
The Workshop — Implementing Well Structured
Enterprise Applications

by the Example of Implementing the Key Authority
A. Wiesmaier, V. Karatsiolis, M. Lippert, J. Buchmann

Technische Universität Darmstadt, Department of Computer Science
Hochschulstr. 10, 64289 Darmstadt, Germany

[wiesmaie|karatsio|mal|buchmann]@cdc.informatik.tu–darmstadt.de

Abstract— We specify an abstraction layer to be used between
an enterprise application and the utilized enterprise framework
(like J2EE or .NET). This specification is called the Workshop.
It provides an intuitive metaphor supporting the programmer in
designing easy understandable code. We present an implementa-
tion of this specification. It is based upon the J2EE framework
and is called the JWorkshop. As a proof of concept we implement
a special certification authority called the Key Authority based
upon the JWorkshop. The mentioned certification authority runs
very successfully in a variety of different real world projects.

Index Terms— Designing Enterprise Applications, JWorkshop,
Key Authority, Understandable Software Design, Workshop

I. INTRODUCTION

The Key Authority (KA) is a special version of a certifica-
tion authority (CA). Among its tasks are signing certificates
and signing revocation lists. It is designed especially to enable
easy enforcement of secure key management in hierarchical
public key infrastructures (PKI). Due to this it has to provide
some more functionality than a usual CA. A detailed abstract
description of the KA and its functional demands is given in
[1]. In opposite to that, the paper on hand only deals with the
implementation and the non functional demands of the KA.

A KA software which is sold to many different customers
must be able to fulfill the various customer demands. This
means it must fit into and be usable within the particular
customer environment while fulfilling the customer demands.
Such KA software must be flexible in various ways:

Embedabilty: The KA must be adaptable to the existing
customer workflow and environment (and not vice versa).

Efficiency: The KA installation must be efficient regarding
to the customers use case. It must be able to do its work with
an adequate amount of resources.

Scalability: The KA installation must be able to scale with
the current load situation. If the amount of work rises it must
be possible to increase the power of the installation.

Compatibility: The PKI software must create its products
regarding to the customer wishes. This includes the utilized
cryptographic primitives, the compatibility to standards or
existing proprietary customer formats.

Functionality: The PKI software must offer exactly that
functionality which is demanded by the customer.

Security: The desired security level differs with the different
purposes of the various trust centers. It must be possible to
protect the system with an adequate level of security.

We decided to implement the KA as an enterprise applica-
tion. Programming enterprise applications is a substantial part
of today’s software development. This is supported by (usually
object oriented) technologies like .NET [2] or J2EE [3]. Those
frameworks provide a great help in developing software with
certain non functional demands. Those frameworks are quite
general. Usually enterprise applications are very big. It is a
hard and recurring task to develop a software architecture
which solves the assigned tasks with an easy understandable
code.

We have chosen the J2EE technology as basis for the KA
implementation. The need for an abstraction layer between
the KA implementation and the J2EE framework arose soon.
This gave the birth to the idea for the Workshop specification.
This paper reports about the Workshop specification, its J2EE
implementation called the JWorkshop and the implementation
of the KA upon it.

The next Section II shows which non functional demands on
the KA exist and explains their meaning in the context of KAs.
In Section III we explain how we designed the KA to fulfill the
mentioned non functional demands. Thereby we introduce the
Workshop specification and the JWorkshop implementation.
After that, in Section IV, we audit how the mentioned demands
are fulfilled by revealing some implementation details. Section
V gives some real life examples on existing KA installations
as a proof of concept. Finally, in Section VI, we conclude the
paper.

II. NON FUNCTIONAL DEMANDS

The topic of non functional demands is discussed since a
couple of years. In most cases they appear in the context of
so called enterprise applications. Those demands are usually
referred as “the ilities”. There are a couple of lists identifying
various ilities. Examples derive from the Reference Model
Extension Green Paper [4], the OMG–DARPA Workshop on
Compositional Software Architectures [5] or Filman’s Paper
Achieving Ilities [6].

Each list covers a different set of ilities. Some lists are very
short while others are very extensive. The definitions of the

2

individual ilities differ from list to list. Sometimes different
names are used for the same ility. In some cases an ility is
defined (or resolved) by a set of other ilities. Some of the
defined ilities are self-evident, like functionality.

Clearly, not all thinkable non functional demands regard the
KA. We are concerned with implementing and installing KAs
since a couple of years in many different projects. Thereby
we learned which demands are laid on a KA. Clearly those
demands differ between the various carriers and environments.
Below we list ilities for the KA that we have encountered.
Thereby we explain which meaning the individual ilities have
in the context of KAs. We do not claim that this is an
exhaustive list. We give an overview of the most important
ilities. Additionally, the criticality of the various ilities differs
from project to project depending on the customer wishes and
the purpose of the particular KA installation. Due to this the
criticality of ilities is not discussed here.

A. Explicit Ilities

A major part of the ilities where requested directly by the
customers. Others derived directly from the purpose of the
trust center respective from the environment where the KA
was installed.

1) Availability: The KA is the instance which signs the
issuer products. Thus, it should be available if a certification
has to be done. But the PKI will run onward correctly even if
the certification service might be unavailable for the moment.
The effect will be that no new users can join the PKI for
moment. But the KA must be high available for issuing
revocations. It must be possible to revoke certificates at any
time. Otherwise the correct function of the PKI is not given.

2) Configurability: It must be possible to configure the KA
instance to the actual desires. This includes static settings
which are done usually only at setup time. Those are the URL
of the database, the logging targets, the ports where additional
hardware is installed and so on. But this also includes dynamic
settings which may be regularly changed after setup time and
sometimes even at runtime. Examples among other things
are the log level and the applied cryptographic primitives
(see durability why). It depends on the security level and
the customer wishes which parameters shall remain (static or
dynamic) configurable after the initial setup.

3) Durability: It must be guaranteed that it is possible to
run the KA reasonably for a long time. The security of the PKI
depends largely upon the security of the underlying crypto-
graphic primitives. The research on cryptanalysis goes on and
the power of the computer systems increases. To reflect this,
e.g. the German Federal IT Security Agency suggests adequate
cryptographic algorithms and parameters regularly. The KA
must be able to follow those or similar recommendations and
therefore must support the usage of any current and future
cryptographic hardware, algorithm and parameter. Even the
implementations of the algorithms must be exchangeable, as
those could evolve as being weak, too. Durability here is the
ability to adapt to the foreseeable weakening of cryptographic
primitives by staying up–to–date in cryptographic progress.

4) Failover: Durability avoids security crashes by adapting
the system to ongoing security issues. Failover in contrast
means to be able to keep the system secure even if unforeseen
events occur. An example for this occurred recently. The
widespread hash algorithm SHA1 evolved as being weaker
than assumed [7]. The KA has to offer a fail safe concept
which avoids a security crash if an algorithm, the parameters,
the implementation or an individual key evolves as being
insecure while in use. Failover here is the ability to survive a
sudden break of cryptographic primitives.

5) Interoperability: The KA has to be able to conform
to standards. On the one hand this means the KA must be
able to conform to the given international standards. This
ensures the interoperability within an international context.
But on the other hand this means the KA must be able
to conform to proprietary formats which are already used
in the target environment. Even if this means to contravene
international standards. This ensures the interoperability with
existing special customer software.

6) Manageability: In order to preserve the ease of use the
KA must be manageable from a centralized point. This means
starting, stopping, setting parameters or just inspecting the
state of the software can be done form a dedicated single user
interface. A centralized management also avoids errors with
unequal parameter values in different modules of the KA.

7) Modularity: In some cases (we had such cases in real
projects) the various tasks of the KA have to be executed at
completely different places. For example imagine a company
running a TC. For sufficient protection of the issuer private
keys and high availability of certification and revocation ser-
vices the major part of the TC is hosted at the computer center.
But due to organizational reasons it is better to personalize the
hard tokens at the respective staff departments. Thus the KA
must be able to be partitioned into autonomous but cooperating
sub applications.

8) Performance: It must be guaranteed that the system
responds in the given time intervals. This demand must be
met with an adequate amount of hardware. Some installations
are low capacity systems which have to issue only a few
certificates a year. An example for this is a national root
CA. Others are high capacity systems which have to issue
thousands of certificates a day and answer to millions of OCSP
[8] requests. Web mail providers might run such systems.
Surely it is not economic to setup a high capacity KA for
low capacity purposes. And clearly it is not a good idea to
setup a low capacity KA for high capacity purposes.

9) Reliability: The functionality and the security of the
system must be guaranteed. In some cases they even have
to be proven. Examples for this are systems for national root
CAs. The European directive on digital signatures demands
such systems to be highly evaluated.

10) Retracability: The KA is an application which is (usu-
ally) used for high secure purposes. Thus it must be possible
to retrace all actions. E.g. it must be discoverable who the
doer of an action was or when an action did take place.

11) Robustness: The KA must cope with incorrect appli-
cations, crashing systems and other error situations which
might occur. Either the KA must be able to repair such error

3

situations or go to a safe state if the correct functionality can
not be further guaranteed. This is even more important when
the KA is physically shielded from the outer world and has
to run a long time behind closed doors. See the TrustSuite
project [9] for an example of this.

12) Scalability: An existing KA installation may have to
deal with different load demands. Imagine a company. In nor-
mal case the KA has to produce certificates for new employees
or recertify expired keys. In addition some revocations have
to be done. Let’s say this is the normal load level. But what
when a new department is to be integrated into the PKI? Or if
the underlying cryptographic algorithms or parameters evolve
as weak? In these cases thousands of keys and certificates have
to be produced within a short period. This means the load is
many times over the normal level. It is not economic to run a
high capacity KA the whole time and have the load on a very
low level almost all the time. Thus the KA should run in an
adequate low capacity mode normally. But if it is necessary
to run the KA in a high capacity mode this must be possible.

13) Security: For the KA security means that the access
policy is enforced. It must not be possible to gain unauthorized
access to the system. Clearly, this means that only authorized
personnel is allowed to operate the KA. But this also means
that the communication within the KA modules and the
other trust center components have to be shielded against
unauthorized access. And it means that the KA software and
the configuration files have to be shielded against unauthorized
access. See [1] for more details on the KAs security.

B. Implicit Ilities

The non functional demands mentioned in this Section do
not derive directly from customer requests or purposes of the
installed TCs. They derive from the fact that different carriers
have different demands. Thus, the end users don’t care about
them but they are very precious for the developers.

1) Adaptability: The functional and non functional de-
mands differ from project to project. Each customer has his
own set of demands and particularities. Over the time a lot of
implemented functionalities and ilities will be accumulated.
The KA software must be designed in a way that it is easy
to enable those of them which are needed in the current
project, and disable the other ones. Examples are the utilized
cryptographic primitives (as RSA or ECDSA), the supported
standards (as X.509 or ISIS–MTT), the performance (as high
or low capacity), the produced tokens (as chip cards or
PKCS#12 files) and more.

2) Embedabilty: The KA is a part of a cooperation of PKI
modules. It receives its applications from somewhere, sends
its products elsewhere and is operated by someone. The TC is
probably installed in an existing or predefined organizational
environment. Thus, the KA must be able to be embedded in
and deal with arbitrary workflows. This means for example
the KA must be able to interact with different kinds of data
import, data export and user interaction.

3) Extensibility: The field of PKI is not static. New stan-
dards appear or new cryptographic hardware is developed. A
variety of new mechanisms can be expected for the future. And

with this a lot of new functional demands from the customers.
It is similar with the ilities. New projects might bring new
non functional demands with them. It must be easy to extend
the KA by functional and non functional demands. In favor
without changing the existing code.

4) Maintainability: The software has to be maintained. It
must be able to fix existing bugs, or adapt the system to new
circumstances. It is important that the code is understandable.
Not only for the actual programmer but for all programmers
which might have to change the code.

5) Platform independence: Another demand is the ability
to run on different platforms. On the one hand this means
the KA must be able to run on various operating systems,
with various data bases or application servers. We experienced
that the customers mostly want the trust center to run on the
systems they are already familiar with. On the other hand this
means the KA must be able to deal with various cryptographic
hardware types. The customers have different claims regarding
e.g. the chip cards or cryptographic cards to be utilized.
This depends on the desired security level and the field of
application.

III. DESIGN

A KA which is able to meet the various demands (as
required by the respective customer) must be designed very
flexible. See Section I for details on the flexibility. This Section
explains the design basics of the KA implementation.

A. J2EE

The KA is programmed in pure Java [10] and utilizes
features from J2EE technology, mainly the Enterprise Java
Beans (EJB) [11]. While rendering the design for the KA
we realized that building the software directly upon the EJB
framework would have two disadvantages.

Firstly, the EJB specification is far too general. It leaves the
programmer too much space for implementing things. There is
nothing like the standard way to implement a component and
then plug it into the existing application to cooperate with
the existing components. Having many programmers at the
project would lead in having many different interfaces and
particularities.

Secondly, the EJB technology lacks an intuitive metaphor.
It does not support a program structure which can be easily
surveyed. Dealing with the raw Java Beans is uncomfortable.
They coexist more or less unorganized side by side and it is
not easy to see on the first view which of them cooperate and
how they do this.

Thus we decided to specify an abstraction layer which
solves the mentioned problems. This specification is explained
in the next Subsection.

B. The Workshop

The Workshop is a general specification for an abstraction
layer between an enterprise application and the underlying
enterprise framework. We kept the specification free from
J2EE specific attributes in order to be able to also use it with
other enterprise frameworks.

4

The basic idea is to allow a task to distribute itself instead of
forcing its distribution from outside. Each task is implemented
as a special class, and is processed by the object flow principle.
This means the environment offers suitable workplaces and
the task object visits them one by one to fulfill its task.
Applications built upon the Workshop will be scalable, fault
tolerant and dynamically extendable.

Worker
X

Exit
F

Bench
D

Bench
C

S
Stock

A
Entrance

Fig. 1
THE WORKSHOP ARCHITECTURE

Figure 1 shows an overview scheme of the Workshop.
An application programmed upon the Workshop follows
the metaphor of a worker in a workshop known from the
real world. A Worker enters the Workshop through an
Entrance. The Worker wants to process a work piece that
he has brought with him or which he has fetched from the
Stock. He roams to several Benches to perform his job. The
Worker knows exactly which sub-operations are to be done in
which order and on which Bench. He is also responsible for
a correct exception handling and knows what to do in case of
an error. If he needs additional material he fetches it from the
Stock. Salvageable items are stored in the Stock. Finally
he leaves through an Exit.

To scale the Workshop one can add new instances of the
existing Benches (on additional hardware) to discharge the
existing ones. Or remove redundant instances (and hardware)
if the load is low. Adding redundant Benches on additional
hardware also makes the system tolerating a drop out of a
node. This workflow also enables the dynamic extension of
the system, as it is possible to add entirely new Workers
and Benches.

A Worker knows exactly what task it has to

Worker

X

fulfill, how this is done and which Benches it
needs for that. Each Worker instance bears the
sole responsibility for the correctness of its process,
including a correct exception handling. In order to

adjoin a brand new task to the system (that means extending
the system) a new Worker type is implemented which
performs the new job. Sometimes it may then be necessary
to implement a new Bench (this will be explained in the
following paragraph). The existing Worker types can persist
absolutely untouched. If multiple Workers are in the system
at the same time, they can work in parallel (if they find free
Benches). One Worker can use at most one Bench at a
time.

Benches act as the necessary work places where
Bench

C

the Workers do their work. Thereto the Benches
provide a suitable environment and proper tools for
the Workers. There must be a convenient Bench
for each operation a Worker has to do. If the
system is extended by a new Worker type it may

be necessary to implement a new Bench type. The Bench
types which are already available are not affected by the new
type. There must be at least one instance of each Bench type
needed by the Workers to provide all necessary work places.
One Bench can be used at most by one Worker at a time.
Multiple Benches available at the same time enable multiple
Workers to work in parallel.

Entrances provide the way to bring Workers

Entrance
A

into the Workshop. By conception they stand be-
tween the outside and the inside of the system.
The Entrance receives the necessary data from
the outside of the system, checks and interprets it
and instantiates an appropriate Worker. Thus, a

Worker’s initial station is always an Entrance; from there
the Worker starts its journey through the system. If a new
kind of import is required a new Entrance type has to be
implemented. The preexisting Entrances are not influenced
by this. It is possible to have multiple Entrances (of the
same type or of different types) in the system at the same
time. A system must have at least one Entrance running at
a time to be able to import Workers.

Similar to the Entrances the Exits live on the
Exit

F

border of the inner to the outer of the system. They
enable the Workers to leave the system when they
have finished their work. Leaving here means for
a Worker to be destructed and converted into a
proper export data format. For adding a new form

of export one has just to implement a new type of Exit. The
remaining Exits are not affected by this. It is possible to
have multiple Exits (of the same type or of different types)
in the system at the same time. It is necessary to have at least
one Exit in the system to enable the Workers to leave the
system.

The Stock is a central point in the Workshop. It

Worker
X

Exit
F

Bench
D

Bench
C

S
Stock

A
Entrance

provides a possibility for the Workers to fetch
materials from or respectively leave things in the
system. There should be always one Stock in a
system to provide the Workers a means to request,

fetch, leave or exchange data. A system might have different
types of Stocks for storing different materials. Having
multiple instances of the same Stock in a system requires
some kind of synchronization between them but enables fault
tolerance.

C. The JWorkshop

The JWorkshop (JWS) is an implementation of the
Workshop specification based on the J2EE technology. The

5

JWS is a general framework and is kept free from KA
specific attributes in order to be able to implement arbitrary
applications upon it.

To implement the JWorkshop we implemented Enterprise
JavaBeans for all Workshop entities (Workers, Benches, ...).
When implementing a concrete application one has just to add
the desired functionality to the respective classes.

Workers and Stocks are implemented as Entity–Beans. It is
possible to have them persistent in the database. Benches, En-
trances and Exits are Stateless–Session–Beans. The Workers
find their Benches by looking them up in the JNDI–Tree.

Of course it is possible to also implement other kinds
of JavaBeans for the Workshop entities. E.g. it might be
reasonable to implement a Bench as a Stateful–Session–Bean
or even as an Entity–Bean. But up to now we did not face a
situation where we need this.

We will see in the next Section how the KA is implemented
upon the JWS. By this we will get a better understanding how
the JWS framework works.

We have another implementation of the Workshop which is
based on the JINI [12] technology. Currently we are about to
implement a version based upon plain Java. These are out of
the scope of this paper and are not further mentioned.

D. The Key Authority

The KA was build upon the JWS framework. To explain
the implementation of the KA we take a look at an exemplary
procedure. We show step by step what happens in the KA
when it generates an RSA [13] key pair, produces a respective
X.509 certificate [14] and finally makes a PKCS#12 [15] token
out of them. As the KA is offline, the communication is done
by exchanging ITP–Messages [16] in files.

A special Entrance, called ITP–Entrance is scanning the
respective directory for ITP files from the Registration Au-
thority (RA). When a file is found the ITP–Entrance verifies
its signature. If the signature is valid and from an authorized
entity the ITP–Entrance reads and interprets the contained
data. If the data is sound the ITP–Entrance instantiates an
appropriate Worker and releases it to the system. Due to the
kind of application in our case this is a PKCS12–Worker.

The PKCS12–Worker knows exactly what to do and which
Benches it needs. The Worker holds a password for the
PKCS12 token and a raw X.509–Certificate where the RA
already filled in the user data. To generate the key pair the
Worker must go to a RSA–Bench. It finds one by searching
in the JNDI tree and goes there.

The RSA–Bench is a facade for a PCI crypto card which is
able to generate secure RSA key pairs. The Worker requests
a key pair from the RSA–Bench. This request is forwarded
by the RSA–Bench to the underlying crypto hardware. The
hardware generates the key pair and hands it over to the RSA–
Bench. The Bench gives the key pair to the Worker. Having
this, the Worker wanders to the Issuer–Bench.

The Issuer–Bench is a facade for the smart card containing
the issuer private key. The PKCS12–Worker gives the raw
certificate (now containing the public key) to the Issuer–Bench
and requests a signature. The Bench checks the issuer name

and completes the certificate with a valid serial number. Then
it sends the certificate to the smart card for being signed.
Having it back the Bench passes the signed certificate back
to the PKCS12–Worker. Now the Worker has to get to the
PKCS12–Bench.

The PKCS12–Bench offers services for creating PKCS#12
tokens. The Worker gives the key pair, the certificate and
the password to the Bench. The Bench produces a PKCS#12
structure containing the key pair and the certificate and secures
it with the given password. The created structure is given
back to the Worker. Now the Worker has finished its job and
searches an Exit.

Arrived at the ITP–Exit the Worker is destroyed and its data
is extracted and packed into an ITP structure. The data consists
of the created PKCS#12 structure and some meta data about
the process. Finally the Exit sings the ITP structure and saves
it as a file in the appropriate directory.

IV. AUDIT

This Section shows how the various ilities are fulfilled by
our design and its implementation.

A. Explicit Ilities

1) Availability: The availability is realized by realizing the
ilities robustness, performance and security.

2) Configurability: The application server provides a means
to deal with configuration files. This is utilized. In addition it
is possible to access those properties via the Java Management
Extensions (JMX) [17]. We paid attention to use property
variables instead of hard coded values at all reasonable places.

3) Durability: The flexibility in selecting cryptographic
algorithms together with their providers is achieved by using
the Java Cryptography Extension (JCE) [18]. This is the very
purpose of the JCE framework.

4) Failover: The insecurity of ciphers (respective signa-
tures) created with insecure keys or algorithms must be
avoided. This can be achieved by applying multiple encryp-
tions (respective signing) to the data. This is the topic of S.
Maseberg’s PhD thesis [19]. The KA supports this technology.

5) Interoperability: There are some default Workers which
support common standards like X.509 certificates or revocation
lists. Special wishes are implemented in dedicated Workers.
The JWS concept makes it possible to conform to any standard
or non standard formats.

6) Manageability: This is solved by utilizing the JMX
technology. Therefor our code just has to accord to the M–
Bean specification. As this is related to the EJB specification
this is nearly for free. All the environmental tasks regarding
the management are solved by the JMX framework.

7) Modularity: The application server is able to run in
clustered mode. The server cares for transparency of dis-
tribution by hiding this fact from the enterprise beans. By
deploying certain Workers and Benches on certain machines
the partitioning is realized.

6

8) Performance: Again the application server solves this
problem. High capacity systems are installed on clustered
application servers with many instances of the respective
Workers and Benches. Low capacity systems run on single
machines.

9) Reliability: The JWS design enables an easy testing
and an easy evaluation of the system. It splits the system
in small functional parts. It is easy to test the whole system
or only certain parts of it (e.g. testing of new Benches
by implementing special Test–Workers). This can even be
done with the productive installations at the customer’s side.
Additionally it is easy to evaluate the desired parts while
ignoring the undesired ones. We experienced this while the
system was evaluated to CC EAL 3 augmented.

10) Retracability: This is solved by implementing log
messages. This is done utilizing the Log4J [20] technology.
It is possible to configure various log levels and log formats.
All the environmental tasks regarding the logging are solved
by the Log4J framework.

11) Robustness: Software errors are handled by the indi-
vidual Worker coping with the erroneous task. This is done
by using the exception handling technology included in the
Java language. Hardware errors are handled by the application
server. In clustered mode the server is able to incorporate
suitable failover mechanisms.

12) Scalability: This is also a task for the application
server. While running in clustered mode it is possible to add
and remove hardware dynamically. Workers and Benches can
be deployed and undeployed dynamically, too.

13) Security: Access control and secure communications
are realized using an internal PKI. Each operator and module
the KA communicates with is provided with a key pair and a
certificate. It is possible to let an electronic watchdog scan the
executables and configuration files for unauthorized access.
It is also possible to run the KA in offline mode. Further
the operating system can be used to restrict access to the
software. Clearly, the physical shielding has to be done by
the physical environment. As the security requirements are
different in each scenario we need the implicit ility adaptability
to realize security.

B. Implicit Ilities

1) Adaptability: This demand is met by JWS design. Set-
ting up the desired functionalities means deploying respective
Workers and Benches.

2) Embedabilty: This is solved by the JWS design. By de-
ploying the respective Entrances and Exits the data import and
export can be adapted to all desired formats. Suitable Workers
and Benches enable the generation of suitable products. By
partitioning the system it is possible to run the desired services
at the desired locations.

3) Extensibility: This is also solved by the JWS design. Ex-
tending the system means implementing new types of Workers
and Benches. The existing code can remain untouched.

4) Maintainability: As the JWS design is very intuitive it
eases the maintenance of the code. It is easy for programmers
to understand the structure of the code. As the code is split into

many small blocks, it is easy to fix errors in buggy modules
while leaving the correct blocks untouched.

5) Platform independence: This demand is solved by the
Java programming language. Java programs are platform inde-
pendent. Further there is a variety of Java APIs for connecting
to various services or hardware in a platform independent man-
ner. Examples for this are the JDBC architecture for database
access or the PKCS#11 standard for accessing cryptographic
tokens.

V. PROOF OF CONCEPT

We present details from some real world projects where
the KA is used. We mention some notably facts about the
KA in the respective projects. Those examples show that the
software is used in very different environments and for very
different purposes. Thus, our concept proved to be proper and
successful.

The KA was developed in an academic environment. We
added or removed some experimental features sometimes. Ca-
sually we exchanged one technology with another one. Clearly
the software grew over the time and the former versions are
less complete than the later ones. Thus, the mentioned projects
do not use the very same version of the KA.

A. Project RegTP

In this project we had to develop the overall system for
the new German national root CA. This included the design
and the implementation of the workflow, the software, the
hardware, the environmental issues and the organizational
issues. The TC is hosted at the German Regulatory Authority
for Telecommunications and Posts (RegTP). As this TC is the
root for legally binding digital signatures in Germany it is a
really high secure application. See [21] for the TCs homepage.

• The system uses two instances of the KA. One is for
certification only (CertKA), the other one for revocation
only (RevoKA). They operate absolutely independent
from each other.

• Both have their respective signature key on chip card.
• For key generation a high evaluated third party key

generator is used.
• It is a low capacity system. They issue about 10 certifi-

cates a year.
• The products conform to the ISIS–MTT standard respec-

tive the appendant SigG–Profile.
• The whole system runs in a strongroom which was build

especially for that purpose.
• The system was evaluated to CC EAL 3 augmented. The

strength of the established security mechanisms is “high”.
Details for this can be found in [22].

• The system is able to host multiple issuers. Thus, it is
possible to additionally act as national root CA for foreign
countries.

B. Project JLU

The Justus Liebig University (JLU) of Giessen issues cer-
tificates to all students. Again we had to develop the overall

7

system, but we had some stringent demands on the workflow.
This is a system with medium security settings. The respective
homepage can be found at [23].

• The certification and the revocation are done with one
KA using the same key.

• The KA is online and is hosted in the rooms of the
computing center.

• The issuer key is on a chip card.
• The TC issues chip cards with pre–produced keys. The

KA just certifies the public keys.
• It is a high capacity installation. They issue about 40.000

certificates a year. By using an automatic chip card
personalization device it is possible to personalize 500
chip cards a day (8 hours).

C. Project RBG

The department of computer science of Technische Univer-
sität Darmstadt (RBG) issues certificates to all students and
staff members of the department. We developed the overall
system. It is a system with low security settings. This KA is
based on the JINI version of the Workshop. The homepage of
this trust center can be found in [24].

• Certification and revocation are done by the same KA
with the same key.

• The KA is online and hosted in the rooms of the com-
puting center.

• The issuer key is stored in a soft token.
• The key pairs are generated by the KA in software.
• The KA issues soft tokens.
• The KA runs in partitioned mode. The Entrance and the

Exit run on the same machine as the RA. This machine
is online. The Benches run on a separate machine with
dedicated connection to the RA machine.

• This makes the KA running in a semi online mode.
• It is a medium capacity installation. They issue about

1500 certificates a year.

VI. CONCLUSION

While designing the KA it arose that the J2EE framework
lacks a metaphor for implementing applications in an intuitive
and easy understandable way. In order to fill this gap we
specified a suitable abstraction layer called Workshop. This
specification is free from J2EE specific attributes and thus
can also be used with other enterprise frameworks like .NET.
Usage of the Workshop allows the programmer to utilize
all services of the underlying system while even providing
simplified access to ilities like Embedabilty or extensibility.
The introduced metaphor is that of a real world Workshop.
The Workers travel from Bench to Bench to fulfill their tasks.
They bear the whole responsibility for the correctness of their
work respective a for suitable error handling.

We implemented an instance of the Workshop upon the
J2EE technology. The result is a framework called the
JWorkshop. It is free of KA specific attributes. This en-
ables the programming of arbitrary applications based on
the JWorkshop. As a proof of concept we showed how we
implemented the KA upon the JWorkshop. Using this example

we demonstrated how the JWorkshop can be used to fulfill the
KAs special demands. We saw that the Workshop metaphor at
some points supports the realization of the mentioned explicit
ilities. The major advantage of the Workshop is the support
of the mentioned implicit ilities. Implementing enterprise ap-
plications upon the Workshop leads to an easy understandable
code. Among other things this code is easily maintainable,
easily adaptable and easily extensible.

REFERENCES

[1] A. Wiesmaier, M. Lippert, and E. Karatsiolis, “The Key Authority —
Secure Key Management in Hierarchical Public Key Infrastructures,”
in Proceedings of SAM’04. CSREA Press, June 2004, pp. 89–93,
http://de.arxiv.org/abs/cs.CR/0410024 (27 Apr. 05).

[2] Microsoft Corporation, “Microsoft .NET Homepage,” http://www.
microsoft.com/net/ (09 Jun. 2005).

[3] Sun Microsystems, “Java 2 Platform, Enterprise Edition (J2EE),” http:
//java.sun.com/j2ee/index.jsp (09 Jun. 2005).

[4] K. Tyson, “Reference Model Extension Green Paper,” Object Man-
agement Group, Object and Reference Model Subcommittee of the
Architecture Board, OMG Document Number ormsc/98-05-02, 1998.

[5] C. Thompson, “OMG–DARPA Workshop on Compositional Software
Architectures,” Workshop Report, Monterey, California, January 6-8,
1998, 1998.

[6] R. Filman, “Achieving ilities,” Workshop on Compositional Software Ar-
chitectures, Monterey, California, 1998, ttp://www.objs.com/workshops/
ws9801/papers/paper046.doc.

[7] X. Wang, Y. L. Yin, and H. Yu, “Collision Search Attacks on SHA1.”
Feb. 2005, http://theory.csail.mit.edu/∼yiqun/shanote.pdf (27 Apr. 05).

[8] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams, “X.509
Internet Public Key Infrastructure Online Certificate Status Protocol -
OCSP,” IETF Request For Comments, vol. 2560, 1999, http://www.ietf.
org/rfc/rfc2560.txt (27 Apr. 2005).

[9] Tüv Süd, “TrustSuite,” http://www.tuev-sued.de/industrial services/
plant engineering/tbeylenlmpdm.asp (09 Jun. 2005).

[10] Sun Microsystems, “Java Technology,” http://java.sun.com (09 Jun.
2005).

[11] ——, “Enterprise JavaBeans Technology,” http://java.sun.com/products/
ejb/index.jsp (09 Jun. 2005).

[12] ——, “Jini Network Technology,” http://www.sun.com/software/jini/ (09
Jun. 2005).

[13] RSA-Labs, “PKCS #1: RSA Cryptography Standard,” http://www.
rsasecurity.com/rsalabs/node.asp?id=2125 (09 Jun. 2005).

[14] R. X. ITU-T, “Information Technology – Open Systems Interconnection
– The Directory: Authentication Framework,” August 1997.

[15] RSA-Labs, “PKCS #12: Personal Information Exchange Syntax Stan-
dard,” http://www.rsasecurity.com/rsalabs/node.asp?id=2125 (09 Jun.
2005).

[16] V. Karatsiolis, M. Lippert, A. Wiesmaier, A. Pitaev, M. Ruppert,
and J. Buchmann, “Towards a Flexible Intra–Trustcenter Management
Protocol,” in the Third International Workshop for Applied PKI (IWAP),
2004, http://www.arxiv.org/abs/cs.CR/0411067.

[17] Sun Microsystems, “Java Management Extensions (JMX),” http://java.
sun.com/products/JavaManagement/ (09 Jun. 2005).

[18] ——, “Java Cryptography Extension (JCE),” http://java.sun.com/
products/jce/index.jsp (09 Jun. 2005).

[19] S. Maseberg, “Fail–Safe–Konzept für Public–Key–Infrastrukturen,”
Ph.D. Thesis; Technische Universität Darmstadt, 2002.

[20] The Apache Software Foundation, “Log4j Project,” http://logging.
apache.org/log4j (09 Jun. 2005).

[21] The Regulatory Authority for Telecommunications and Posts,
“Electronic Signature,” http://www.tuev-sued.de/industrial services/
plant engineering/tbeylenlmpdm.asp (09 Jun. 2005).

[22] A. Wiesmaier M. Lippert, V. Karatsiolis, G. Raptis, and J. Buchmann,
“An Evaluated Certification Services System for the German National
Root CA — Legally Binding and Trustworthy Transactions in E–
Business and E–Government,” in Proceedings of EEE’05, June 2005,
http://www.arxiv.org/abs/cs.CR/0411065.

[23] Justus-Liebig-Universität Giessen, “Chipkarten–Zertifizierungsinstanz
der Universität Giessen (UniGI–CCA),” http://www.uni-giessen.de/hrz/
unigi-ca/cca.html (09 Jun. 2005).

[24] Technische Universität Darmstadt, “RBG CA,” https://cert-ra.rbg.
informatik.tu-darmstadt.de/index.html (09 Jun. 2005).

http://de.arxiv.org/abs/cs.CR/0410024
http://www.microsoft.com/net/
http://www.microsoft.com/net/
http://java.sun.com/j2ee/index.jsp
http://java.sun.com/j2ee/index.jsp
ttp://www.objs.com/workshops/ws9801/papers/paper046.doc
ttp://www.objs.com/workshops/ws9801/papers/paper046.doc
http://theory.csail.mit.edu/~yiqun/shanote.pdf
http://www.ietf.org/rfc/rfc2560.txt
http://www.ietf.org/rfc/rfc2560.txt
http://www.tuev-sued.de/industrial_services/plant_engineering/tbeylenlmpdm.asp
http://www.tuev-sued.de/industrial_services/plant_engineering/tbeylenlmpdm.asp
http://java.sun.com
http://java.sun.com/products/ejb/index.jsp
http://java.sun.com/products/ejb/index.jsp
http://www.sun.com/software/jini/
http://www.rsasecurity.com/rsalabs/node.asp?id=2125
http://www.rsasecurity.com/rsalabs/node.asp?id=2125
http://www.rsasecurity.com/rsalabs/node.asp?id=2125
http://www.arxiv.org/abs/cs.CR/0411067
http://java.sun.com/products/JavaManagement/
http://java.sun.com/products/JavaManagement/
http://java.sun.com/products/jce/index.jsp
http://java.sun.com/products/jce/index.jsp
http://logging.apache.org/log4j
http://logging.apache.org/log4j
http://www.tuev-sued.de/industrial_services/plant_engineering/tbeylenlmpdm.asp
http://www.tuev-sued.de/industrial_services/plant_engineering/tbeylenlmpdm.asp
http://www.arxiv.org/abs/cs.CR/0411065
http://www.uni-giessen.de/hrz/unigi-ca/cca.html
http://www.uni-giessen.de/hrz/unigi-ca/cca.html
https://cert-ra.rbg.informatik.tu-darmstadt.de/index.html
https://cert-ra.rbg.informatik.tu-darmstadt.de/index.html

	Introduction
	Non Functional Demands
	Explicit Ilities
	Availability
	Configurability
	Durability
	Failover
	Interoperability
	Manageability
	Modularity
	Performance
	Reliability
	Retracability
	Robustness
	Scalability
	Security

	Implicit Ilities
	Adaptability
	Embedabilty
	Extensibility
	Maintainability
	Platform independence

	Design
	J2EE
	The Workshop
	The JWorkshop
	The Key Authority

	Audit
	Explicit Ilities
	Availability
	Configurability
	Durability
	Failover
	Interoperability
	Manageability
	Modularity
	Performance
	Reliability
	Retracability
	Robustness
	Scalability
	Security

	Implicit Ilities
	Adaptability
	Embedabilty
	Extensibility
	Maintainability
	Platform independence

	Proof of Concept
	Project RegTP
	Project JLU
	Project RBG

	Conclusion
	References

