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Abstract. The Montgomery multiplication is often used for an efficient
implementations of public-key cryptosystems. This algorithm occasion-
ally needs an extra subtraction in the final step, and the correlation of
these subtractions can be considered as an invariant of the algorithm.
Some side channel attacks on cryptosystems using Montgomery Multi-
plication has been proposed applying the correlation estimated heuristi-
cally. In this paper, we theoretically analyze the properties of the final
subtraction in Montgomery multiplication. We investigate the distribu-
tion of the outputs of multiplications in the fixed length interval included
between 0 and the underlying modulus. Integrating these distributions,
we present some proofs with a reasonable assumption for the appearance
ratio of the final subtraction, which have been heuristically estimated by
previous papers. Moreover, we present a new invariant of the final sub-
traction: x · y with y = 3x mod m, where m is the underlying modulus.
Finally we show a possible attack on elliptic curve cryptosystems using
this invariant.

Keywords: timing attack, elliptic curve cryptosystem, Montgomery mul-
tiplication, randomization.

1 Introduction

The Montgomery Multiplication is widely utilized in implementations for public-
key cryptosystems [9]. The Montgomery multiplication is an efficient algorithm
for computing modular multiplication without the use of relatively expensive
division with remainder, and it is suitable for the memory-constraint devices
such as smart cards.

Since 1996 timing attacks gained more and more interest. After Kocher [6, 7]
started with the first attacks on DSS and RSA numerous researchers worked on
this topic. RSA and DES were probably the targets which have been attacked
most. This kind of attack is especially attractive to smart cards. Dhem et al. pro-
posed the first timing attack on RSA using Montgomery multiplication [4]. They
focused on the final subtraction which appears in the Montgomery multiplica-
tion. They experimentally showed a timing attack by analyzing the distribution
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of the appearance ratio correlated to the secret information. From their experi-
ment the appearance ratio is about 17% on average.

After the timing attack, some theoretical analysis about the final subtraction
have been investigated. Schindler heuristically showed a relationship between the
appearance ratio and the underlying parameters [10]. He estimated the appear-
ance ratio is x mod m

2R , where x ∈ ZZ/nZZ and R is the Montgomery constant.
On the other hand, Walter and Thomson estimated that the ratio for a squaring
is 0.33 and that for a multiplication is 0.25 if the modulus m is near to Mont-
gomery constant R [14]. The attacker is able to distinguish a squaring and a
multiplication by observing the final subtraction of Montgomery multiplication.

In this paper, we present some exact analysis on Montgomery multiplica-
tion under a reasonable assumption. Firstly we divide the interval between 0
and the underlying modulus into intervals with length R, then we investigate
the distribution of outputs of multiplications in each interval. Integrating these
results, we prove that the appearance ratios of the final subtraction in Mont-
gomery multiplication and squaring are asymptotically m

4R and m
3R , respectively.

The assumption effects only the case that m ≈ R where m is the modulus and
R is the Montgomery constant. Schindler’s heuristic function x mod m

2R is proved
as well. This assumption describes clearly the behavior of the Montgomery mul-
tiplication’s final subtractions.

We present a new invariant of the Montgomery multiplication as well. Namely
we show that the multiplication x ·y with y = 3x mod m has a different subtrac-
tion ratio from both multiplication and squaring. This operation often appears in
the addition formula of elliptic curve cryptosystems. We show a possible timing
attack based on this invariant. Indeed, the randomization presented by Coron’s
3rd [3] could be vulnerable to the attack. This is different to the attack of Goubin
[5] because we have the opportunity of choosing in more points than a special
one of the curve. Finally we show an experimental result on the appearance ratio
discussed in this paper.

This paper is organized as follows: In Section 2 we shortly review the Mont-
gomery multiplication and the timing attack using the final subtraction of the
Montgomery multiplication. In Section 3 we present the proposed exact estima-
tion about the appearance ratio of the final subtraction. In Section 4 we show a
new timing attack and its analysis. In Section 5 we state the concluding remark.

2 Montgomery Multiplication and Timing Attack

In this section we shortly review the Montgomery multiplication and some timing
attacks using the appearance probability of the last subtraction.

2.1 Montgomery Multiplication

The Montgomery Multiplication [9] is an efficient algorithm for computing mod-
ular multiplications without using relatively expensive divisions, and is widely
utilized for public-key cryptosystems. Especially, it is suitable for the memory-
constraint devices such as smart cards.
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Note that the Montgomery multiplication has outputs slightly different from
ordinary modular multiplications. In an exponentiation these can be corrected by
three extra Montgomery multiplication. Because the Montgomery multiplication
outputs results in the residue class without any divisions it is the fastest way to
multiply. This is because if the radix b is chosen suitably the divisions are only
shifts. Shifts are basic operations in hardware and are therefore fast.

The following algorithm is taken from [8]

Algorithm 1: Montgomery multiplication

Input: m = (mn−1 · · ·m0)b, X = (xn−1 · · ·x0)b, Y = (yn−1 · y0)b, b = 2k,
R = bn, gcd(m, b) = 1, m′ = −m−1 mod b.

Output: XY R−1 mod m .
1. A← 0 (A = (an · · · a0)b).
2. For i from 0 to (n− 1) do:

temp← 0,
For j from 0 to (n− 1) do:
{temp, aj} ← xjyi + aj + temp,

an ← temp, temp← 0, ui ← a0m
′ mod b,

For j from 0 to n do:
{temp, aj} ← mjui + aj + temp,

A← A/b.
3. If A ≥ m, A← A−m. ⇐ Final Subtraction

4. Return(A).

The running time of the steps can be analyzed as follows: The computations
in step 2 are expected to take approximately constant time. This is because of
the repetition in every multiplication and the constant n reputations of the for-
loops. After step 2 the value of A varies between 0 and twice the modulus. A
subtraction has to be done if A is larger than the modulus. This subtraction is
called final subtraction.

2.2 Timing Attack and its Analysis

We shortly review the timing attack on RSA cryptosystem using the Mont-
gomery multiplication.

Dhem et al. simulated a timing attack on the CASCADE smart card [4]. They
focused that the probability of the final subtraction depends on the message and
the secret bit. The attacker can guess the secret bit by observing the distribution
of the final subtraction. The authors stated the final subtraction occurs in a
multiplication of two random inputs in about 17% of the time. They expected
a 512-bit RSA key to be cracked within a few minutes once 350 000 timing
measurements are collected.

There are some theoretical estimations for the probability of the final subtrac-
tion. Walter and Thomson investigated the probability of the final subtraction
appeared in Montgomery multiplication [14, 13, 11]. They showed the following
estimations under several convenient conditions for simplicity.

Pmul =
R

4m

(

1−
(

1− m

R

)2
)

−
(

1− m

R

)

− R

2m

(

1− m

R

)2

log
(

1− m

R

)

, (1)
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Psqr = 1− 2R

3m

(

1−
(

1− m

R

)3/2
)

, (2)

where Pmul, Psqr are the probability of the final subtraction appeared in Mont-
gomery multiplication for general multiplications and squarings respectively. In-
terestingly, the probability for squaring is 1/3 and that for multiplication is 1/4
for m ≈ R. It is an open problem to show a general formula of the probability.

Schindler proposed another timing attack on RSA using the Chinese remain-
der theorem [10]. He estimated heuristically the probability of the final subtrac-
tion is

c mod m

2R
, (3)

where c is a ciphertext and m is the secret modulus. The secret modulus m can
be calculated by the chosen ciphertext setting. As he stated in the paper, the
precise proof for the formula is not given yet.

3 Exact Analysis of Montgomery Multiplication

In this section we analyze the distribution of the final subtraction in Montgomery
multiplication. We will investigate the distribution for the general case and some
special cases, and summarize these in section 3.5.

In case of R = b (n = 1), Montgomery Multiplication is given by the following
simple form.

Algorithm 2: Montgomery multiplication - special case

Input: m, X, Y, R, gcd(m,R) = 1, m′ = −m−1 mod R
Output: XYR−1 mod m .
S-1. u← xym′ mod R.
S-2. A← (xy + um)/R.
S-3. If A ≥ m, A← A−m.
S-4. Return(A).

First of all, we will reduce the problem for Algorithm 1 to that for Algo-

rithm 2 . Thus we will prove the following lemma.

Lemma 1. For inputs of Algorithm 1 and Algorithm 2 , the final subtrac-
tion in step 3 of Algorithm 1 is performed if and only if the final subtraction
in step S-3 of Algorithm 2 is performed.

Proof. In step 2 of Algorithm 1 , in order to distinguish, let us denote A for
each i by Ai. Then it can be easily seen that

An−1 =
xy + (

∑n−1
i=0 ui)m

bn
,

and we can see that the subtraction in step 3 is performed if and only if An−1 ≥
mbn = mR. Let us set S =

∑n−1
i=0 ui. Then by the validity of Montgomery
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Multiplication, we have that An−1 is an integer, namely, xy + Sm ≡ 0 mod bn.
Hence S ≡ −xy/m mod R. Moreover, as an integer, S < R, thus we have

S = (−xy/m mod R).

Note that the right hand side is an integer not less than 0 and less than
R. Therefore, we have that the subtraction in step 3 is performed if and only
if xy + (−xy/m mod R)m ≥ mR, and this condition is nothing less than the
equivalent condition for the final subtraction in step S-3 of Algorithm 2 . ut

3.1 Preparation

In the following, we will consider the problem for Algorithm 2 . After step S-2
we obtain the following equation:

A = (xy + (xym′ mod R)m)/R (4)

Thus we can see that

A ≥ m ⇔ xy + (xym′ mod R)m ≥ mR. (5)

Here we set w = xy, and consider the approximation of the following equation

g(m,R) := #
{

w ∈ Z | 0 ≤ w ≤ (m− 1)2, w + (wm′ mod R)m ≥ mR
}

. (6)

When we represent w = η + ξR, 0 ≤ η < R, 0 ≤ ξ ≤ (m − 1)2/R, then the
equation in the left side of (6) becomes

η + ξR + (ηm′ mod R)m. (7)

This number should be divisible by R, so that we can represent (ηm′ mod
R)m = −η+ πR for some integer π = π(η) depending on η. Moreover, we know
π ≤ (R − 1)(m + 1)/R due to 0 ≤ (ηm′ mod R)m ≤ (R − 1)m. Therefore, if
m < R− 1 holds, then we obtain 0 ≤ π ≤ m− 1. Next, we assume the following
distribution.

Assumption DIS. α := ηm′ mod R distributes in interval 0 ≤ α < R
uniformly and randomly for R-fold different η.

We know that this assumption is adequate experientially†. From this as-
sumption, we can see that π distributes in interval 0 ≤ π < m uniformly and
randomly for R-fold different η. Indeed, for 0 < η, η′ < m, it is easy to see
that π(η) = π(η′) if and only if η = η′. Moreover the random distribution of
ηm′ mod R induces the random distribution of π. Hence we can see that one π
corresponds to R/(m+1)-fold η on average, namely there is an (R/(m+1))-to-1
map between π and η. On the other hand, Equation (7) can be represented as
R(ξ + π). If ξ + π ≥ m, then R(ξ + π) is greater than mR. For fixed ξ, the

† Since m′ ∈ (Z/RZ)×, the m′-multiplication map η 7→ ηm′ mod R is bijective. Thus
ηm′ mod R are uniformly distributed.
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conditions in (6) is true with ξ-fold π that satisfies m− ξ ≤ π ≤ m−1. We know
that ξ satisfies 0 ≤ ξ ≤ (m− 1)2/R, and thus we have obtained

g(m,R) ≈
(m−1)2

R
∑

ξ=0

R

m+ 1
ξ ≈

∫
(m−1)2

R

1

Rx

m+ 1
dx ≈ m3

2R
− R

2m
. (8)

Note that we used m± 1 ≈ m for the final approximation.

3.2 Distribution of the Final Subtraction in The General Case

Next, we consider the distribution of xyR−1 mod m with the final subtraction
in the following. Previously we set w = xy, but xy is not uniformly distributed
in interval [0, (m − 1)2] for 0 ≤ x, y ≤ m − 1. We consider the divided interval
[0, (m− 1)2] with width R. In general, we set GN := {0, 1, 2, · · · , N − 1} ⊂ Z for
natural integer N and let φ = φN be the multiplication map:

φ : GN ×GN → G(N−1)2+1, (x, y) 7→ xy.

For fixed ξ, the value w = η+ ξR runs between ξR and (ξ + 1)R. Denote by
Fφ(ξ) the number of the images of φm : Fφ(ξ) := # { Im(φm) ∩ [ξR, (ξ + 1)R) }.
Then, for fixed ξ the probability that the integers in [ξR, (ξ + 1)R) are equal to
the image of map φm is given by Fφ(ξ)/R. In the words, the number of π that
are contained in the image of φm is given by

Fφ(ξ)

R
ξ. (9)

On the other hand, let Gφ(ξ) denote the number of integers 0 ≤ x, y ≤ m−1
whose images by φ = φm are in the interval [ξR, (ξ + 1)R):

Gφ(ξ) := #{(x, y) ∈ Gm ×Gm | φm(x, y) ∈ [ξR, (ξ + 1)R)}.

From ξR ≤ xy ≤ (ξ + 1)R and the condition of x, y, we have

ξR

m
≤ x < m, (10)

and for a fixed x, the number of y that satisfies the conditions is exactly R/x
(more precisely we should consider its floor value). Hence we have

Gφ(ξ) ≈
∑

ξR/m≤x<m

R

x
≈ R(2 logm− logR − log ξ).

Therefore, among the image of φm from the interval [ξR, (ξ+1)R), there are
Gφ(ξ)/Fφ(ξ) ≈ R(2 logm− logR− log ξ)/Fφ(ξ) elements mapped from (x, y) on
average. Consequently, for fixed ξ, the number of images of the map φm is equal
to Fφ(ξ)ξ/R among ξ-fold π. Each image has R(2 logm−logR−log ξ)/Fφ(ξ)-fold
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pre-images of (x, y) on average. Therefore, for w in [ξR, (ξ + 1)R), the number
that stratifies (4) with x, y is

R(2 logm− logR − log ξ)

Fφ(ξ)
· Fφ(ξ)

R
ξ · R

m+ 1
=
R(2 logm− logR − log ξ)ξ

m+ 1
.

Let t(m,R) denote the number of (x, y) that satisfies Equation (5):

s(m,R) := # {(x, y) ∈ Z× Z | 0 ≤ x, y ≤ m− 1, xy + (xym′ mod R)m ≥ mR} .

Then from the above argument, we have the following approximation formula.

s(m,R) ≈ R

m+ 1

(m−1)2/R
∑

ξ=1

(

log
m2

R
− log ξ

)

ξ

≈ R

m+ 1

∫ (m−1)2/R

1

(

log
m2

R
− logx

)

xdx (11)

≈ R

m+ 1

{

1

4

(

(m− 1)2

R

)2

+

(

1− log
m2

R

)

}

(12)

≈ m3

4R
+
R

m

(

1− log
m2

R

)

. (13)

Here, the transformation from (11) to (13) is obtained by the partial deriva-
tion and m± 1 ≈ m.

3.3 The Case of x = y

We consider the case of x = y, thus we will estimate the following.

t(m,R) := #
{

x ∈ Z | 0 ≤ x ≤ m− 1, x2 + (x2m′ mod R)m ≥ mR
}

.

We follow the estimation for the general case. Let Gψ(ξ) denote the number
of integers 0 ≤ x ≤ m − 1 whose images by ψ(x) = ψm(x) := x2 are in the
interval [ξR, (ξ + 1)R) :

Gψ(ξ) := #{x ∈ Gm | ψm(x) ∈ [ξR, (ξ + 1)R)}.

Because of
√
ξR ≤ x <

√

(ξ + 1)R < m, we have

Gψ(ξ) ≈
∑

√
ξR≤x<

√
(ξ+1)R

1 ≈
√

(ξ + 1)R−
√

ξR.

Hence, among the image of ψm in the interval [ξR, (ξ + 1)R), there are
Gψ(ξ)/Fψ(ξ) ≈ (

√

(ξ + 1)R−√ξR)/Fψ(ξ) elements mapped from x on average,
where Fψ(ξ) denote the number of the images of ψm : Fψ(ξ) := # { Im(ψm) ∩ [ξR, (ξ + 1)R) }.
Therefore, for w in [ξR, (ξ + 1)R), the number that stratifies (5) with x is

√

(ξ + 1)R−
√
ξR

Fψ(ξ)
· Fψ(ξ)

R
ξ · R

m+ 1
=

√
R

m+ 1

(

√

(ξ + 1)−
√

ξ
)

ξ.

7



Thus we have following approximation.

t(m,R) ≈
√
R

m+ 1

(m−1)2

R
∑

ξ=1

(

√

ξ + 1−
√

ξ
)

ξ

≈
√
R

m+ 1

∫
(m−1)2

R

1

(√
x+ 1−

√
x
)

xdx

≈
√
R

m+ 1

(

1

3

(

(m− 1)2

R

)3/2

+
15

8

(

(m− 1)2

R

)1/2
)

.

As in the previous section, using m± 1 ≈ m and ignoring small constant, we
have

t(m,R) ≈ m2

3R
. (14)

3.4 The Case of fixed x

We consider the case that x is fixed in the following. Let x be an integer such
that 0 ≤ x < m, and fix. If the multiplication xy for 0 ≤ y < m lies in the
interval [ξR, (ξ + 1)R), then from the equation (10), we have

ξ ≤ mx

R
. (15)

In this case, for R/x-folds y, the image of φm is in [ξR, (ξ+1)R) (if ξ > mx/R,
then no image for y is in this interval). On the other hand, we have to consider
the distribution of xym′ mod R for m-fold y instead of that of ηm′ mod R for
R-fold η in Assumption DIS, and the former strongly depends on the fixed x.
We will focus on the gcd of x and R in the following.

Lemma 2. Let x′ = gcd(x,R). Then for any r(< R), there exists some s =
s(r) < R/x′ such that xr mod R = sx′ (< R as an integer).

Proof. As an integer, let xr = αR + β, β ≤ R − 1, then we have β ≡ 0 mod x′.
Hence putting β = sx′ as an integer, we have s ≤ (R−1)/x′ and xr mod R = sx′.

ut

Using this lemma, in the equation (4), there exists s ≤ (R/x′) − 1 such
that xym′ mod R = x′s. Hence we have xy + (xym′ mod R)m = xy + x′sm ≤
mR + xy − x′m. Therefore, for y such that y < x′m/x, the subtraction is not
performed. So from equation ξm/x < y, for ξ satisfying

ξ <
x′m

R
, (16)

the subtraction is not performed. Hence, similarly to the general case, an ap-
proximation of the number

u(x,m,R) := #{y ∈ Z | 0 ≤ y ≤ m− 1, xy + (xym′ mod R)m ≥ mR}
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is given by following (using m± 1 ≈ m).

u(x,m,R) ≈ R

x(m+ 1)

mx
R
∑

ξ= mgcd(x,R)
R

ξ ≈ m

2xR
(x2 − gcd(x,R)2). (17)

Remark 1. In case of z := −x/m mod R is very small (e.g. z = 1, 2, . . .) or very
large(e.g. z = R− 1, R− 2, . . .), we can see that there are some bias. In order to
explain these bias, we need to consider u as a function of x, m, R and z.

3.5 Comparison of Probability

There are m2 inputs for the general case and m inputs for the case of x = y,
y = ax mod m and fixed x. Therefore, from the previous sections, we have
obtained the following probabilities.

g(m,R)

m2
≈ m

2R
,

s(m,R)

m2
≈ m

4R
,

t(m,R)

m
≈ m

3R
,

u(x,m,R)

m
≈ 1

2xR
(x2 − gcd(x,R)2).

Consequently, we obtain the following theorem.

Theorem 1. We assume that the assumption DIS is true. The final subtraction
of Montgomery multiplication asymptotically appears with probability m

4R . If two
inputs are equal (i.e. Montgomery squaring), then the probability becomes m

3R .

If we choose m → R, then these ratios for Montgomery multiplication and
squaring converge 1

4 and 1
3 , respectively. On the other hand, for m→ R/2, these

ratios converge 1
8 and 1

6 , respectively.

Corollary 1. For randomly chosen m, the average ratio of the final subtraction
in Montgomery multiplication (or Montgomery squaring) is asymptotically about
0.188 (or 0.250), respectively.

Proof. From the assumption, m randomly distributes in interval [R2 , R]. Then
the average ratio for Montgomery multiplication is 3

16 = 0.1875. Similarly, we
can estimate 1

4 = 0.25 for Montgomery squaring. ut

4 Application to Elliptic Curve Cryptosystems

In this section we shortly review elliptic curve cryptosystems, and side chan-
nel attack on them. Then we show a new invariant of a special Montgomery
multiplication used for elliptic curve cryptosystems.
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4.1 Elliptic Curve Cryptosystems

Elliptic curves over a finite prime field K = GF (m) with m > 3 are defined by

E : {(x, y) ∈ K2|y = x3 + ax+ b} ∪ {O}, (18)

where a, b ∈ K, 4a3 + 27b2 6= 0, and O is a point at infinity. The Elliptic curve
E has a group structure with neutral element O. The group operation of the
elliptic curve is as follows:

Let E denote an elliptic curve and P1 = (x1, y1) and P2 = (x2, y2) denote
points on the curve then −P1 = (x1,−y1). P3 = P1 +P2 is calculated by

x3 =

{

λ2
1 − x1 − x2 : P1 6= P2

λ2
2 − 2x1 : P1 = P2

y3 =

{

(x1 − x3)λ1 − y1 : P1 6= P2

(x1 − x3)λ2 − y1 : P1 = P2

where λ1 = y1−y2
x1−x2

and λ2 =
3x2

1+a
2y1

.

We denote by ECADD by the first formula and ECDBL by the second,
respectively. In order to avoid the expensive inversion operation in the affine
coordinates, we usually use the Jacobian coordinates [2]. A point P = (x, y)
in the affine coordinates is represented by P = (X,Y, Z) with x = X/Z2 and
y = Y/Z3 in the Jacobian coordinates. The addition formula in the Jacobian
coordinates is as follows:

ECDBL in Jacobian Coordinates (ECDBLJ ) :
X3 = T , Y3 = −8Y1

4 +M(S − T ), Z3 = 2Y1Z1,
S = 4X1Y1

2, M = 3X1
2 + aZ1

4, T = −2S +M2.

ECADD in Jacobian Coordinates (ECADDJ ) :
X3 = −H3 − 2U1H

2 +R2, Y3 = −S1H
3 +R(U1H

2 −X3), Z3 = Z1Z2H ,
U1 = X1Z2

2, U2 = X2Z1
2, S1 = Y1Z2

3, S2 = Y2Z1
3, H = U2−U1, R = S2−S1.

The group offers the scalar multiplication of k · P, k ≤ ord(E) for a point
P with order q on a curve E. A standard double-and-multiply algorithm can
compute the scalar multiplication, but it is not secure against the timing attack.
The double-and-multiply-always method can resist the timing attack [3].

Algorithm 3: Coron dummy

Input: d = (dn−1 · · · d1d0)2, P ∈ E(K) (dn−1 = 1)
Output: dP .
1. Q[0]← P
2. For i = (n− 2) down to 0 do:

Q[0]← ECDBL(Q[0]),
Q[0]← ECADD(Q[0], P )
Q[0]← Q[di]

3. Return(Q[0]).
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4.2 DPA and Countermeasure

The differential power analysis (DPA) observes many power consumptions and
analyze these information together with statistic tools. Even if a method is secure
against the timing attack, it might not be secure against the DPA. The DPA
attacker tries to guess that the computation cP for an integer c is performed
during the exponentiation. She gathers many power consumptions cPi with i ∈
1, 2, 3, . . ., and detects the spike arisen from the correlation function based on
the specific bit of cPi. The DPA can break Algorithm 2, because the sequence of
generated points is deterministic and the DPA can find correlations for a specific
bit.

Coron pointed out that it is necessary to insert random numbers during
the computation of dP to prevent DPA [3]. The randomization eliminates the
correlation between the secret bit and the sequence of points. The main idea
of these countermeasures is to randomize the base point before starting the
scalar multiplication. If the base point is randomized, there is no correlation
among the power consumptions of each scalar multiplication. The DPA cannot
obtain the spike of the power consumption derived from the statistical tool.
This countermeasure is based on randomization of Jacobian coordinates. To
prevent DPA we transform P = (x, y) in affine coordinate to P = (r2x, r3y, r) in
Jacobian coordinates for a random value r ∈ K∗. This randomization produces
the randomization in each representation of the point and the randomization of
power consumptions during scalar multiplication dP .

However, Goubin proposed a DPA on Coron’s randomization [5]. He pointed
out that the point (0, y) can not be randomized by Coron’s randomization. Ak-
ishita and Takagi extended his attack to the case of auxiliary registers, called
zero-value point attack [1]. The attack adaptively chooses a base point P and
observes side channel information of the scalar multiplication dP , where d is a
secret scalar. The bits of the secret scalar can be recovered if the point (0, y)
or zero-valued register appears. For example, the second most bit dn−1 should
be 1 in Algorithm 3 if and only if for the point (0, y) appears during the scalar
multiplication dP with base point P = (6−1#E)(0, y).

4.3 Proposed Attack

We propose an new attack on Algorithm 3 using the Coron’s 3rd randomization.
Recall that the recommended curve from SECG uses the curve coefficient

a = −3 [12]. If a is chosen as a = −3, the auxiliary parameter M = 3X2 + aZ4

of ECDBL in the Jacobian coordinate is computed by M = 3(X+Z2)(X−Z2),
and the computation time of ECDBL is reduced from 10M to 8M , where M is
the cost of a multiplication in K.

Assume that the underlying curve has the point P whose x-coordinate is
equal to 2 (i.e., (2, y)). This point is randomized by the Coron’s 3rd method:
(2r2, r3y, r) with a random element r ∈ K. Then the auxiliary parameter M
takes value 3(2r2 + r2)(2r2 − r2) = 3(3r2)(r2). This means that ECDBL with
input (2, y) is not totally randomized by the Coron’s 3rd method — there is
an invariant of multiplication with the form (3r2)(r2) under the Coron’s 3rd
randomization.
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Fig. 1. The distribution of the final subtractions appeared in Montgomery multiplica-
tion for x2 (upper), x · y with y = 3 · x mod m (middle), and x · y (lower)

Figure 1 shows that we can statistically distinguish the operation xy mod m
with y = 3x mod m from other operations (e.g., multiplication or squaring). The
lowest curve shows the percentage of final subtractions which take place in the
computation of x · y with 0 ≤ x, y < m. The curve in the middle shows the
results for x · y with y = 3 · x and the upper curve the results for x2.

Because the distinction can be done a timing attack should be possible. The
Coron’s dummy method is vulnerable under the adaptive chosen ciphertext de-
scribed in the previous section. We prove the distribution of the final subtraction
appeared in xy mod m with y = 3x mod m in the following.

Theorem 2. We assume that the assumption DIS is true. The final subtraction
of Montgomery multiplication for xy with y = 3x mod m asymptotically appears
with probability 5m

18R , where m is the underlying modulus.

Proof. Let assume that gcd(3,m) = gcd(3, R) = 1 in this section. We consider
the case of y = 3x mod m in the following. Let c(m,R) be the number of x that
satisfies Equation (5):

c(m,R) := # {x ∈ Z | 0 ≤ x ≤ m− 1, y = 3x mod m, xy + (xym′ mod R)m ≥ mR} .

We follow the estimation for the case of x = y. The number of integers
0 ≤ x ≤ m− 1 and whose images by φm,3(x) = x(3x mod m) are in the interval
[ξR, (ξ + 1)R) is

G3(ξ) := #{x ∈ Gm | φm,3 ∈ [ξR, (ξ + 1)R)}.
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The function φm,3(x) is explicitly represented as follows:

φm,3(x) =







3x2 : 0 ≤ x < m
3

x(3x−m) : m
3 ≤ x < 2m

3
x(3x− 2m) : 2m

3 ≤ x < m.

Using the formula for solving quadratic equation, we can obtain the relation-
ship:

G3(ξ) ≈

8

>

<

>

:

√
ξ + 1 −

√
ξ + µ1(ξ)− µ0(ξ) + ν1(ξ)− ν0(ξ) : 1 ≤ ξ < (m−1)2

3R

µ1(ξ)− µ0(ξ) + ν1(ξ)− ν0(ξ) : (m−1)2

3R
≤ ξ < 2(m−1)2

3R

ν1(ξ)− ν0(ξ) : 2(m−1)2

3R
≤ ξ < (m−1)2

3R
,

where µi(ξ) =

√
m2+12(ξ+i)R

6 and νi(ξ) =

√
4m2+12(ξ+i)R

6 . From the same argu-
ment in the previous section, we are able to obtain the estimation about c(m,R).

c(m,R)

≈ 1

m

√

R

3







(m−1)2

3R
∑

ξ=1

(
√
x+ 1−

√
x) +

2(m−1)2

3R
∑

ξ=1

(µ1(x)− µ0(x)) +

(m−1)2

R
∑

ξ=1

(ν1(x) − ν0(x))







≈ 1

m

√

R

3

(

(

1

3

)5/2(
m2

R

)3/2

+
5
√

3

54

(

m2

R

)3/2

+
4
√

3

27

(

m2

R

)3/2
)

≈ 5

18

m2

R
.

ut

The average probability of occuring the final subtraction over randomly cho-
sen K is 5

24 = 0.208, which is not equal to that of multiplication (0.188) or
squaring (0.250). Similarly, we can prove that multiplication x · (ax) with small
a has a different probability.

5 Conclusion

In this paper we presented some exact analysis related to the final subtraction
of Montgomery multiplication. We investigated the distribution of outputs of
multiplications in short intervals included between 0 and the underlying mod-
ulus. Integrating these results, we proved that the appearance ratios of the fi-
nal subtraction during the Montgomery multiplication in the multiplication and
squaring are asymptotically m

4R and m
3R , respectively.

Based on the analysis we proposed a new invariant for the subtraction,
namely multiplication x ·(3x). We showed that this invariant appears at the ran-
domization of parameter proposed by Coron, we could break it by DPA using the
differences of the appearance ratios between general multiplications, squarings
and the above case.

It is an interesting open problem to investigate further invariants of the
Montgomery multiplication.
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