
Improvements to the Merkle signature scheme

(extended abstract)

Luis Carlos Coronado Garćıa

FB 20, Technische Universität Darmstadt
Hochschulstr. 10, D-64289, Darmstadt. Germany.
coronado@cdc.informatik.tu-darmstadt.de

http://www.cdc.informatik.tu-darmstadt.de/mitarbeiter/coronado.html

1 Introduction

We propose two efficient and secure versions of the Merkle signature scheme. One of them is
forward secure and its security is based on that of its primitives: a collision resistant and one
way hash function and a cryptographic secure pseudorandom bit generator. In the other version;
the private key is composed of two separated parts: a user-key and a home-key. These parts of
the private key evolve during several periods of the lifetime of the instance of the scheme, while
the public key remains the same. The goal of the second version is to prevent forged signatures
in all periods except for those where only the user-key is compromised. In those periods where
only the home-key is compromised, the intruder cannot forge any signature at all. In case that
the home-key and the user-key are compromised, the scheme result in a forward secure one.

These two versions are quite efficient, existentially unforgeable under adaptive chosen mes-
sage attack and have forward security.

2 Brief description of the Merkle signature scheme

Merkle presents in [Mer90] a multi-time signature scheme. Actually, the Merkle signature
scheme (MSS) transforms any one-time signature scheme in a multi-time one. Because of the
constraint in the number of pages in the extended abstract we suggest the reader to consult
[Mer90] for a detailed description of the original scheme. In the following we provide a brief
description of an improved version of the MSS for creating up to 2N signatures. The key

generation algorithm MGen(s,N) works as follows: On input the security parameter s (in
unary) and N , it generates 2N key pairs of the one-time signature scheme (in case of the use
of a cryptographically secure pseudorandom bit generator prg : {0, 1}s → {0, 1}2s, it can be
obtained (PKots

i , PSots
i ) ← Genots(s, seedi); (χi, seedi) ← prg(χi−1) for 0 ≤ i < 2N and

χ−1 ∈R {0, 1}
s). Then, it creates a binary tree, which will be called Merkle tree henceforth,

whose leaves are the hash values of the verification keys, and each parent is the hash value
of the concatenation of its left and right children. It outputs the public (PK) and private
(SK) keys. The public key is the depth and the root of the Merkle tree (N,R). All the
one-time key pairs taken together serve as the private key or, in case of the use of prg, only
χ = χ−1 can be the private key. The signature algorithm MSig(M,SK) of the k-th message
is the one-time signature τ (made by the one-time signature algorithm with the k-th one-
time private key), followed by the corresponding one-time verification PKots key and N nodes
PN , . . . , P1 from the Merkle tree which help to authenticate the verification key against PK.
The verification algorithm MV er(M, (i, τ, PKots, PN , . . . , P1), PK) employs the one-time

1



verification algorithm with M, τ and PKots, then it verifies the authenticity of the one-time
verification key PKots using i, the auxiliary nodes PN , . . . , P1 and PK.

3 A forward secure and efficient version of the Merkle signature

scheme

A sketch of proof of security. Under the assumption of the existence of cryptographically
secure hash functions and cryptographically secure one-time signature schemes, the MSS is not
existentially forgeable under adaptive chosen message attack. The idea to do this is: prove first
that any alteration of any number of nodes of a Merkle tree that keeps the root intact yields
an explicit collision for the underlying hash function. Then, show that any existential forgery
of signatures in the MSS leads to either an existential forgery of signatures for the underlying
one-time signature scheme or a collision for the underlying hash function.
A forward secure version of the Merkle Signature Scheme. Roughly speaking, a forward
secure signature scheme is one for which the validity of a public key is divided into periods,
and the corresponding private key “evolves” after each period in such a way that if the private
key is compromised by an adversary in some period, the adversary cannot succeed in forging
a signature for a previous period. We modify the original MSS in order to transform it into a
forward secure one. The description of such an improved scheme is given in Section 2. Note
that if all the one-time signing keys are stored and each one of them is deleted after its use,
the resulting MSS is forward secure, where each period consists of exactly one signature. In
this case, the private key of the MSS is as big as the stored one-time signing keys. In our
version, the size of the private key is reduced by employing a pseudorandom bit generator and
a one-time signature scheme with deterministic key-generation. Bellare and Yee have shown in
[BY03] how to construct a forward-secure pseudorandom bit generator from a cryptographically
secure pseudorandom bit generator. The use of that bit generator enables us to prove that our
new version of the MSS becomes forward secure.
Key generation process split through the signature process. In the MSS, the number of
possible signatures is 2N , where N is the depth of the Merkle tree. The bigger the parameter N

is, the slower the key generation process becomes: during key generation 2N+1 − 1 hash values
and 2N one-time key pairs have to be computed.

In our version, part of the key generation takes place during the use of the signature scheme.
This permits the use of sufficiently large parameters to allow for a practically unlimited number
of signatures while keeping the cost of the initial key generation process low. The basic idea is
to use one (“top”) Merkle tree to authenticate the roots of a series of other, “bottom” trees.
Only one of the bottom trees is kept at a time. During the use of one bottom tree, the next
one is generated, namely two nodes at a time per signature.

Let MSign = (MGen,MSig,MV er) be the MSS as described in Section 2. We describe a
new and efficient version of the MSS, which has –in the practical sense– an unlimited number
of possible signature.
Improved key generation algorithm Gen. On input the security parameter s and the
parameter N , for 22N possible signatures, Gen calls twice MGen to compute (χ−1, (N,R)) and
(χ0,−1, (N,R0)) and then computes ζ0 = MSig(R0, χ−1) and outputs (N,R) as the public key
and (χ0,−1, χ0) as the private key, where χ0 is obtained from (χ0, seed0)← prg(χ−1). The signer
must keep two counters. One of them (i) counts the number of generated signatures modulo 2N ,
which at this point must be initialized to zero, and the other (j) counts the number of signatures
created by the first generated Merkle key pair, which at this point must be initialized to zero,
too. The signer must also keep (ζ0, R0), which is the signature of the public key of the second

2



generated key pair and the public key itself.
Improved signature algorithm Sig. Let i and j be the counters described in the previous
improved key generation algorithm. On input the secret key (χj,i−1, χj) and a message M , Sig

computes τi ←MSig(M,χj,i−1) and sets σ = (τi, Rj , ζj), then obtains χj,i from (χj,i, seedj,i)←
prg(χj,i−1) and, after that, increments i by one. If at this point i ∼= 0 mod 2N , Sig calls
MGen to obtain (χj+1,−1, (N,Rj+1)) then computes ζj+1 ← MSig(Rj+1, χj) and χj+1 from
(χj+1, seedj+1) ← prg(χj). Sig sets i ← 0 and increments j by one. Finally, Sig outputs the
signature σ. The signer must keep (ζj , Rj), too.
Improved verification algorithm V er. On input a signature σ = (τ, ρ, ζ) and a message
M , V er accepts the signature if both MV er(M, τ, (N, ρ)) and MV er(ρ, ζ, (N,R)) are true, and
rejects it otherwise.

4 Experimental Results

Our experiments are estimates of the size of the Merkle keys and MSS and also estimates of the
time needed for the Key Generation, Signature and Verification algorithms. These experiments
were made on a SUN 4 ultra SPARC Sun-Blade-100, Sun OS 5.8, at 500MHz and we have used
RIPEMD160 as hash function, our improved version of the Lamport-Diffie one-time signature
scheme, which is described in Appendix A, and the number of possible signatures is 2N . The
cryptographic library used in the computations of RIPEMD160 values is OpenSSL [Ope] version
0.9.7d. and the used pseudorandom bit generator is ISAAC [ISA].

RSA Signature Scheme
key size Signature Verification
(bits) milliseconds
512 28.01 1.08
1024 55.52 2.09
2048 224.55 6.50

Key Generation Signature Verification
N Time size Kb Time size Kb Time ms
16 3.46 sec 1.57 446 ms 3.93 2.96
18 6.9 sec 2.31 616 ms 3.97 3.12
20 13.8 sec 2.43 682 ms 4.01 3.27
22 27.6 sec 3.8 1.04 sec 4.05 3.43
24 55.2 sec 3.91 1.13 sec 4.09 3.59
26 1.84 min 6.53 1.9 sec 4.13 3.74
28 3.68 min 6.65 2.05 sec 4.17 3.9
30 7.36 min 11.8 3.77 sec 4.21 4.05
32 14.7 min 11.9 4.02 sec 4.25 4.21
34 29.4 min 22 7.85 sec 4.29 4.37
36 58.9 min 22.1 8.31 sec 4.32 4.52
38 1.96 hrs 42.2 16.8 sec 4.36 4.68
40 3.92 hrs 42.4 17.6 sec 4.4 4.83

Table 1: Timing for RSA and for our first improvement to the Merkle signature scheme: Key
Generation Time, Private Key Size, Signature Process Time, Signature Size and Verification
Time. The number of possible signatures is 2N and the public-key size is 24 bytes.

5 Second version of the Merkle signature scheme

Suppose that H : {0, 1}∗ → {0, 1}s is a hash function and prg : {0, 1}s → {0, 1}2s is a pseudo-
random bit generator. In the following we roughly sketch our scheme:
Key Generation Algorithm. There exist two entities: The home-entity and the user-entity.
The user-entity computes an instance of the multi-time signature scheme (skmt, pkmt), selects

3



a random r ∈ {0, 1}s and sends (r, pkmt) to the home-entity. The home-entity computes an
instance of the MSS (SKM , PKM ), obtains τ (the signature of pkmt with SKM ), selects a
random r′ ∈ {0, 1}s and finally computes skM ← SKM ⊙ (r ⊕ r′). x ⊕ y is the xor’ing of x

and y als bit strings of the same length and SKM ⊙ ρ is the xor’ing of αn with Hn(ρ); here
SKM = ‖n∈Iαn, each αn has length s and ‖ is the concatenation of strings. The home-entity
returns (r′, τ) to the user-entity and deletes r and r′. The user-entity sets r ← r⊕ r′ and stores
(r, τ, pkmt, skmt). The home-entity stores skM . The public key is PKM .
Signature Algorithm. On input a message m, the user-entity computes τu, the signature of
the message m with the private key skmt. Then outputs σ = (τu, τ, pkmt). The current period
is explicit in the Merkle signature τ .
Verification Algorithm. On input a message m, a signature σ = (τ1, τ2, pk) and the public
key PKM , the verifier employs the multi-time verification algorithm for m and τ1 and then
the Merkle verification algorithm for τ2 and pk (MV er(pk, τ2, PKM )). The verifier accepts the
signature if both outcomes are true or rejects it in other case.
Key Update Algorithm. The user-entity deletes (pkmt, skmt). Then it computes a new
instance of the multi-time signature scheme, which will be denoted also by (pkmt, skmt), and
sends (r, pkmt) to the home-entity. The home-entity receives (r, pkmt), computes skM ← skM⊙r,
obtains τ (the signature of pkmt with SKM ), chooses a random r′ ∈ {0, 1}s and computes
skM ← skM ⊙ (r ⊕ r′). The home-entity returns (τ, r′) to the user-entity and deletes r and r′.
As in the key generation algorithm, the user-entity sets r← r⊕ r′ and stores (r, τ, pkmt, skmt).
The home-entity stores skM .

The number of periods will be the number of leaves in the Merkle tree. Each period consists
of a previously fixed maximal number of signatures instead of time.
The security of the proposed scheme. We have that at any period:

1. the information of the secret key in possession of the home-entity is skM , where skM =
SKM⊙ρt, SKM is the secret key of the instance of the underlying MSS and ρt is a random
value chosen by the user-entity and the home-entity for the period t.

2. the information of the secret key in possession of the user-entity is (ρt, τT , pkmt
T , skmt

T ),
where τt is the signature of pkmt

T by the home-entity, (pkmt
t , skmt

t ) is an instance of the
underlying multi-time signature scheme and ρt is the random value chosen by the user-
entity and the home-entity for the period t.

The MSS is existentially unforgeable under adaptive chosen message attacks. We suppose
that the underlying multi-time signature scheme is existentially unforgeable under adaptive
chosen message attacks. The proposed construction produces a scheme which is also existentially
unforgeable under adaptive chosen message attacks.

Suppose that an intruder obtains the secret of the home-entity at periods 1 ≤ α1 < · · · <
αa ≤ T and the secret of the user-entity at periods 1 ≤ β1 < · · · < βb ≤ T , where αi 6= βj ∀i, j.
We claim that the intruder cannot forge any signature for any period t, where t 6∈ {β1, . . . , βb}.
Note that the knowledge of skM = SKM ⊙ ρt without ρt does not reveal SKM for all t ∈
{α1, . . . , αa}. On the other hand, {(ρ, τβj

, pkmt
βj

, skmt
βj

)}bj=1 consists of Merkle signatures and
independent instances of the underlying multi-time signature scheme.

If both secrets from the home-entity and the user-entity are compromised at a same period,
then the key SKM is known. Recall that our version of the MSS is forward secure and therefore
our resulting scheme remains forward secure.

4



6 Conclusion

We presented a forward secure version of the MSS. We showed some estimates of the efficiency
of the first improvement to the MSS. We presented a signature scheme similar to the intrusion-
resilient ones. Instance of the MSS can be used in this new scheme as part of the multi-time
signature scheme. In this case, each instance of the MSS (one for the home-entity and another
for the user-entity) can employ the parameter N = 20 which allow 240 as maximum number of
possible signatures with a fast update process and a quite efficient signature calculation.

7 Acknowledgments

We would like to thank Johannes Buchmann, Evangelos Karatsiolis, Christoph Ludwig, and
Ulrich Vollmer for helpful comments and fruitful discussions.

References

[BY03] Mihir Bellare and Bennet Yee. Forward-security in private-key cryptography. In M. Joye, editor,
Topics in Cryptology - CT-RSA’03, Lectures Notes in Computer Science. Springer-Verlag, 2003.

[ISA] ISAAC. Indirection, shift, accumulate, add, and count. http://www.burtleburtle.net/bob/-
rand/isaacafa.html.

[Mer90] Ralph C. Merkle. A certified digital signature. In G. Brassard, editor, Advances in Cryptology

- CRYPTO’89 LNCS, volume 435. Springer-Verlag Berlin Heidelberg 1990, 1990.

[Ope] OpenSSL. Openssl project. http://www.openssl.org/.

A An improved Lamport-Diffie one-time Signature scheme

A improved version of the Lamport-Diffie one-time signature is given by Merkle in [Mer90].
In our experiments we have implemented our improved version of the Lamport-Diffie one-

time signature scheme. Suppose that H : {0, 1}∗ → {0, 1}s is a hash function and let s′′ be an

integer such that s′′ = ⌈s+3⌊log2 s⌋
2 ⌉

s s′ s′ s′

M = H(M) Z O T
M = H(M)‖Z‖O‖T , s′ = ⌊log2 s⌋.

Let M be a message. We represent H(M) as quits (quaternary digits) and let Z, O and
T be the corresponding bit string representation of the quantity of zeros, ones and twos in the
representation of H(M) as quits, respectively.
Deterministic key generator algorithm Gen. On input s and seed ∈ {0, 1}s, Gen sets
g−1 ← seed and computes (gi, xi)← prg(gi−1) 0 ≤ i < s′′. Gen outputs g = seed as the private
key and Y = H(H3(x0), . . . ,H

3(xs′′−1)) as the verifying key.
Signature algorithm Sig. On input a messageM and the private key g, Sig computes M =
m0 · . . . ·ms′′−1 as quits fromM. Sig outputs the signature τ = (Hm0(x0), . . . ,H

ms′′−1(xs′′−1)),
where xi is computed from g as in Gen for 0 ≤ i < s′′.
Verification algorithm V er. On input a message M, a signature τ ′ and a public key Y ,
V er computes M = m0 · . . . ·ms′′−1 as quits from M. Suppose that τ ′ = (z0, . . . , zs′′−1). V er

outputs true if Y = H(H3−m0(z0), . . . ,H
3−ms′′−1(zs′′−1)) and false otherwise.

5


