
ECDSA and QUARTZ in Comparison with RSA

Patrick Lieb1, Markus Schmidt1, and Alex Wiesmaier1,2,3

1 TU Darmstadt
2 AGT International

3 Hochschule Darmstadt

Abstract. Standard digital signature schemes like RSA cannot be used
in IoT. This work investigates two algorithms, ECDSA and QUARTZ;
that are supposedly suitable for resource-constrained devices. In addi-
tion, the German variant ECGDSA and the Korean variant ECKCDSA
are evaluated.

Keywords: ECDSA, ECGDSA, ECKCDSA, QUARTZ, RSA, IoT

1 Introduction

Digital signature algorithms are cryptographic algorithms that are supposed
to provide data authenticity, integrity and non-repudiation. RSA is the most
common standard for asymmetric encryption and decryption, as well as for sign-
ing and verifying. However, the RSA signature scheme is unsuitable for use in
lightweight devices with low bandwidth, low computing power and little memory.
In Section 3, an examination of ECDSA is shown together with its two variants
ECGDSA in Section 3.3 and ECKCDSA in Section 3.3, containing an analysis
of its security in Section 3.4. In Section 4, QUARTZ is presented, containing
an analysis of its security in Section 4.4. The Sections 3.6 and 4.6 are dealing
with the comparison between RSA and ECDSA and QUARTZ, respectively.
The advantages and disadvantages of ECDSA and QUARTZ are shown as well
as suitable areas of application are given in Section 5.

2 Related Work

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a very well known
algorithm that has already been investigated in a few papers. An important
introduction to elliptic curve cryptography is given by Hankerson et al. [17]
with their ”Guide to Elliptic Cryptography”. The elliptic curve digital signature
algorithm ECDSA was originally presented by Johnson et al. [22]. In addition,
similar variants have been introduced such as the ECGDSA by Hess et al. [19]
and the BSI [4]; or ECKCDSA that was introduced by Lim et al. [26]. Vaudeny
[40] performed an extensive security evaluation of ECDSA. A good comparison
of ECDSA and ECGDSA is given by Sarath et al. [37]. However, there is no
paper that examines ECDSA, including its variants ECGDSA and ECKCDSA,
that considers an evaluation of security and performance.

2 ECDSA and QUARTZ vs. RSA

The QUARTZ signature scheme was originally described by Courtois et
al. [33] and later updated [9], targeting performance issues. In addition to the
description, there is a categorization of attacks and performance data. An im-
portant examination of the impact of the perturbation operations ”v” and ”-” on
basic HFE and an implicit security analysis on QUARTZ is given by Courtois et
al. [8]. Ding et al. [11] introduced the GUI signature scheme, an improvement of
QUARTZ also based on HFEv-. Additionally, QUARTZ and its underlying ba-
sics are well described and a comparison of GUI, QUARTZ and RSA is presented.
Other signature algorithms based on HFE are GUI, SFLASH or PFLASH.

Tame Transformation Signatures, introduced as TTS, that are based on the
tame transformation method [6], belong to the extended family of successors of
the Matsumoto-Imai signature scheme C*.

The balanced and unbalanced Oil and Vinegar signature schemes are based
on multivariate polynomials over a finite field. Principles of this signature scheme
are used in QUARTZ for the perturbation operation ”v”. The Rainbow signature
scheme [12] describes a generalization of the Oil-Vinegar signature scheme.

3 Elliptic Curve Digital Signature Algorithm ECDSA

Elliptic curve cryptography was independently invented by Victor Miller [29]
and Neal Koblitz [25], in 1985 and 1987 respectively. The security of elliptic
curve cryptography is based on the elliptic curve discrete logarithm problem
ECDLP. The elliptic curve digital signature algorithm ECDSA is a variation of
DSA. However, unlike DSA it is based on elliptic curves. It was first approved
by ANSI in 1999 and later also accepted by IEEE and NIST. Over the years it
has gained in popularity, especially for resource-constrained devices.

In order to explain the mechanisms of ECDSA, it is first necessary to explain
the mathematical principles of elliptic curves.

3.1 Elliptic Curves Over Finite Fields

Elliptic curve cryptography is based on elliptic curves over finite fields. A finite
field is defined as a finite set of elements Fq. The order q of Fq describes the
number of elements in Fq. An elliptic curve E over a field Fq is a cubic curve
that is defined by the Weierstrass Equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 , (1)

with a1, a2, a3, a4, a6 ∈ Fq and ∆ 6= 0, where ∆ describes the discriminant of E.
The discriminant ∆ is given by the following equation:

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6 , (2)

ECDSA and QUARTZ vs. RSA 3

with

b2 = a21 + 4a2 ,

b4 = 2a4 + a1a3 ,

b6 = a23 + 4a6 and

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24 .

There are three different types of curves that are used in ECDSA [22]; elliptic
curves over prime fields, elliptic curves over binary fields and Koblitz curves.

Elliptic Curves over Prime Field Fp. A field of odd prime order q = p
with p > 3 is called prime field Fp. In general, the Weierstrass Equation can
be simplified if the characteristic of a field is not equal to 2 or 3. Since prime
fields are satisfying this condition, the elliptic curve E over prime field Fp can
be simplified to

E : y2 = x3 + ax+ b where a, b ∈ Fp and 4a3 + 27b2 6≡ 0 (mod p) . (3)

The elliptic curve E(Fp) is defined by all points (x, y) with x, y ∈ Fp that satisfy
(3). The term 4a3 + 27b2 is based on the discriminant of E(Fp) that can be
specified as ∆ = −16(4a3 + 27b2). Based on the definition of elliptic curves, ∆
must not be 0. The special point O is denoted as point of infinity.

Elliptic Curves over Binary Field F2m . A field of characteristic equal to 2
is called binary field, or characteristic two finite field F2m with m labeled as the
extension degree of the field. Since the characteristic of F2m is equal to 2, the
elliptic curve E over binary field F2m can be described by

E : y2 + xy = x3 + ax2 + b where a, b ∈ F2m and b 6= 0 . (4)

The finite set of elements E(F2m) is defined by all points (x, y) with x, y ∈ F2m

that satisfy (4). The special point O is again denoted as point of infinity.

Koblitz Curves. In addition, there is a special type of elliptic curves over
binary fields called Koblitz curves [25], or binary anomalous curves. These curves
are also defined over F2m but a and b have to be either 0 or 1. Since (4) defines
that b must not be 0, these curves can be described by the following equation:

Ea : y2 + xy = x3 + ax2 + 1 where a ∈ {0, 1} . (5)

Koblitz curves have an important property: If the point (x, y) ∈ Ea with a ∈ 0, 1,
then the point (x2, y2) ∈ Ea. Based on this, the cost of point doubling can be
reduced to almost zero.

4 ECDSA and QUARTZ vs. RSA

Table 1. Arithmetic Operations on Elliptic Curves

Point Addition Point Doubling
P + Q = R with P,Q,R ∈ Fq P + P = R with P,R ∈ Fq

1. find line l through P and Q
2. R′ is the unique intersection

of l with Fq

3. R is reflection of R′ on x-axis

P

Q

R

R‘

1. create tangent t of Fq at P
2. R′ is the unique second in-

tersection of t with Fq

3. R is reflection of R′ on x-axis

P

R

R‘

Arithmetic Operations. The two binary operations, point addition and point
multiplication, are defined on all elliptic curves. Table 1 shows a simplified ver-
sion of point addition and point doubling in elliptic curves based on the algo-
rithms of Hankerson et al. [17]. It is important to say that point doubling can
be seen as a special case of point addition on a single point. Point doubling is
supposed to be faster than point addition. This performance difference is likely
to be exploited in attacks on ECDSA.
Point multiplication is defined by repeated point doubling. Thus, equation R =
kP is equal to R = P + P + P + P + · · ·+ P︸ ︷︷ ︸

k times

.

3.2 Generation and Verification Algorithms of ECDSA

ECDSA described by [22] consists of three different algorithms, key generation,
signature generation and signature verification. All three algorithms have to
operate on the same global domain parameters. These parameters are denoted
as E, P , n and H. The first domain parameter E is the elliptic curve over field
Fq with q = p or q = 2m. Therefore, this parameter includes the choice of a and
b as well as p for prime fields and m for binary fields. Moreover, a base point
P on E(Fq) is required. The parameter n describes the order of the base point
P . It has to satisfy the condition 4

√
q < n < 2160. The last domain parameter

is the hash function H. It has to be one-way and collision-resistant. All these
parameters are public parameters.

Key Generation. The key generation algorithm does not require any input pa-
rameters except the domain parameters. This algorithm generates a key pair

ECDSA and QUARTZ vs. RSA 5

(Q, d) with Q labeled as the public key and d denoted as the private key. It is
defined as follows:

1. Compute random integer d with 0 < d < n
2. Calculate Q = dP

Signature Generation. The signature generation algorithm takes the private key
d and the message m as input parameters. It generates the signature (r, s) of
message m:

1. Compute random integer k with 0 < k < n
2. Compute kP = (xR, yR)
3. Compute r = xR mod n; if r = 0 go to 1
4. Compute k′ = k−1 mod n
5. Compute h = H(m)
6. Compute s = (k′h+ rd) mod n; if s = 0 go to 1
7. Signature of m is (r, s)

Signature Verification. The signature verification algorithm verifies based on the
public key Q if the signature (r, s) belongs to the message m:

1. Verify that 0 < r < n and 0 < s < n
2. Compute h = H(m)
3. Compute s′ = s−1 mod n
4. Compute t1 = s′h mod n and t2 = s′r mod n
5. Compute R = (xR, yR) = t1P + t2Q
6. If R = 0 then reject signature
7. If xR mod n = r then accept, otherwise reject

3.3 ECDSA Variants

There are two other variants that are very similar to ECDSA that will be exam-
ined in this paper. First, the German variant, the Elliptic Curve German Digital
Signature Algorithm ECGDSA [19] and second, the Korean variant, the Korean
Certificate Digital Signature Algorithm ECKCDSA [26].

Elliptic Curve German Digital Signature Algorithm ECGDSA. The
German Variant ECGDSA is described by Hess et al. [19] and the BSI [4]. It
is derived from the original ECDSA. Its main difference is the inverted private
key d−1 that is used to compute the public key Q. This simplifies the signature
generation algorithm.

Key Generation. The key generation algorithm does not have any input param-
eters. Only the domain parameters are needed to compute the key pair (Q, d)
with Q labeled as the public key and d denoted as the private key. The algorithm
is as follows:

1. Compute random integer d with 0 < d < n
2. Compute d′ = d−1 mod n
3. Calculate Q = d′P

6 ECDSA and QUARTZ vs. RSA

Signature Generation. The ECGDSA signature generation is very close to the
signature generation in ECDSA. As the private key in ECGDSA is inverted in
order to compute the public key,the signature generation algorithm does not
need to compute the inverse of the secret random integer k:

1. Compute random integer k with 0 < k < n
2. Compute kP = (xR, yR)
3. Compute r = xR mod n; if r = 0 go to 1
4. Compute h = H(m)
5. Compute s = d(kr − h) mod n; if s = 0 go to 1
6. Signature of m is (r, s)

Signature Verification. The significant difference to ECDSA is that r is inverted
instead of s. The rest of the algorithm is equivalent to ECDSA:

1. Verify that 0 < r < n and 0 < s < n
2. Compute h = H(m)
3. Compute r′ = r−1 mod n
4. Compute t1 = r′h mod n and t2 = r′s mod n
5. Compute R = (xR, yR) = t1P + t2Q
6. If R = 0 then reject signature
7. If xR mod n = r then accept, otherwise reject

Elliptic Curve Korean Certificate Digital Signature Algorithm
ECKCDSA. This algorithm was invented by Lim et al. [26] in 1998. It is very
similar to ECDSA and ECGDSA. However, it also uses the certificate of the
signer in order to generate and verify signatures.

Key Generation. The key generation algorithms is similar to that of ECGDSA.
It also does not have any input parameters. Only the domain parameters are
needed to compute the key pair (Q, d) with Q labeled as the public key and d
denoted as the private key. The key generation algorithm is as follows:

1. Compute random integer d with 0 < d < n
2. Compute d′ = d−1 mod n
3. Calculate Q = d′P

Signature Generation. The signature generation algorithm of ECKCDSA in-
cludes the hash value of the signer’s certificate cert. The cryptographically secure
hash function H has to produce hashes with l bit lengths. Lim et al. recommend
using large subgroups of order q with q > 2l:

1. Compute random integer k with 0 < k < n
2. Compute kP = (xR, yR)
3. Compute r = H(xR)
4. Compute h = H(m‖cert)
5. Compute w = r ⊕ h mod n; if w < n go to 7
6. Compute w = w − n
7. Compute s = d(k − w) mod n; if s = 0 go to 1
8. Signature of m is (r, s)

ECDSA and QUARTZ vs. RSA 7

Signature Verification. The significant difference of the ECKCDSA signature
verification algorithm compared to both other signature verification algorithms
is the verification step of r. In ECKCDSA, r has to be smaller than 2l. The rest
of the algorithm is similar to the algorithms of ECDSA and ECGDSA:

1. Verify that 0 < r < 2l and 0 < s < n
2. Compute h = H(m‖hcert)
3. Compute w = r ⊕ h mod n
4. Compute R = (xR, yR) = sQ+ wP
5. If H(xR) = r then accept, otherwise reject

3.4 Security

Vaudenay [40] describes that ECDSA has a high vulnerability if it is used in a
poor way. Therefore, four necessary security conditions have to be satisfied in
order to receive a secure digital signature scheme.
First, the discrete logarithm in the subgroup spanned by P , has to be hard. If
it is not hard, the discrete logarithm of the public key can be computed easily.
Thus, an attacker can also easily compute the secret key d.
Second, the hash function H used in the signing process needs to be one-way
and collision resistant. If an attacker is able to find a collision of two hashes
over different messages, he can sign one message but declare his signature on the
other.
Third, the pseudo-random generator for k has to be unpredictable. If the random
or pseudo-random generator used to generate k is not secure, it could happen
that the same ephemeral key k is used to sign two different messages m1 and
m2. A possible key recovery attack is described in Sect. 3.5. For that reason, the
pseudo-random generator for k has to be cryptographically strong.
Lastly, all domain parameters need to be validated and securely stored. Without
a proper validation, it would be possible to hide trapdoors in E, P or n [40].
The validation can be performed by the ”Explicit Validation of a Set of EC Do-
main Parameters” algorithm that is given by Johnson et al. [22]. Their algorithm
checks if q is an odd prime and n is a prime with n > 2160 and n > 4

√
q among

other things. Another way is to generate and validate the domain parameters by
a trusted third party.

The security conditions of RSA are similar to the security conditions of
ECDSA. The hash function H used in the signing process also needs to be one-
way and collision resistant. Moreover, the random or pseudo-random generator
to generate k has to be unpredictable as well. The main difference is that the
security of RSA is based on the factorization problem. This problem describes
the difficulty of factoring the product of two large prime numbers.

If the random or pseudo-random generator used in ECDSA in order to gen-
erate k is secure and the hash function is one-way and collision-resistant, the
attacker has to solve the Elliptic Curve Discrete Logarithm Problem ECDLP

8 ECDSA and QUARTZ vs. RSA

in order to break ECDSA. This means he has to find d in Q = dP with
0 < d < n where n is denoted as the order of the elliptic curve. There are
many known attacks against ECDLP. A few examples are the exhaustive search,
Pohlig-Hellman, Baby-Step Giant-Step and Pollard’s Rho algorithm. However,
the fastest algorithms to solve the ECDLP have a fully-exponential runtime,
whereas the running times of integer factorization and the discrete logarithm
problem are sub-exponential [41]. For that reason, ECDSA is more secure than
RSA since it takes exponential time to break, compared to RSA which can be
broken in sub-exponential time.

In addition to these four security conditions, every public key should be val-
idated before usage. It has to be validated that Q lies on the elliptic curve and
xQ and yR are properly represented elements of the field Fq. Moreover, Q nor
nQ must not be the special point of infinity. This validation is necessary for
obvious reasons. First, it prevents the insertion of a malicious public key that
might enable some attacks. Second, the public key validation is able to detect
errors that might occur during the transmission. This validation can either be
performed by means of the ”Explicit Validation of an ECDSA Public Key Algo-
rithm” introduced by Johnson et al. [22] or a trusted party.

Furthermore, an attacker E should not be able to claim the public key of
another person A. If that would be possible, the attacker E could insist that all
messages originally signed by A were signed by E. Thus, in order to prevent ille-
gal claiming of public keys, every certificate authority CA always has to request
a proof of possession of the private key corresponding to the public key that
should be certified. For instance, this can be done by a zero-knowledge-proof or
by a challenge response requested by the CA.

Comparable Key Sizes. ECDSA keys are significantly smaller than RSA keys
providing the same security level. In elliptic curve cryptography, key size usually
refers to the field size. Table 2 shows comparable key sizes of symmetric cryptog-
raphy, RSA and ECDSA that offer the same security strength. The values are
based on NIST SP 800-57 [31]. Although ECDSA keys still have to be at least
twice as long as symmetric keys in order to offer the same security, it is obvious
that the keys of ECDSA are significantly smaller than the keys of RSA that
offer the same security. Based on the recommendations of NIST, ECDSA with
key sizes between 160 to 223 bits provide a bit security of 80 bits. This implies
that ECDSA over binary fields or prime fields with key sizes of 160 to 223 bits
achieve a similar bit security of 80 bits. The necessary key sizes to achieve bit
securities of 80, 112, 128, 192 and 256 can also be obtained from Table 2.

Recommended Curves. FIPS PUB 186-4 published by NIST [30] recommends
ECDSA with elliptic curves over prime fields as well as ECDSA with elliptic
curves over binary fields and Koblitz curves for governmental use. However, the
recommendation of elliptic curves by the German ECC-Brainpool [27], RFC5349
for use of ECC in Kerberos [46], RFC6460 for use of ECC in TLS [36] and the

ECDSA and QUARTZ vs. RSA 9

Table 2. Comparable Key Sizes (in bits) of Symmetric Algorithms (equal to security
bits), RSA and ECDSA based on NIST SP 800-57 [31]

Symmetric
(security bits)

RSA ECDSA

80 1024 160-223
112 2048 224-255
128 3072 256-383
192 7680 384-511
256 15360 512+

Fact Sheet Suite B Cryptography written by NSA [32] do not include any curves
over binary fields or Koblitz curves. These curves are only recommended by
NIST FIPS PUB 186-4 [30] and Standards for Efficient Cryptography, SEC 2 [2].
Therefore, they do not seem to satisfy the highest security conditions anymore.

Table 3. Recommended Key Sizes (in bits) for ECC based on NIST [30], SEC 2 [2],
ECC-Brainpool [27], RFC5349 [46], RFC6460 [36] and NSA [32]

Curves over Prime Fields
Curves over Binary Fields

or Koblitz Curves

NIST [30] 192 224 256 384 521 163 233 283 409 571

SEC 2 [2] 192 224 256 384 521 163 233 283 409 571

ECC-Brainpool [27] 160 192 224 256 320 384 512

RFC5349 [46] 256 384

RFC6460 [36] 256 384

NSA [32] ≥ 384

All in all, one can say that ECDSA offers the same level of security as RSA
with lower key size since the hardness of RSA is based on the prime factorization
problem that can be broken in sub-exponential time, whereas the hardness of
ECDSA depends on the ECDLP that can only be broken in fully-exponential
time. It is important to say that the factorization problem and ECDLP are
upper limits. An attacker is not necessarily able to solve the prime factorization
problem if he is able to break RSA. This is also applicable to ECDSA and
ECDLP.

3.5 Attacks

One of the most famous attacks on ECDSA is probably the hack of the Sony
Playstation 3 that was presented on the 27th Chaos Communication Congress
Console Hacking in 2010 [5]. However, this attack could have been prevented
easily. Sony did not follow the necessary security conditions introduced by Vau-
denay [40] that have been explained in Sect. 3.4. The ephemeral key k that was

10 ECDSA and QUARTZ vs. RSA

used in the Playstation 3 was not unpredictable since Sony was using a fixed
value for k. Therefore, it was easy to recover the secret key d.

Attack on Weak Pseudo-Random Generator for k. The basics of the
attack on the Playstion 3 are explained by Sarath et al. [37]. They showed that
it is possible to recover d if the same k is used to generate two different signatures
(r, s1) and (r, s2) for two messages m1 and m2. It is possible to calculate s1 and
s2 by means of s1 = k−1(h1 + dr) and s2 = k−1(h2 + dr), where h1 = H(m1)
and h2 = H(m2) with H denoted as the hash function. Thus, it is possible to
compute ks1−ks2 = h1+dr−h2−dr and k = h1−h2

s1−s2 . This leads to the equation

d = ks−h
r . Thus, the pseudo-random generator must not be weak. It must not

generate the same k for two different messages.

Side-channel Attacks. Braun and Kargl [1] presented a doubling attack to
compute the secret key d. Their attack is based on the addition formula of two
points being slightly different from the point duplication in elliptic curves. It
is possible to perform this attack by measuring the required time since point
doubling is supposed to be faster than point addition. Thus, a verifier is able to
detect if t1P = t2Q in step 5 of the signature verification algorithm of ECDSA.
Hence, this yields to t1 = t2d and it is easily possible to compute the secret key
d. Nevertheless, this attack is only possible in the very special and improbable
case that t1P = t2Q. This attack can also be prevented easily. The signer only
has to validate that t1P 6= t2Q which implies that h 6= rd.

Brumley et al. [3] also introduced a timing attack against elliptic curve over
binary fields. Their attack recovers the private key by exploiting implementations
that do not run in constant time. They assume that the Montgomery’s ladder is
used for scalar multiplication of points on elliptic curves over binary fields. This
ladder implementation introduces a timing attack vulnerability since there is a
direct correlation between the time needed to compute a scalar multiplication
and the logarithm of k. Their attack consists of two phases. In the first phase,
an attacker is collecting a filtered set of signatures based on the time correlation
of scalar multiplication and logarithm of k. In the second phase, the attacker
is able to perform a lattice attack on the filtered set collected in the previous
phase. Lattices describe mathematical objects that are often used in cryptogra-
phy. One application field of lattices is to attack schemes with partially known
secret data. It is possible to find small solutions of underdetermined systems of
equations by means of lattices. The repeated use of this lattice attack might lead
an attacker to be able to recover the corresponding private key of the signature.
Brumley et al. are assuming that an attacker is able to collect enough ECDSA
signatures generated with the same ECDSA key. Additionally, an attacker must
be able to measure the running time of the sign operation for each signature.
Another type of side-channel attacks that are applicable to ECDSA are template
attacks. Template attacks also consist of two phases. First, a possible attack has
to build templates of the device under attack, for instance statistical models.

ECDSA and QUARTZ vs. RSA 11

Then, the attacker matches the templates with the traces gained from the at-
tacked device. In 2008, Medwed and Oswald [28] presented a template-based
simple power analysis attack against ECDSA. They combined a template attack
with a power analysis attack. In their attack, only a few bits of the ephemeral
key k are needed in order to get the ECDSA secret key d.
Obviously, it is also possible to run power analysis attacks that are not based on
template attacks. Hutter et al. [21] constructed two differential power analysis
attacks in which they are able to gain the private key during the signature gen-
eration. Their first attack performs a power analysis, while the second attack is
based on an electromagnetic analysis.

Fault Attack. In 2009, Schmidth and Medwed [38] introduced a fault attack on
ECDSA. By means of manipulating the program flow, it is possible the compute
some bits of the ephemeral key k. This is already enough for a lattice attack
to be applied to recover the private signature key. A possible countermeasure
against that attack is to introduce a check value in order to prevent the device
from releasing fault values. Schmidth and Medwed achieved this by changing the
point representation in ECDSA.

3.6 Performance

We show a comparison of ECDSA with RSA on three resource-constrained de-
vices. The running times of Table 4 are based on three different sources. Westhoff
et al. [43] are measuring the running time of ECDSA over binary fields and RSA
on a Sharp Zaurus SL-5500G Personal Digital Assistant operating on Linux with
an integrated Intel SA-1110 StrongARM CPU running on 206 MHz. They are
using OpenSSL (Developer Snapshot 20021202) to measure the running times
for RSA and their own speed optimized ECDSA version. They are comparing
ECDSA over binary fields on field sizes from 113 to 233 bits with RSA on com-
parable key sizes.
The running times of the Ultra-80 and Yopy devices are taken from the paper
of Gupta et al. [16]. Yopy is a Linux Personal Digital Assistant with a 200 MHz
StrongARM CPU and Ultra-80 is a Sun server with an integrated 450 MHz Ultra-
SPARC II CPU. They are using the OpenSSL0.9.6b speed program to measure
the ECDSA and RSA running times. They had to enhance the OpenSSL0.9.6b
speed program on their own in order to be able to measure ECDSA. On both
devices, only elliptic curves over binary fields with a field size of 163 and 193
bits are measured.
The running times of supercop-20140622 are taken from the eBATS project [13].
Supercop-20140622 is a Cortex-A8 2011 TI Sitara AM3359 with 720 MHz built
in the armeabi architecture. The eBATS project uses the OpenSSL implemen-
tation of RSA and ECDSA with their own wrapper. In their implementations,
RSA performs message recovery. Originally, the running times are measured in
cycles. In order to easily compare them against the running times of the other

12 ECDSA and QUARTZ vs. RSA

two papers, we have transformed them into ms by means of the equation

runT ime = cycles ∗ 1

frequency ∗ 103
, (6)

where frequency is given in hz. The eBATS project includes the most complete
and recent comparison between ECDSA and RSA. They measured ECDSA with
binary fields and prime fields with field sizes from 160 to 571 bits and RSA with
key sizes from 1024 to 4096 bits. Additionally, the eBATS project measured
ECDSA with Koblitz curves. These implementations are approximately 10%
faster than ECDSA over binary fields. This time difference increases slightly
with bigger key sizes. However, they are not shown in Table 4 for the sake of
better readability.

Table 4. Performance of ECDSA over binary and prime fields and RSA on different
resource-constrained processors

Key/Field Size
(bits)

Signature
Generation

(ms)

Signature
Verification

(ms)

Device
bin.
Field

prim.
Field

RSA
bin.
Field

prim.
Field

RSA
bin.
Field

prim.
Field

RSA

Sharp Zaurus SL-5500G [43]

113 512 2.8 13.7 7.5 1.3
131 704 3.8 32.4 11.5 2.5
163 1024 5.7 78.0 17.9 4.3
193 1536 7.6 251.9 26.0 9.7
233 2240 10.1 731.8 37.3 20.4

Ultra-80 [16]
163 1024 6.8 32.1 13.0 1.7
193 2048 9.2 205.5 18.1 6.1

Yopy [16]
163 1024 24.5 188.7 46.5 10.8
193 2048 39.0 1273.8 76.6 39.1

supercop-20140622 [13]

512 2.7 0.2
768 5.9 0.2

163 160 1024 5.3 3.2 10.9 10.2 3.7 0.3
192 1024 4.4 10.9 5.1 0.3

1536 29.0 0.5
233 224 2048 9.6 5.7 61.2 18.5 6.7 0.8
283 256 3072 17.5 7.5 183.5 30.8 8.8 1.5

4096 412.4 2.5
409 384 7680 38.8 18.7 76.4 22.3
571 521 15360 89.7 41.8 178.3 49.5

On the Sharp Zaurus SL-5500G, ECDSA is up to 72.5 times faster than
RSA-2240 on the biggest measured key size of 233 bits. Even with a key size of
113 bits, ECDSA is still 4.9 times faster than RSA on the smallest measured
key size. Gupta et al. only measured the running times with key sizes of 163 and
193 bits on Ultra-80 and Yoppy. In their measurement, ECDSA is respectively
4.7 and 22.3 times faster than RSA on Ultra-80. The performance difference of
ECDSA and RSA is slightly higher on Yoppy, with ECDSA being up to 32.7
times faster. The benchmark of supercop shows an improved version of RSA

ECDSA and QUARTZ vs. RSA 13

that uses message recovery, which is why the time ratio of ECDSA to RSA is
significantly smaller. ECDSA over binary curves is only up to 10.5 times faster.
ECDSA over prime curves is up to 24.5 times faster. All measurements show
that the signature generation in ECDSA is noticeably faster than in RSA. This
is based on the significant smaller key size that ECDSA is using.
The signature verification is the drawback of ECDSA. RSA is faster in all mea-
surements. The running times of supercop show the biggest difference. In these
measurements, RSA is up to 34 times faster when ECDSA is performed over
binary fields with a 163 bits field size. Nevertheless, ECDSA over prime fields
is significantly faster. It is only a maximum of 12.9 times slower than RSA.
The time difference is much slower on the other three devices since they are
using speed optimized versions of ECDSA. Apparently, they are also using older
implementations of RSA because RSA is significantly slower on their devices
compared to supercop.
The running times of signature generation and verification performed on super-
cop are supposed to be the most relevant since it is the most recent benchmark
that is using current RSA and ECDSA implementations. Furthermore, only our
comparison based on supercop is following the recommendation of comparable
key sizes by NIST SP 800-57 that is shown in Table 2. Thus, supercop is almost
always using bigger field sizes. That is another reason why the performance
difference between RSA and ECDSA is smaller on supercop.

Table 5. Signature length comparison (in bits) of RSA and ECDSA over prime and
binary fields on different bit security levels measured by the eBATS project [13]

Bit
security

RSA-l ECDSA-bin p ECDSA-prime b

80 1024 [l = 1024] 336 [b = 163] 320 [b = 160]

112 2048 [l = 2048] 480 [b = 233] 448 [b = 224]

128 3072 [l = 3072] 576 [b = 283] 512 [b = 256]

In addition, Table 5 shows the signatures lengths of RSA and ECDSA over
binary and prime fields on bit security levels of 80, 112 and 128 bits. The sig-
natures of ECDSA over prime fields are a bit shorter than the one generated by
ECDSA over binary fields. However, ECDSA signatures are in general signifi-
cantly smaller than RSA signatures. On 128 security bits, the ECDSA signatures
are more than five times smaller than RSA signatures.

All in all, the measurements show that ECDSA is better than RSA in terms
of key size and signature generation. However, RSA is much faster in signature
verification. If it is required to have a compromise between key size, signature
generation and signature verification, ECDSA is the better choice since it is able
to use much smaller keys and the time differences in the signature generation are
much higher than in the signature verification step. For instance, ECDSA with
a key size of 233 bits takes 9.6ms to generate a signature, while RSA-2048 takes

14 ECDSA and QUARTZ vs. RSA

61.2ms. In the signature verification, ECDSA-233 takes 18.5ms and RSA-2048
needs 0.8ms. In total, ECDSA-233 takes 28.1ms and RSA-2048 needs 62.0ms to
perform both operations. However, signatures are usually created once and may
be verified often. In an IoT scenario, signatures may be created by small devices
but verified by big servers that have access to special cryptographic hardware.
For that reason, the performance for signature generation might be more impor-
tant on resource-constrained devices in an IoT scenario. Hence, ECDSA is the
better choice for resource-constrained devices.
It is important to say that prime fields should not always be faster than binary
fields. In general, ECDSA over binary curves is supposed to be even faster than
ECDSA over prime curves because binary curves have shorter formulas and bi-
nary squaring is usually very cheap. The reason why ECDSA over prime curves
are much faster on supercop-20140622 is due to the processor architecture. Gen-
eral purpose processors usually have a giant integer multiplier circuit that can
compute arithmetic operations on prime curves very quickly.

Table 6. Time Measurements of the ECDSA Variants in seconds performed on Pen-
tium(R) Dual-Core CPU with 2.30 GHz and a 192-bit key [37]

Key Generation Signature Generation Verification

ECDSA [37] 78 ms 93 ms 125 ms
ECGDSA [37] 83 ms 78 ms 125 ms
ECKCDSA ≈ 83 ms ≥ 78 ms ≥ 125 ms

Furthermore, a performance comparison of ECDSA and its two variants,
ECGDSA and ECKCDSA, is presented. Table 6 shows the times taken for
key generation, signature generation and signature verification for ECDSA and
ECGDSA, based on the performance evaluation of Sarath et al. [37]. They are
using a Pentium(R) Dual-Core CPU with 2.30 GHz and a key size of 192 bits. It
is significant that the signature generation of ECGDSA is about 16% faster than
the signing algorithm of ECDSA. The running times of the signature verification
of both algorithms are almost the same and the key generation of ECGDSA is
about 6% slower. The time values of ECKCDSA are not measured, but estimated
by us. We assume that the key generation performance of ECGDSA and ECK-
CDSA is similar since they are using the same algorithm. However, ECKCDSA
is supposedly slightly slower in signature generation and verification because of
the additional bits of the certificate in the hash function.

Hitchcock et al. [20] showed that it is possible to implement ECDSA ef-
fectively and compactly in hardware. They implemented an efficient ECDSA
algorithm over prime fields on a smart card. In general, ECC can be implement
more effectively in hardware than RSA. Table 7 shows the minimum number of
gates required to implement RSA and ECC in hardware for 80 and 128 security
bits presented by Zhang et al. [44]. ECC requires up to ten times less gates than
RSA. Thus, ECC can be implemented on smaller chips that generate less heat

ECDSA and QUARTZ vs. RSA 15

Table 7. Minimum number of gates required to implement ECC and RSA in hardware
with 80 and 128 security bits

80 security bits 128 security bits

Algorithm RSA-1024 ECC-163 RSA-3072 ECC-283
Gate count 34,000 3,260 50,000 6,660

and consume less power [23] than bigger RSA chips. Additionally, it is possible
to implement ECDSA effectively in software. All in all, ECDSA is best suitable
for IoT devices with low bandwidth, low computing power and little memory.

4 QUARTZ

QUARTZ, submitted to the European NESSIE project by Patarin and Courtois
2000, is a multivariate signature scheme. It is based on HFE (Hidden Field
Equations) or, to be more precise, HFEv-, where the perturbation operations
”v” and ”-” are added.

HFEv- has two independently adjustable security parameters d and n, so that
a signature length of 128 bits can be achieved by choosing a fixed, small n, while
d can be adjusted to achieve the desired security level. Additionally, QUARTZ
offers long-term security since it is quantum computer resistant [8]. To avoid
the birthday paradox problem in QUARTZ, there are four iterations of signa-
ture generation (for messages m, H(m||0x00), H(m||0x01) and H(m||0x02)) and
accordingly four iterations during the verification process.

4.1 Multivariate Cryptography

In this section, a quick explanation is given of how multivariate cryptography
based on the MQ-Problem and especially such public key cryptosystems work.
For a more comprehensive description see [11], [42] or [45].
Like RSA or ECC, multivariate encryption and signature schemes are asymmet-
ric. However, unlike them they do not depend on assumptions that break as soon
as quantum computer exist. Therefore, they offer long-term security. To do so,
they work with systems of multivariate quadratic polynomials and are based on
the so called MQ-Problem.

MQ-Problem. Let p1(x), ..., pm(x) be m multivariate quadratic polynomials
with n variables x1, ..., xn. The goal is to find a common zero x0 of the polyno-
mials p1, ..., pm, i.e. a solution z = (z1, ...zn) such that p1(z) = ... = pm(z) = 0.
The MQ-problem is proven to be NP-hard for m ≈ n.

Public Key Cryptosystem. For multivariate encryption and signature schemes,
there has to be an easily invertible multivariate quadratic map called ”central
map”. Let G : Kn 7→ Km be this map, then there are two affine transformations

16 ECDSA and QUARTZ vs. RSA

S and T , such that a new multivariate quadratic map F : Kn 7→ Km can be
computed as

F = T ◦ G ◦ S . (7)

This hides the structure of G, so that to anyone, who doesn’t know S and T ,
the map F looks like a random map. Therefore, F being a trapdoor one-way
function is used as the public key, while T , G and S together form the private
key. [11,45]

For QUARTZ, G is chosen in a special way being a member of the BigField
family. This means G is an easily invertible map over a degree n extension Field
E of K. To get a quadratic map Ḡ : Kn 7→ Kn, an isomorphism ϕ : Kn 7→ E is
used:

Ḡ = ϕ−1 ◦ G ◦ ϕ . (8)

Therefore, the hiding of the central map and thus the public key of the scheme
looks like

F = T ◦ Ḡ ◦ S = T ◦ ϕ−1 ◦ G ◦ ϕ ◦ S . (9)

Sign: Let m ∈ Kn be the message to be signed. The signature is then computed
as follows:

σ = S−1(ϕ−1(G−1(ϕ(T −1(m))))) ∈ Kn . (10)

For a schematic presentation see Fig. 1.

Verify: Let σ ∈ Kn be a signature supposed to belong to the message m ∈ Kn.
To verify the signature, it is checked if m = m′, where m′ = F (σ) ∈ Kn. If it
holds, the signature is accepted, otherwise rejected. For a schematic presentation
see Fig. 1.

Kn
T −1

Kn
Ḡ−1

Kn
S−1

Kn

E

ϕ

E

ϕ−1

F

G−1

sign

verify

Fig. 1. Schematic representation of sign and verify in BigField multivariate signature
scheme, derived from [11, Fig. 1]

ECDSA and QUARTZ vs. RSA 17

Minus: The ”minus” perturbation operation removes a small number of equa-
tions from the public key to prevent linearization attacks. [34]

Vinegar: The ”vinegar” perturbation operation adds additional variables to the
central map to hinder direct attacks.

4.2 Parameters

QUARTZ being a special case of HFEv- has the same parameters. More specif-
ically QUARTZ is a HFEv- scheme with a special choice of parameters.

(K, n, d, r, v) = (GF (2), 103, 129, 3, 4) , (11)

where K is the underlying finite field, n is the size of the extension field, d is the
degree of the hidden polynomial, r is the number of equations removed and v is
the number of vinegar variables.

In QUARTZ, E = L = K103 is used as extension field of K, like described in
Sect. 4.1, more specifically it is defined by L = K [X]

(
X103 +X9 + 1

)
.

4.3 Algorithm Specifications

The algorithm itself is described by Courtois et al. [33]. There is also an updated
version [9].

Let the definitions from Sect. 4.2 apply. Furthermore, let ϕ be the bijection
between K103 and L:

ϕ(x0, ..., x102) =

102∑
0

(
xi ∗Xi

) (
mod X103 +X9 + 1

)
. (12)

The central map is defined by a family of secret functions FV (Z) : L 7→
L with V ∈ K4:

FV (Z) =

2i+2j≤129∑
0≤i<j<103

αi,j ∗ Z2i+2j +

2i≤129∑
0≤i<103

βi(V) ∗ Z2i + γ(V) , (13)

where αi,j ∈ L, βi : K4 7→ L being affine transformations and γ : K4 7→ L being
a quadratic transformation.

To hide the structure of the central map in the public key, there are two
affine transformations S : K107 7→ K103 and T : K103 7→ K100. The public key
P : K107 7→ K100 is then a quadratic map defined by

P = T ◦ ϕ−1 ◦ FV (Z) ◦ ϕ ◦ S , (14)

whereas the private key consists of T , FV (Z) and S.

18 ECDSA and QUARTZ vs. RSA

Signature Generation. Given a message M , the corresponding signature is
calculated as follows:

First, four 100-bit strings H1, H2, H3, H4 are built from M by computing

M0 = H(M)

M1 = H(M0||0x00)

M2 = H(M0||0x01)

M3 = H(M0||0x02) ,

(15)

where H is some hash function outputting 160 bits, and then picking H1, H2,
H3, H4 from M̄ = M1||M2||M3 such that H̄ = H1||H2||H3||H4 are the first 400
bits of M̄ and each Hi is exactly 100 bits long. This procedure is represented in
a more visual way in the upper part of the schematic representation of signature
generation in Fig. 2.

Then, the actual signature process is applied to every Hi (1 ≤ i ≤ 4) succes-
sively (see cycle in middle part of Fig. 2). Therefore, a pre-image of Y = Hi⊕ S̃
under T is computed, where S̃ is a 100-bit string, which is initialized to 0 and
overwritten after every iteration. The result is then transformed into L by ap-
plying ϕ.

B = ϕ(T −1(Y)) ∈ L . (16)

After that, values for vinegar variables V = (v1, v2, v3, v4) ∈ K4 have to be
chosen at random or, like it is done in [33], by picking specific bits from the hash
of Y and a random 80-bit string. The univariate polynomial equation in Z

FV (Z) = B , (17)

where V is the chosen V = (v1, v2, v3, v4) ∈ K4, has to be solved for example
by Berlekamp’s algorithm [11]. If no solution is found, new vinegar variables are
chosen again at random (or by re-hashing and picking again) and the calculation
goes back to step (17). Otherwise, let A1, ..., Aδ ∈ L be the found solutions, the
solution A is then the one with the smallest hash.

The intermediate result of one iteration is given by transforming A back into
K107 using ϕ−1 and then applying S−1 to the result.

X = S−1(ϕ−1(A)) ∈ K107 . (18)

The new value of S̃ for the next iteration consists of the first 100 bits of X, while
the subsequent 7 bits form Xi, which contributes to the final signature.

The final signature is composed of the S̃ of the last iteration and all Xi as it
can be seen in the lower part of Fig. 2:

σ = S̃||X4||X3||X2||X1 . (19)

ECDSA and QUARTZ vs. RSA 19

M

M0

M0 0x00 M0 0x01 M0 0x02

M̄ = M1||M2||M3 00...0

H̄

H1 H2 H3 H4
S̃

⊕ Y

V = (v1, v2, v3, v4) B

A

X

X1 X2 X3 X4

σ = S̃||X4||X3||X2||X1

H()

H() H() H()

first 400 bits

Hi

if i = 1

ϕ(T−1())

FV (Z) = B

random

S−1(ϕ−1())

if no solution A:

re-choose at random

Xi (last 7 bits)
first 100 bits

if i < 4

i = i+ 1

if i = 4

Fig. 2. Schematic representation of signature generation in QUARTZ, derived from [9,
Fig. 1]

20 ECDSA and QUARTZ vs. RSA

Signature Verification. Let σ be the 128-bit signature that supposedly be-
longs to the message M . To verify the signature as described in Sect. 4.1, it has
to be checked if the public key applied to σ results in M .

In the signature generation of QUARTZ, there are four iterations to create a
signature and so are there for signature verification, analogously. Therefore, let
H1, H2, H3, H4 be defined as in Sect. 4.3. Furthermore, let S̃, X1, X2, X3 and
X4 be defined such that S̃||X4||X3||X2||X1 = σ, where S̃ is 100 bits long and
Xi consists of 7 bits each.

For each iteration over Xi from i = 4 down to i = 1, calculate the 100-bit
string U defined as

U = P(Uold||Xi)⊕Hi , (20)

where Uold is equal to the U of the last iteration and is initialized to Uold = S̃
for the first iteration4.

The signature σ is then accepted if U after the last iteration equals the 100-bit
string of zeros 00...0, otherwise it is rejected.

The schematic representation of signature verification is shown in Fig. 3.
When comparing signature generation (Fig. 2) and verification (Fig. 3), it is
easy to see, that the preparation part at the top is the same and the main
part of each of them consists of a cycle which is executed 4 times. In signature
verification however, the procedure counts backwards from 4 to 1 to verify the
steps of signature generation in correct order.

4.4 Security

Even though QUARTZ can’t be proven to be equivalent to any well defined and
known problem, there are indicators, which implicate reasonable confidence in
its security.

QUARTZ is based on the MQ-problem which is known to be NP-hard [42].
Therefore, it is difficult in worst-case and even more, it seems to be difficult
in average, since there are no known algorithms for solving the MQ-problem
significantly better than exhaustive search when the number of equations is
approximately equal to the number of variables. The hardest instances of the
MQ-problem currently known are random systems of quadratic equations. If
the degree d of the hidden polynomial F increases, the trapdoor fades away,
converging to a random system of quadratic equations at d→ qn, where q is the
number of elements of the underlying finite field (in QUARTZ q = 2). Thus d
chosen to be rather large in QUARTZ contributes to its security. [8, 33]

In the initial publication of QUARTZ, Courtois [33] claims a bit security
of 280 for QUARTZ. Later, however, he investigates the security with respect
to so-called Gröbner bases [8] and comes to the conclusion, that to achieve a
security level of at least 280, the security parameter d has to be increased from
129 to 257 (see end of this section).

4 reminder: P is the public key defined as P = T ◦ ϕ−1 ◦ FV (Z) ◦ ϕ ◦ S

ECDSA and QUARTZ vs. RSA 21

M σ

M0

M0 0x00 M0 0x01 M0 0x02
S̃ X4 X3 X2 X1

M̄ = M1||M2||M3 Uold

H̄

H1 H2 H3 H4
P (Uold||Xi)

⊕ U

accepted if U = 00...0 (100bits),
otherwise rejected

H()

H() H() H()

first 400 bits

Hi

if i = 4

Xi

if i > 1

i = i− 1

if i = 1

Fig. 3. Schematic representation of signature verification in QUARTZ, derived from [9,
Fig. 2]

22 ECDSA and QUARTZ vs. RSA

Even though the signature generation process of QUARTZ looks complex
compared to the underlying HFEv-, breaking QUARTZ is equivalent to break-
ing HFEv- [11]. So attacks on the underlying basic HFE scheme may also ap-
ply to QUARTZ. There are many known attacks on the basic HFE scheme,
either by recovering the secret key or by inverting the trapdoor function di-
rectly. Examples for methods recovering the secret key are the original Shamir-
Kipnis attack [24] and the improved version by Courtois [7], which solves the
MinRank problem (cf. Sec. 4.5) more efficient. These give the complexities

nO(log2
q d) and n3 logq d+O(1), respectively. Ding et al. [11] states a complexity

of O
(
qn∗(blogq d−1c+1+v+r−1) ∗ (n− r)3

)
for solving the MinRank problem. The

direct attack by Courtois as an example for inverting the trapdoor function di-
rectly is in n

3
2∗logq d+O(1) [7]. Furthermore, there are attacks that try to solve

polynomial systems by computing so-called Gröbner bases with Faugère’s attack
using the F5/2 algorithm [14,39], currently being the most efficient. See Sec. 4.5
for further information about the direct attack, Gröbner bases and the F5/2
algorithm.

There are no known specific attacks on HFEv-. However, the direct attack by
Courtois and all attacks using Gröbner bases can be applied to HFEv- without
changes. Nevertheless it seems the perturbations indeed increase the security,
since even the best known attack on basic HFE by Faugère is unsuccessful be-
cause of the increased complexity [8].

Influence of Perturbation Operations. Courtois et al. [8] made several
observations regarding the influence of perturbation operations ”minus” and
”vinegar” on pure HFE systems, especially for those of low degree d:

– Both operations have similar effects concerning randomness added to the
original basic HFE system.

– Nevertheless, there are differences concerning the total time of attacks. While
the ”vinegar” operation increases the time of currently known attacks, the
”minus” operation may even decrease the time of attacks solving systems,
since it reduces the size of the system to solve. However, it should not be
omitted, because this operation helps against other attacks like the Patarins
attack on Matsumoto-Imai.

– It might be better for a fixed number of perturbations to use many of type
”vinegar” and few ”minus” perturbations, so that there is a mixture of both,
while using the advantage of ”vinegar”.

This supports the choice of parameters r = 3 and v = 4 in QUARTZ, even though
there should be more ”vinegar” perturbations according to the last statement.
However, there are restrictions [9, 33] in QUARTZ preventing an alteration of
these choices.

Special Case of Signing on Gröbner Bases. Gröbner bases can be seen like
a Gaussian elimination procedure for multivariate, non-linear systems. Applying

ECDSA and QUARTZ vs. RSA 23

Gröbner bases to HFEv- in the special case of signing allows a simplification
(concerning the amount of possible solutions) by fixing some variables. For a
more detailed description see Sec. 4.5. Faugère’s attack using the F5/2 algo-
rithm (being the currently best attack on basic HFE) applied to QUARTZ gives
an extrapolated O(n10/4). The working factor WF (HFEv−) including pertur-
bations is calculated by

WF (HFEv−) ≈ 27 ∗ (n− 3)
10

4
≈ 271 , (21)

which has to be done 4 times in QUARTZ to forge a signature. Because of the
repeating method of fixing variables, there is an additional factor of 1.6 on aver-
age, see Sect. 4.5. Therefore, the working factor for QUARTZ WF (QUARTZ)
is calculated as follows:

WF (QUARTZ) = 4 ∗ 1.6 ∗WF (HFEv−) ≈ 274 . (22)

This is equivalent to approximately 265 Triple-DES computations5. To ensure
a security level of at least 280, Courtois et al. [8] proposes that the degree d of
the hidden polynomial F in QUARTZ should be changed from 129 to 257. This
would result in a working factor WF (QUARTZ257) of

WF (QUARTZ257) = 287 , (23)

which is equivalent to approximately 278 TDES computations. [8]
As a result, Courtois et al. recommend to increase the parameter d in QUARTZ

from 129 to 257 to achieve the desired security level.

4.5 Attacks

The attacks on QUARTZ can be categorized into 3 main groups. [33]
First, attacks trying to recover the secret key, which are mainly attacks on

the underlying basic HFE scheme. This includes for example exhaustive search
and the Shamir-Kipnis [24] attack or MinRank [7] attack.

Second, direct attacks targeting the trapdoor itself, i.e. inverting the trap-
door, to compute a signature directly only using the public key. This results in
the problem of solving an instance of the MQ problem, which is NP-hard for
random instances [42]. However, there are methods like Gröbner bases, XL [10]
or FXL [10] designed to solve this problem. The currently most efficient attack
of this category is Faugère’s attack using the F5/2 algorithm [14,39].

Third, attacks like affine multiple attacks or higher degree attacks, which try
to exploit detected differences of the public key compared to a general system
of quadratic equations.

The most important attacks on QUARTZ are the MinRank attack and direct
attacks by inverting the trapdoor-function, especially by using Gröbner bases,
which are thus described hereinafter.

5 Measurement unit in the NESSIE project

24 ECDSA and QUARTZ vs. RSA

MinRank attack. [7, 11, 24] The MinRank problem is, given a field K, two
integers m,n ∈ N, a value r < n and m matrices M1, ...,Mm of dimension n× n
over K, find a linear combination α ∈ Km of small rank rank(

∑
i αiMi) ≤ r.

The MinRank attack is an improvement of the Shamir-Kipnis attack (cf. [24])
using methods to solve the underlying MinRank problem in the second step
directly instead of using relinearization. The main idea in this attack is to lift
the maps T , S and the public key (also a map) P to the extension field L, called
T ∗, S∗ and P ∗ hereinafter. The function P∗ can then be represented as the
quadratic form

P∗(X) = XGXT , (24)

where the matrix G consists of coefficients of the representation of the public

key P as univariate polynomial and X =
(
X20 , X21 , ..., X2n−1

)
. Since T and S

are linear maps, T ∗ and S∗ can be represented as

S∗(X) =

n−1∑
i=1

si ∗X2i and T ∗(X) =

n−1∑
i=1

ti ∗X2i , (25)

where si, ti ∈ L. From P∗ = T ∗ ◦ F ◦ S∗ ⇒ T ∗−1 ◦ P = F ◦ S∗ it is clear that

G′ =

n−1∑
k=0

tkG
∗k = W ∗ F ∗WT , (26)

where G∗k are the variants of G computed by raising entries of G to various
powers and cyclically rotating its rows and columns, W is a n×n matrix and F
is the n×n matrix representing the central map F . Let k = blogq d−1c+1, then,
because only the top-left k× k entries of F are non-zero and k � n, the rank of
G′ collapses to at most rank(G′) ≤ k + r + v. Therefore, the coefficients tk can
be computed by applying a solver for the MinRank problem, as it is described
by Courtois [7].

Direct attack. A direct attack on the trapdoor function of QUARTZ means
to solve the equation

P(σ) = m , (27)

where P is the public key, m the message to sign and σ the signature to be found,
directly. There are several methods to solve such a system like Gröbner bases
or XL. Since Faugère’s attack using the F5/2 algorithm, being the currently
most efficient, is based on Gröbner bases, this method is presumably the most
interesting.

Gröbner bases: [8,39] The Gröbner bases algorithm can be used to solve systems
of equations. Let 1 ≤ i ≤ m, pi ∈ GF (q)[x1, ..., xn] and yi ∈ GF (q) so that there
are m polynomial equations

pi(x1, ..., xn) = yi . (28)

ECDSA and QUARTZ vs. RSA 25

This can be solved by calculating the set of all common zeros of the polynomials

p̃i = pi − yi (29)

over the algebraic enclosure. For that, a Gröbner basis can be used, which is
a special kind of generating set for the ideal generated by the polynomials p̃i.
Gröbner basis can be seen as a kind of Gaussian elimination, except it applies to
multivariate, non-linear systems. Just like in Gaussian elimination, a triangular
structure in the Gröbner basis is produced (lexicographical term ordering), i.e.
for each 1 ≤ i ≤ n there is (at least) one polynomial, which only depends on
monomials with x1, ..., xn.

The first algorithm to compute a Gröbner basis is the Buchberger algorithm
it was published with. While Buchberger algorithm gives double exponential
worst case complexity and single exponential worst case complexity for multi-
variate cryptography settings [8], there are better alternatives, e.g. by Faugère’s
algorithms F4, F5 and F5/2 [14,39].

The F5 algorithm computes Gröbner basis incremental by starting with a pair
of generator polynomials of the ideal and then taking into account one more in
each step. In this process useless reductions of polynomials to zero, which are
the most expensive operations in an algorithm computing Gröbner basis, are
avoided. Therefore, it is much more efficient than for example, the Buchberger
algorithm, and it is even possible to brake the HFE Challenge 1 using F5/2 [18].

In the special case of signing, an effective simplification can be made since
only one solution is needed instead of expected qr+v, where r is the number of
removed equations, v is the number of vinegar variables and q = 2 in QUARTZ,
from solving the system in QUARTZ. Since the HFEv- system consists of n+ v
variables and n− r equations, the number of computed solutions can be reduced
by fixing (n + v) − (n − r) variables with some arbitrary values. The resulting
system with n− r variables and n− r equations is expected to have one solution
on average and therefore saves on computation time enormously. [8]

4.6 Performance

The most expensive step in QUARTZ’ signature generation is the inversion of F
[11], which is usually done by applying the Berlekamp algorithm with complexity
O(d3 +n∗d2) [35]. Since this has to be done four times, the signature generation
of QUARTZ is rather slow.

Let the parameters of QUARTZ be defined as in Sect. 4.2, the signature
length is then given by [11]

|σ| = (n− r) + 4 ∗ (r + v) = 128bit . (30)

Even though such a small signature length is desirable with respect to trans-
port (e.g. network congestion) and storage (e.g. memory), unfortunately, it comes
with several drawbacks, especially key sizes and execution time. In [9], Courtois
et al. state that the length of the public and private keys are about 71 KBytes
and 3 KBytes. Additionally, the time on a Pentium III 500 MHz to sign and

26 ECDSA and QUARTZ vs. RSA

verify6 is specified as 10 seconds on average and less than 1ms respectively. In
the same setting, the time for key generation is stated as 4 seconds.

Due to the improvements made in [9] compared to [33], the signature scheme
is not only 40% faster but the probability of not finding a signature for a message
is cut down from 2−83 to 2−183.

In [8], Courtois et al. state that signing using a computer with 2 GHz takes
2 seconds for the original parameter d = 129, while for the proposed alteration
d = 259 it would take 6 seconds.

Being an improvement of QUARTZ, the signature scheme GUI presented by
Ding et al. [11] claims to produce signatures of size down to 120 bits, along
with the cutting down of signature generation time to one hundredth of the
time needed by QUARTZ, while still satisfying the same security level of 280.
However, verification speed as well as public and private key sizes remain nearly
identical to QUARTZ.

There is nothing to be found about hardware implementations of QUARTZ
or GUI. Therefore, no comparison of hardware and software implementations
can be shown here and, for the same reason, no comparison between QUARTZ
and RSA in terms of hardware implementation can be done.

Nevertheless, depending on software implementations, a comparison of the
signature schemes QUARTZ, GUI-95 and RSA-1024 are shown in Table 8. Each
of them satisfies the security level 280, but have different characteristics con-
cerning the sizes of signatures, public- and private-key as well as signing and
verifying speed. The values in k-cycles for the time needed to generate or verify
a signature are measured on AMD Opteron 6212, 2.5 GHz / Intel Xeon CPU
E5-2620, 2.0 GHz.

Table 8. Comparison GUI - QUARTZ - RSA - ECDSA [11]

scheme security
level
(bits)

signature
size
(bits)

public
key size
(bytes)

private
key size
(bytes)

signing
time
(k-cycles)

verifying
time
(k-cycles)

QUARTZ 80 128 75,514 3,774 167,485 / 168,266 375 / 235
GUI-95 80 120 60,600 3,053 1,479 / 1,186 325 / 230
RSA-1024 80 1024 128 128 2,080 / 2,115 74 / 64

As shown, QUARTZ produces very small signatures compared to RSA, but
for the price of a very slow signature generation and large keys. It needs ≈ 80
times as much time as RSA when generating signatures and is ≈ 5 times slower
when verifying signatures. The public and private keys in QUARTZ are more
than 500 times and ≈ 30 times bigger than those of RSA respectively. Even
though GUI performs much better than QUARTZ, it still is, apart from the
signature size, only equal to or better than RSA in the time needed for signature

6 For a message of length <512 bits.

ECDSA and QUARTZ vs. RSA 27

generation. Verification is nearly as slow as in QUARTZ and the keys are also
very big compared to RSA.

So, in summary it can be said, that as long as in an IoT scenario the limited
computation and memory capabilities of constrained devices is the limiting factor
and not the network bandwidth, QUARTZ does not seem to be suitable for
IoT scenarios. Even if such small signature sizes would be needed at any prize,
QUARTZ’s improvement GUI is a much better alternative, mainly because of
its signature generation speed being better than RSA’s.

5 Conclusion

Table 9 shows a comparison of the signature schemes QUARTZ, ECDSA and
GUI. To visualize the comparison, Fig. 4 and Fig. 5 show signature and key
sizes plotted. The data for keys setup, signing and verifying in milliseconds are
measured on a 500 Mhz Pentium III [6]. The values in kcycles are taken from
Table 8.

Table 9. Comparison of ECDSA [6], QUARTZ [6] and GUI [11]

scheme security
level
(bits)

signature
size
(bits)

public
key size
(bytes)

private
key size
(bytes)

keys
setup
(ms)

signing
(ms/kcycles)

verifying
(ms/kcycles)

RSA 80 1024 128 128 - -/2080 -/74
ECDSA 80 326 48 24 1.6 1.9/- 5.1/-
QUARTZ 80 128 >71000 >3700 3100 11000/167485 0.24/375
GUI 80 120 >60000 >3000 - -/1479 -/325

GUI

QUARTZ

ECDSA

RSA 1,024

326

120

128

sign size (bits)

Fig. 4. Comparison of signature sizes of
RSA, ECDSA, QUARTZ and GUI in
bits

GUI

QUARTZ

ECDSA

RSA
128

48

60,000

71,000

128

24

3,000

3,700

pub key size (bits)

priv key size (bits)

Fig. 5. Comparison of key sizes of RSA,
ECDSA, QUARTZ and GUI in bits

28 ECDSA and QUARTZ vs. RSA

ECDSA has approximately 2.5 times bigger signatures than QUARTZ, but
performs better in every other aspect except verification time. The public and
private keys in QUARTZ are respectively 1500 times and 150 times bigger than
that of ECDSA. Furthermore, QUARTZ takes 2000 times more time to generate
keys and is more than 5000 times slower when signing a message. Verification
however is approx. 20 times faster in QUARTZ than in ECDSA. Since GUI is
over 100 times faster than QUARTZ while signing, the ratio for the signature
generation speed between GUI and ECDSA cuts down to under 50. For all other
aspects, QUARTZ and GUI are in the same magnitude and therefore, the GUI
to ECDSA comparison yields similar ratios as QUARTZ to ECDSA. Thus the
key sizes are the most significant drawback of GUI compared to ECDSA.

The main advantages of ECDSA over RSA are key size and signature gener-
ation speed while the main disadvantage compared to RSA is verification speed.
In summary, the performance data of ECDSA are more balanced than those of
RSA in terms of key size, signature generation speed and verification speed while
providing a much smaller signature size. The main drawback of QUARTZ/GUI
in comparison to RSA is the size of the keys whereas the main advantage is the
smaller signature size. Unlike QUARTZ, GUI can compete with RSA because of
its signature generation speed being in the same magnitude as RSA’s, leading to
the trade-off between the signature size (1/8 times RSA’s) and the verification
speed (≈ 5 times RSA’s).

As mentioned in Sec. 4.6, QUARTZ is absolute since GUI achieves the same
advantages over RSA and ECDSA with fewer disadvantages. Therefore, only
GUI and ECDSA are considered in the following recommendations.

In scenarios of IoT and constraint devices, the characteristic values to eval-
uate the suitability of signature algorithms mainly are signature size, key sizes,
generation and verification speed. Since multiple entities may need to verify the
same signature or the same signature may need to be verified multiple times,
verification speed is important. Nevertheless, most of the verification in IoT sce-
narios is done on big servers, so even though ECDSA and GUI are slower than
RSA in terms of signature verification, there are still IoT scenarios for which
they are suitable.

So if verification speed is not a crucial factor, ECDSA is preferred over RSA
because of its small signature size, small key size and signature generation speed,
which help to prevent network congestion as well as suite the limited resources of
constraint devices better. Also, ECDSA provides the best signature generation
speed compared to GUI and RSA and is therefore suitable for devices that often
send, but (nearly) never receive signed messages, such as sensors (which occur
frequently in an IoT-scenario).

If devices have enough space to handle large keys, GUI outperforms ECDSA
in every case except the last mentioned case, where a device only signs messages,
because of its small signature size, small verification time and tolerable signature
generation speed.

In summary it can be said, therefore, that ECDSA and GUI, under conditions
mentioned above, are suitable for usage in an IoT-context.

ECDSA and QUARTZ vs. RSA 29

References

1. Braun, M., Kargl, A.: A Note on Signature Standards. In: IACR Cryptology ePrint
Archive 2007. (2007)

2. Brown, D.R.L: Standards for Efficient Cryptography, SEC 2: Recommended Ellip-
tic Curve Domain Parameters. Certicom Research, Certicom Corp. (2010)

3. Brumley, BB., Tuveri, N.: Remote timing attacks are still practical. In: Computer
Security-ESORICS 2011 Sep 12, pp. 355-371, Springer Berlin Heidelberg. (2011)

4. Bundesamt für Sicherheit in der Informationstechnik: Elliptic Curve Cryptography,
Technical Guideline TR-03111, Version 2.0. Federal Office for Information Security.
(2012)

5. Bushing, Marcan, Segher, Sven.: Console Hacking 2010, PS3 Epic Fail. In 27th
Chaos Communication Congress. (2010)

6. Chen, J., Yang, B.: A More Secure and Efficacious TTS Signature Scheme. ICISC
2003, LNCS vol. 2971, pp. 320-338. Springer. (2003)

7. Courtois, N.: The security of Hidden Field Equations (HFE). In Cryptographers’
Track RSA Conference, volume 2020 of Lectures Notes in Computer Science, pp.
266-281. (2001)

8. Courtois, N., Daum, M., Felke, P.: On the Security of HFE, HFEv- and Quartz.
PKC 2003, LNCS vol. 2567, pp. 337-350. Springer. (2002)

9. Courtois, N., Goubin, L., Patarin, J.: Quartz, an asymmetric signature scheme for
short signatures on PC. Submission to NESSIE, second revised version, October
2001, can be found at http://www.minrank.org/quartz-b.pdf.

10. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. EUROCRYPT 2000,
LNCS vol. 1807, pp. 392-407. Springer. (2000)

11. Ding, J., Petzoldt, A., Chen, M., Yang, B.: Gui: Revisiting Multivariate Digi-
tal Signature Schemes based on HFEv-. 2015, http://csrc.nist.gov/groups/

ST/post-quantum-2015/papers/session1-ding-paper.pdf.

12. Ding, J., Schmidt, D: Rainbow, a new multivariable polynomial signature scheme,
In ACNS’05 Proceedings of the Third international conference on Applied Cryp-
tography and Network Security, pp. 164-175. (2005)

13. eBATS: ECRYPT Benchmarking of Asymmetric Systems. Part of eBACS:
ECRYPT Benchmarking of Cryptographic Systems. Virtual Applications and Im-
plementations Research Lab. http://bench.cr.yp.to Accessed on 17-02-2016

14. Faugère, J.: A new efficient algorithm for computing Gröbner bases without re-
duction to zero (F5). Proceeding ISSAC ’02 Proceedings of the 2002 international
symposium on Symbolic and algebraic computation. pp 75-83. (2002)

15. Goldwasser, S., Micali, S., and Rivest, R.L.: A digital signature scheme secure
against adaptive chosen-message attacks. In: SIAM J. Comput. 17, 2 (April 1988),
pp. 281-308. (1988)

16. Gupta, V., Gupta, S., Chang, S. and Stebila, D.: Performance analysis of elliptic
curve cryptography for SSL. In: Proceedings of the 1st ACM workshop on Wireless
security, 2002, September, (pp. 87-94). ACM. (2002)

17. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer-Verlag New York Inc. (2004)

18. HFE Challenge 1. http://hfe.minrank.org/. Accessed on 15-2-2016.

19. Hess E., Schafheutle, M., and Serf, P.: The Digital Signature Scheme ECGDSA.
Siemens AG, Corporate Technology, Dept. CT IC 3. (2006)

30 ECDSA and QUARTZ vs. RSA

20. Hitchcock, Y., Dawson, E., Clark, A., Montague, P.: Implementing an efficient el-
liptic curve cryptosystem over GF(p) on a smart card. In: ANZIAM J. 44(E):C354-
C377. (2003)

21. Hutter, M., Medwed, M., Hein, D., Wolkerstorfer, J.: Attacking ECDSA-enabled
RFID devices. In: Applied Cryptography and Network Security 2009 Jun 2, 519-
534, Springer Berlin Heidelberg. (2009)

22. Johnson, D., Menezes, A., Vanstone, S.A.: The Elliptic Curve Digital Signature
Algorithm (ECDSA). In: Int. J. Inf. Sec. 1 (1). pp. 36-63. (2001)

23. Khalique, A., Singh, K., Sood. S.: Implementation of Elliptic Curve Digital Signa-
ture Algorithm. In: Int. J. Com. App. Vol. 2 (2), 21-27. (2010)

24. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by
Relinearization. CRYPTO 99, LNCS vol. 1666, pp. 19-30. Springer. (1999)

25. Koblitz, N.: Elliptic curve cryptosystems, Mathematics of Computation 48 (177),
pp. 203-209. (1987)

26. Lim, C.H., Lee, P.J.: The Korean certificate-based digital signature algorithm. In:
Computers & Electrical Engineering, Vol. 4. pp. 249-265. (1998)

27. Lochter, M., Merkle, J.: RFC 5639: Elliptic Curve Cryptography ECC Brainpool
Standard Curves and Curve Generation. (2010) http://tools.ietf.org/html/

rfc5639

28. Medwed, M., Oswald, E.: Template attacks on ECDSA. In: Information Security
Applications 2008 Sep 23. pp. 14-27, Springer Berlin Heidelberg. (2008)

29. Miller, V.: Use of elliptic curves in cryptography. In: CRYPTO, Lecture Notes in
Computer Science 85. pp. 417-426. (1985)

30. National Institute of Standards and Technology: FIPS PUB 186-4, Digital Signa-
ture Standard (DSS). (2013)

31. National Institute of Standards and Technology: NIST Special Publication 800-57
Part 1 Revision 4, Recommendation for Key Management Part 1: General. (2016)

32. National Security Agency: Fact Sheet Suite B Cryptography. NSA. (2015)
33. Patarin, J., Courtois, N., Goubin, L.: QUARTZ, 128-Bit Long Digital Signatures.

CTRSA 2001, LNCS vol. 2020, pp. 282-297. Springer. (2001) See [9] for the updated
version.

34. Patarin, J., Courtois, N., Goubin, L.: Flash, a fast multivariate signature algorithm.
CTRSA 2001, LNCS vol. 2020, pp. 298 - 307. Springer. (2001)

35. Richards, C.: Algorithms for Factoring Square-Free Polynomials over Finite Fields.
Master Thesis, Simon Fraser University (Canada). (2009)

36. Salter, M.: RFC 6460: Suite B Profile for Transport Layer Security (TLS). (2012)
https://tools.ietf.org/html/rfc6460

37. Sarath, G. Jinwala, D.C., Patel, S.: A Survey on Elliptic Curve Digital Signature
Algorithm and its Variants. In: Second International Conference on Computational
Science and Engineering (CSE-2014) Dubai, UAE. pp. 121-136. (2014)

38. Schmidt, JM., Medwed, M.: A fault attack on ECDSA. In: Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2009 Workshop on 2009 Sep 6, IEEE. pp.
93-99. (2009)

39. Stegers, T., Buchmann, J.: Faugère’s F5 Algorithm Revisited. Thesis For The
Degree Of Diplom-Mathematiker, Technische Universität Darmstadt. (2005)

40. Vaudenay, S.: The Security of DSA and ECDSA. In: Public Key Cryptography -
PKC 2003: 6th International Workshop on Practice and Theory in Public Key
Cryptography Miami, FL, USA, January 6–8, 2003 Proceedings. pp. 309-323.
(2003)

41. Vanstone, S.A.: Next generation security for wireless: elliptic curve cryptography.
In: Computers & Security 22.5: 412-415. (2003)

ECDSA and QUARTZ vs. RSA 31

42. Wolf, C., Preneel, B.: Taxonomy of Public Key Schemes based on the problem
of Multivariate Quadratic equations. (2005) http://eprint.iacr.org/2005/077.
pdf.

43. Westhoff, D., Lamparter, B., Paar, C., Weimerskirch, A.: On digital signatures in
ad hoc networks. European transactions on telecommunications, 16(5), pp.411-425.
(2005)

44. Zhang, X., Zhou, M., Zhuang, J. X., Li, J.: Implementation of ECC-Based Trusted
Platform Module. In: 2007 International Conference on Machine Learning and
Cybernetics, Hong Kong, pp. 2168-2173. (2007)

45. Yasuda, T., Dahan, X., Huang, Y., Takagi, T., Sakurai, K.: MQ Challenge: Hard-
ness Evaluation of Solving Multivariate Quadratic Problems. Cryptology ePrint
Archive, Report 2015/275. (2015)

46. Zhu, L., Jaganathan, K., Lauter, K.: Elliptic Curve Cryptography (ECC) Support
for Public Key Cryptography for Initial Authentication in Kerberos (PKINIT).
(2008) https://tools.ietf.org/html/rfc5349

