 + log3) and therefore n(k) < 2

2

3
(ν0+ν).

For the proof of part 2 we have that if max{4, ν0+ν
2 + 1} ≤ κ, then κ+3

2κ + 2ν0+ν+1−2κ ≤ 1
and therefore n(κ) = 2κ.

Part of the Schönhage algorithm represented in Figure 1 was described by Zimmermann in
[Zim92] with a previously fixed parameter κ. Because of the proposition 3.1, we use 4 < ν0 and
4 ≤ κ, in order to add in that description the lines denoted by ***.

If ℓB(α) = ℓB(β) = 2ν and we want the product αβ as integer (instead of mod 2ν0+ν),
it must be used m = 2ν0+ν+1. If 8 ≤ ν0 + ν, then in order to compute MOB(Sch, 2ν0+ν) 2κ

multiplications of integers of bit length n(κ) are required, two FFT of 2κ elements of bit length
2ν+ν0−κ and one FFT of 2κ elements of bit length 2ν+1+ν0−κ as well, where κ =

⌊

ν0+ν
2

⌋

i.e.
MOB(Sch, 2ν0+ν) = 2κMOB(Sch, n(κ)) + qκ2ν+3.

4 Comparison amongst the multiplication algorithms

From the surveyed algorithms in Section 3 we have obtained the value of MOB(MA, 2ν+ν0) as
follows. For the näıve algorithm (Na): 22ν + 3q(22ν − 2ν). For the Karatsuba algorithm (Ka) :

3



2ν log2 3+10q
(

2ν log2 3 − 2ν
)

. For the Toom-Cook algorithm (T3): 2ν log3 5+24q
(

2ν log3 5 − 2ν
)

+C;
C < 18q2ν log3 5. For the Schönhage algorithm (Sch): MOB(Ma, 2ν+ν0) if ν0 + ν < 8, where MA

is an adequate multiplication algorithm, otherwise 2κMOB(Sch, 2κ(2ν+ν0+1−2κ + 1)) + qκ2ν+3.
For instance, if ν0 = 5 and q = 0.95 are set, we have that MOB(Ka,m) ≤ MOB(Na,m)

for 210 ≤ m and MOB(T3,m) ≤ MOB(Ka,m) for 215 ≤ m. If the Karatsuba multiplication
algorithm is used in the Schönhage algorithm, then MOB(Sch,m) ≤ MOB(T3,m) for 217 ≤ m.

In Figure 2 we show the time needed for multiplying integers of length 2ν0+ν with the näıve,
Karatsuba, Toom-Cook and Schönhage algorithms. We have used the gmp library [GMP].

5 Conclusion

We take into consideration not only multiplication of base words, but also each addition of
them as q times a multiplication. We have shown that Sch needs no more multiplications
of base words than Ka, or T3 for integers whose bit length is greater than or equal to 217.
Therefore, for a modulus of such size, the modular multiplication [Mon85] and the modular
exponentiation [Gor88] would be faster if Schönhage is used as multiplication algorithm. As a
consequence the RSA encryption or decryption, too. We have shown also a recurrent formula
for computing the number of multiplications of base words for Sch. In Figure 2 the graphic of
y = log2(MOB(alg, 2log size)) is shown, where alg is one of the näıve, Karatsuba, Toom-Cook
or Schönhage algorithms and 0 ≤ log size ≤ 25.
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Naı̈ve Na(α, β)

Input: α, β ∈ Z, s.t. ℓB(α) = ℓB(β).
Output: γ = αβ.
Procedure:

ℓ← ℓ2(α)
if (ℓ ≤ 2ν0) return α*β

ℓ′ ←
l

ℓ
2ν0

m

2ν0

B ← ℓ′

2

write α = α1B + α0 and β = β1B + β0

c3 ← Na(α1, β1)
c2 ← Na(α0, β1)
c1 ← Na(α1, β0)
c0 ← Na(α0, β0)
return γ = ((c3 <<B 2)|c0) + ((c2 + c1) <<B 1)

Toom-Cook T3(α, β)

Input: α, β ∈ Z, s.t. ℓB(α) = ℓB(β).
Output: γ = αβ.
Procedure:

ℓ← ℓ2(α)
if (ℓ ≤ 2ν0) return α*β

ℓ′ ←
l

ℓ
3·2ν0

m

3 · 2ν0

B ← ℓ′

3

write α = α2B2+α1B+α0 and β = β2B2+β1B+β0

γ4 ← T3(α2, β2)
t 1

2

← T3(α2 + 2α1 + 4α0, β2 + 2β1 + 4β0)

t1 ← T3(α2 + α1 + α0, β2 + β1 + β0)
t2 ← T3(4α2 + 2α1 + α0, 4β2 + 2β1 + β0)
γ0 ← T3(α0, β0)
Solve a linear system.

2γ3 + 4γ2 + 8γ1 = t 1

2

− 16γ0 − γ4

γ3 + γ2 + γ1 = t1 − γ0 − γ4

8γ3 + 4γ2 + 2γ1 = t2 − γ0 − 16γ4

return γ = ((((γ4 <<B 2)|γ2) <<B 2)|γ0) +
(((γ3 <<B 2)|γ1) <<B 1)

Karatsuba Ka(α, β)

Input: α, β ∈ Z, s.t. ℓB(α) = ℓB(β).
Output: γ = αβ.
Procedure:

ℓ← ℓ2(α)
if (ℓ ≤ 2ν0) return α*β

ℓ′ ←
l

ℓ
2ν0

m

2ν0

B ← ℓ′

2

write α = α1B + α0 and β = β1B + β0

x← Ka(α1, β1)
y ← Ka(α0 − α1, β1 − β0)
z ← Ka(α0, β0)
return γ = ((x <<B 2)|z) + ((x + y + z) <<B 1)

Schönhage Sch(α, β)

Input: α, β ∈ Z/(2m + 1)Z, where m = 2ν0+ν.

Output: γ = αβ ∈ Z/(2m + 1)Z
Procedure:

Choose.

*** If ν0 + ν < 8 use an adequate multiplication

algorithm.

Set:

*** κ←
j

ν0+ν

2

k

M ← 2κ

L← m
M

n←
l

κ+2L+3

M

m

M

d← n
M

Represent:

α =
PM−1

j=0
αj

`

2L
´j
, β =

PM−1

j=0
βj

`

2L
´j
.

Define:

fα(j) ← αjζj
2M

mod (2n + 1), fβ(j) ← βjζj
2M

mod (2n + 1), where ζ2M = 2d and 0 ≤ j < M.

Compute direct FFT:

FFTM (fα, k) mod (2n + 1) and FFTM (fβ , k)

mod (2n + 1) for 0 ≤ k < M, where 22d is a M-th

primitive root of unit.

Multiply:

H(k) ← Sch(FFTM (fα, k), FFTM(fβ , k))
mod (2n + 1) for 0 ≤ k < M.

Compute inverse FFT:

h(j) ← IFFTM (H, j) mod (2n + 1) for 0 ≤ j <
M, where 22d is a primitive root of unit.

Compute:

γj ← h(j)(2d)−j mod (2n + 1). If γj >
(j + 1)22L, subtract 2n + 1 to it (considered as

integers).

Result:

γ =
PM−1

j=0
γj

`

2L
´j

mod (2m + 1).

Figure 1: Multiplication algorithms: Näıve, Karatsuba, Toom-Cook and Schönhage
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Figure 2: Timing of the multiplication of two numbers of size 2log size. Graphic of
log2(timing(alg, 2log size)). The multiplication algorithms where used on different processors.
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