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Abstract

Choi et al. proposed the modified Paillier cryptosystem (M-Paillier cryp-
tosystem). They use a special public-key g ∈ ZZ/nZZ such that gϕ(n) =
1 + n mod n2, where n is the RSA modulus. The distribution of the pub-
lic key g is different from that of the original one. In this paper, we study the
security of the usage of the public key. Firstly, we prove that the one-wayness
of the M-Paillier cryptosystem is as intractable as factoring the modulus n, if
the public key g can be generated only by the public modulus n. Secondly,
we prove that the oracle that can generate the public-key factors the modulus
n. Thus the public keys cannot be generated without knowing the factoring
of n. The Paillier cryptosystem can use the public key g = 1 + n, which
is generated only from the public modulus n. Thirdly, we propose a chosen
ciphertext attack against the M-Paillier cryptosystem. Our attack can factor
the modulus n by only one query to the decryption oracle. This type of total
breaking attack has not been reported for the original Paillier cryptosystem.
Finally, we discuss the relationship between the M-Paillier cryptosystem and
the Okamoto-Uchiyama scheme.
Keywords: One-wayness, Factoring, Chosen ciphertext attack, Key distribu-
tion, Composite residuosity problem, Paillier cryptosystem.
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1 Introduction

Paillier proposed a probabilistic encryption scheme [Pai99]. The Paillier cryptosys-
tem encrypts a message m by E(m, r) = gmhn mod n2, where g, n is the public key
and h is a random integer. The encryption function E(m, r) has a homomorphic
property: E(m1, r1)E(m2, r2) = E(m1 + m2, r1r2). Therefore, the Paillier cryp-
tosystem has several attractive applications, for example, voting systems, threshold
schemes, etc.

The security of the Paillier cryptosystem has been investigated [Pai99]. Its one-
wayness is as intractable as breaking the computational composite residuosity prob-
lem (C-CRP). Its semantic security (IND-CPA) is as hard as breaking the deci-
sional composite residuosity problem (D-CRP) in the standard model. Paillier and
Pointcheval proposed a conversion technique to be semantically secure against the
adaptive chosen ciphertext attack (IND-CCA2) in the random oracle model [PP99].
Catalano et al. proved that n − b least significant bits of the message are simulta-
neously secure under the difficulty 2b-hard C-CRP [CGH01].

The Paillier cryptosystem have been extended to various schemes. Damg̊ard and
Jurik proposed a scheme with moduli ni(i > 2) that is useful for voting systems
[DJ01]. Galbraith extended the Paillier cryptosystem to a scheme over elliptic curves
[Gal01]. Catalano et al. proposed an efficient variant scheme that encrypts a message
by re(1 + mn) mod n2, where e, n is the RSA public key and r is random integer
in (ZZ/nZZ)× [CGHN01]. Because the encryption key e can be chosen small, the
encryption speed of their scheme is much faster than that of the original scheme.
Sakurai and Takagi investigated the security of their scheme [ST02]. Galindo et al.
constructed their scheme over elliptic curves [GMMV02].

The decryption algorithm of the Paillier cryptosystem involves a modular inversion
L(gλ)−1 modn, where n = pq and λ = lcm(p− 1, q − 1). Choi et al. proposed how
to eliminate the inverse by modifying the generation of the key g [CCW01]. They
use a special public-key g that satisfies gλ = 1 + n mod n2. The distribution of
their keys is not the same as that of the original one. The reduced number-theoretic
problems are different from the original scheme. However, they did not prove the
one-wayness/semantic security for the distribution. We call their scheme as the
modified Paillier cryptosystem (M-Paillier cryptosystem).

Contribution of this paper

In this paper, we investigate the security of the M-Paillier cryptosystem. Let
GM-Paillier be the set of all keys g for the M-Paillier cryptosystem. The density
of the set GM-Paillier is n, and the probability that a random g ∈ (ZZ/n2ZZ)× is con-
tained in the set GM-Paillier is at most 1/ϕ(n), which is negligible in the bit-length
of the public modulus n. Firstly, we prove that the one-wayness of the M-Paillier
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cryptosystem is as intractable as factoring the modulus n if the public key g can
be generated only by the public modulus n, i.e., g is samplable from ZZ/n2ZZ in the
polynomial time of log n. The semantic security of the M-Paillier cryptosystem is as
hard as breaking the decisional composite residuosity problem for the key distribu-
tion GM-Paillier. Secondly, we prove that the oracle that can generate the public-key
factors the modulus n. Thus the public keys cannot be generated without knowing
the factoring of n. The Paillier cryptosystem can use the public key g = 1+n, which
is generated only from the public modulus n. Thirdly, we propose a chosen cipher-
text attack against the M-Paillier cryptosystem. Our attack can factor the modulus
n by only one query to the decryption oracle. This type of total breaking attack
has not been reported for the original Paillier cryptosystem. Finally, we discuss
the relationship between the M-Paillier cryptosystem and the Okamoto-Uchiyama
scheme, regarding the distribution of the public key g.

The proposed chosen ciphertext attack is similar to that for the Rabin cryptosystem
[Rab79]. The public key of the Rabin cryptosystem is only the modulus n, however
for the M-Paillier cryptosystem not only the modulus n but also the key g compose
the public key pair. If we can generate the public key g only by the public modulus
n, the one-wayness of the M-Paillier cryptosystem can be proved as intractable as
factoring n, like in the case of the Rabin cryptosystem. However, we prove that the
public key g can not be generated without factoring n. There is a gap between the
one-wayness of the M-Paillier and factoring. The Okamoto-Uchiyama scheme uses
a similar public key, which is not only the modulus n but also a key g ∈ ZZ/nZZ
such that the order of g in ZZ/p2ZZ is divisible by p [OU98]. The Okamoto-Uchiyama
scheme can be proved as intractable as factoring n. Although the public key g is
used, we can generate the public key g of the Okamoto-Uchiyama scheme from only
the public modulus n in the polynomial time of log n. It is an open problem to
consider the security of the Okamoto-Uchiyama for the special public key g, e.g.,
gp−1 = 1 + p mod p2 proposed by [CCW01].

Notation. In this paper we choose {0, 1, 2, ..,m− 1} as the residue class of modulo
m, namely the elements of ZZ/mZZ are {0, 1, 2, ..,m − 1}. We denote by (ZZ/mZZ)×

the reduced residue class of modulo m such that {a ∈ ZZ/mZZ| gcd(a, m) = 1}. The
notation ordm(r) means the order of element r in (ZZ/mZZ)×, in the other words,
the smallest positive integer x such that rx = 1 mod m.

2 Paillier Cryptosystem

We review the Paillier cryptosystem [Pai99] in this section.

The public key of the Paillier cryptosystem is the RSA modulus n and an element
g ∈ (ZZ/n2ZZ)× whose order is divisible by n. The secret key is λ = lcm (p −
1, q − 1), where p, q are the primes of n = pq. A message m ∈ {0, 1, ..., n − 1} is
encrypted by c = gmhn mod n2 for a random integer h ∈ ZZ/nZZ. Therefore the



4 Modified Paillier Public-Key Primitive

Key Generation
n = pq, the RSA modulus
λ = lcm (p− 1, q − 1)
g ∈ ZZ/n2ZZ s.t. n|ordn2(g)
Public-key: (n, g), Secret key: λ

Encryption of m
m ∈ {0, 1, ..., n− 1}, a message
h ∈R ZZ/nZZ
c = gmhn mod n2, a ciphertext

Decryption of c
m = L(cλ mod n2)L(gλ mod n2)−1 mod n

Figure 1: Paillier Cryptosystem

Paillier cryptosystem is a probabilistic encryption and has a homomorphic property.
The ciphertext c is decrypted by m = L(cλ mod n2)L(gλ mod n2)−1 mod n using the
secret key λ, where L(a mod n2) = (a−1)/n for an integer a such that a = 1 mod n.

The key g is the element of (ZZ/n2ZZ)× s.t. n|ordn2(g). In the group (ZZ/n2ZZ)×,
there are (n − 1)ϕ(n) elements whose order is divisible by n. The order of the
group (ZZ/nZZ)× is nϕ(n). The probability that a random element satisfies the key
condition is 1− 1/n, and it is an overwhelming probability in the bit-length of the
public modulus n. Therefore we can use a random g of ZZ/n2ZZ as the public key.

2.1 Security of the Paillier Cryptosystem

In order to discuss the security of the Paillier cryptosystem, we define the following
number theoretic problems. Denote by RSAmodulus and GPaillier the set of the RSA
modulus n and the public key g of the Paillier cryptosystem, respectively.

Let c be an integer of (ZZ/n2ZZ)×. The n-th residuosity class of c with respect to
g ∈ GPaillier is the unique integer x which satisfies c = gxhn mod n2 for an integer
h ∈ ZZ/nZZ. We denote by [[c]]g the n-th residuosity class of c with respect to
g. The computational composite residuosity problem (C-CRP) is to compute the
[[c]]g for given c ∈ (ZZ/n2ZZ)×, g ∈ GPaillier, and n ∈ RSAmodulus. The decisional
composite residuosity problem (D-CRP) is to decide whether x = [[c]]g holds for
given x ∈ ZZ/nZZ, c ∈ (ZZ/n2ZZ)×, g ∈ GPaillier, and n ∈ RSAmodulus. An algorithm
that factors the modulus n can solve the C-CRP, but the opposite direction is
unknown. There is a possibility that the C-CRP is solved without factoring the
modulus n.

The problem of breaking the one-wayness of the Paillier cryptosystem is to find the
integer m for given n ∈ RSAmodulus, g ∈ GPaillier, h ∈ ZZ/nZZ, and c = gmhn mod n2.



3 The Modified Paillier Cryptosystem 5

The one-wayness assumption of the Paillier cryptosystem is that for any probabilistic
polynomial time algorithm AOW

Paillier the probability

Prm∈RZZ/nZZ[n← RSAmodulus, h←R ZZ/nZZ,

g ← GPaillier, c = gmhn mod n2 : AOW
Paillier(c) = m]

is negligible in log n. It is known that the one-wayness of the Paillier cryptosystem
is as intractable as breaking the computational composite residuosity problem (C-
CRP) [Pai99].

A semantic security adversary ASS
Paillier against the Paillier cryptosystem consists of

two stages: the find stage ASS1
Paillier and the guess stage ASS2

Paillier. Algorithm ASS1
Paillier

returns two messages m0, m1 and a state information st from a public-key n. Let c be
a ciphertext of either m0 or m1. The ASS1

Paillier guesses whether the ciphertext c is the
encryption of mb(b ∈ {0, 1}) for given (c, m0, m1, st) and outputs b. The semantic
security of the Paillier cryptosystem is that for any probabilistic polynomial time
algorithm ASS

Paillier the probability

2Pr [n← RSAmodulus, (m0, m1, st)← ASS1
Paillier(e, n), b← {0, 1}, h←R ZZ/nZZ,

g ←R GPaillier, c = gmhn mod n2 : ASS2
Paillier(c, m0, m1, st) = b]− 1

is negligible in log n. It is known that the semantic security of the Paillier cryp-
tosystem is as intractable as breaking the decisional composite residuosity problem
(D-CRP) [Pai99]. The semantic security is often called as the indistiguishability. If
a semantic security adversary is allowed to access the decryption oracle, the attack
model is called chosen ciphertext attack. A public cryptosystem that is semanti-
cally secure against the chosen ciphertext attack is called an IND-CCA2 scheme
[BDPR98]. The IND-CCA2 security has become one of the criteria for a general
purpose public-key cryptosystem.

3 The Modified Paillier Cryptosystem

We review the modified Paillier cryptosystem [CCW01], which we call the M-Paillier
cryptosystem in the following.

The main differences of the M-Paillier cryptosystem from the original one are the
choice of the key g and the decryption algorithm. The public key g is chosen from
the set

GM-Paillier = {g ∈ (ZZ/n2ZZ)× s.t. gλ = 1 + n mod n2}. (1)

The set GM-Paillier is a subset of all public keys g of the original Paillier cryptosystem,
i.e., GM-Paillier ⊂ GPaillier.

Then the computation L(gλ mod n2) in the Paillier decryption is equal to 1, due
to gλ mod n2 = 1 + n. We do not have to compute the inversion in the decryption
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Key Generation
n = pq, the RSA modulus
λ = lcm (p− 1, q − 1)
g ∈ ZZ/n2ZZ s.t. gλ = 1 + n mod n2

Public-key: (n, g), Secret key: λ

Encryption of m
m ∈ {0, 1, ..., n− 1}, a message
h ∈R ZZ/nZZ
c = gmhn mod n2, a ciphertext

Decryption of c
m = L(cλ mod n2)

Figure 2: The Modified Paillier Cryptosystem

process for any g ∈ SM-Paillier. The encryption and the decryption of the M-Paillier
cryptosystem is as follows:

We can generate the public key g as follows: We write the public-key g as the n-adic
representation such that g = a + bn, where 0 ≤ a, b < n are unique. Because of
(a+bn)λ = 1+(L(aλ)+λa−1b)n mod n2, the public key g = a+bn has relationship:

L(aλ) + λa−1b = 1 mod n, (2)

where L(r) = (r − 1)/n. Thus, b is computed by b = (1 − L(aλ))aλ−1 mod n for a
given random a ∈ ZZ/nZZ and the secret key λ.

The density of the GM-Paillier is at most n. The probability that a random element
of (ZZ/n2ZZ)× is contained in the GM-Paillier is at most 1/ϕ(n), which is negligible in
the bit-length of the public key n. This is an important observation for the security
of the M-Paillier cryptosystem and we state it in the following lemma.

1. Lemma The probability that a random g ∈ (ZZ/n2ZZ)× is contained in the set
GM-Paillier is at most 1/ϕ(n).

We have the other description of the GM-Paillier. Because of gλ = 1 + n mod n2,
we have the following relations [[1 + n]]g = λ mod n and [[g]]1+n = λ−1 mod n.
Therefore, the element g ∈ GM-Paillier can be represented as

{g ∈ (ZZ/n2ZZ)×|[[g]]1+n = λ−1 mod n}. (3)

The n-th residuosity class of the key g with respect to 1 + n is λ−1 mod n.

The one-wayness assumption of the M-Paillier cryptosystem is that for any proba-
bilistic polynomial time algorithm AOW

M-Paillier the probability

Prm∈RZZ/nZZ[n← RSAmodulus, h←R ZZ/nZZ,

g ← GM-Paillier, c = gmhn mod n2 : AOW
M-Paillier(c) = m]
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is negligible in log n. The semantic security of the M-Paillier cryptosystem is that
for any probabilistic polynomial time algorithm ASS

M-Paillier the probability

2Pr [n← RSAmodulus, (m0, m1, st)← ASS1
M-Paillier(e, n), b← {0, 1}, h←R ZZ/nZZ,

g ←R GM-Paillier, c = gmhn mod n2 : ASS2
M-Paillier(c, m0, m1, st) = b]− 1

is negligible in log n. The distribution of the public key g ∈ GM-Paillier in the
security assumption is different from that of the original one. The author asserted
that the one-wayness or semantic security is as intractable as the C-CRP or D-CRP,
respectively [CCW01]. However, there is no proof for their statements. We will
investigate the security of the M-Paillier cryptosystem in the following.

4 Security of the M-Paillier Cryptosystem

We will redefine the number theoretic problems related to the M-Paillier cryptosys-
tem. The only difference between the Paillier cryptosystem and the M-Paillier cryp-
tosystem is the distribution of the public key g. We discuss the C-CRP and D-CRP
for the public key g from the M-Paillier cryptosystem. We can prove that the one-
wayness of the M-Paillier cryptosystem is as intractable as factoring the modulus
n, if the public key g can be generated only by the public information n, i.e., g is
samplable from ZZ/n2ZZ in the polynomial time of log n.

The computational composite residuosity problem for the GM-Paillier is to compute
the [[c]]g for given c ∈ (ZZ/n2ZZ)×, g ∈ GM-Paillier, and n ∈ RSAmodulus. Then we
can prove the following theorem.

2. Theorem Breaking the C-CRP for the GM-Paillier is as intractable as factoring
n, if the public key g can be generated only by the public modulus n.

Proof: If the modulus n is factored, the C-CRP can be easily solved. We prove
the different direction. Let A be the algorithm, which solves the C-CRP for the
GM-Paillier in time t and with advantage ε. The algorithm A can compute the [[c]]g
for given c ∈ (ZZ/n2ZZ)×, g ∈ GM-Paillier, and n ∈ RSAmodulus. Note that if the key
g is generated only by public key information, there is no information leakage about
the secret keys from the GM-Paillier. Here, let c = (1 + rn)hn mod n2 for random
integers r ∈ ZZ/nZZ and h ∈ (ZZ/nZZ)×, then the integer c is uniformly distributed
in the ring (ZZ/n2ZZ)×. The distribution of c is equivalent to that of instances to
C-CRP. Note that L(cλ mod n2) = rλ mod n holds for the decryption of the M-
Paillier cryptosystem, where the λ is the secret key. Thus the algorithm A outputs
t = rλ mod n for inputs c and the secret key λ is recovered by λ = tr−1 mod n. The
probability that gcd(r, n) > 1 holds is negligible. The modulus n can be factored
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using λ. The time and advantage of the algorithm A is t + O((log n)2) and ε,
respectively.

We can mount this result to the one-wayness of the M-Paillier cryptosystem.

3. Corollary The one-wayness of the M-Paillier cryptosystem is as intractable as
factoring n, if the public key g can be generated by only the public modulus n.

Proof: We prove that breaking the one-wayness of the M-Paillier cryptosystem is
as hard as breaking the D-CRP for the GM-Paillier. However, this is trivial from the
definitions.

There are several general conversion techniques, which enhance the security of
a public-key cryptosystem to make it an IND-CCA2 scheme [FO99a], [FO99b],
[OP01b], [Poi00]. The conversion techniques [FO99b], [Poi00] can convert a one-way
public-key scheme to be an IND-CCA2 scheme. Therefore the M-Paillier cryptosys-
tem converted using these techniques can be proved as intractable as factoring the
modulus n if the public key g can be generated by only the public modulus n.

The semantic security of the M-Paillier cryptosystem is also different from the orig-
inal D-CRP. We have to redefine the D-CRP. The decisional composite residuosity
problem (D-CRP) for the GM-Paillier is to decide whether x = [[c]]g holds for given
x ∈ ZZ/nZZ, c ∈ (ZZ/n2ZZ)×, g ∈ G-Paillier, and n ∈ RSAmodulus. Then we can prove
that the semantic security of the M-Paillier cryptosystem is as hard as breaking the
D-CRP for the GM-Paillier. We state that as a theorem:

4. Theorem The semantic security of the M-Paillier cryptosystem is as hard as
breaking the decisional composite residuosity problem for the GM-Paillier.

If an algorithm A breaks the original D-CRP, then the D-CRP for the GM-Paillier can
be solved using this algorithm A. It is an open problem to investigate the opposite
direction.

5 Power of Generating the Key g

In this section we investigate the computational ability of generating the public
key g. The public key g for the original Paillier cryptosystem can be chosen as
random from g ∈ ZZ/n2ZZ or as g = 1 + n using only the public information n.
Therefore anyone can generate the key g for the original Paillier cryptosystem. On
the contrary, we prove that the power to generate the public key g for the M-Paillier
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cryptosystem can factor the RSA modulus. We cannot generate the key g for the
M-Paillier without factoring n.

Let On be the oracle, which answers b such that g = a + bn ∈ GM-Paillier for given
RSA modulus n and a random integer a ∈ ZZ/nZZ. In the real world, the oracle
is an algorithm, which computes the public key g for a given public key n. As we
reviewed in section 3, the key g is represented as two integers g = a + bn, where
0 ≤ a, b < n. The integer b can be computed by b = (1 − L(aλ))aλ−1 mod n for a
given integer a if the secret key λ is known. Then we have the following theorem.

5. Theorem The RSA modulus n can be factored using the oracle On.

Proof: We will construct an algorithm A, which computes λ using the oracle On. It
is known that, once the secret key λ is obtained, the modulus can be easily factored.
The algorithm A works as follows:

1. A generates a random a1 in ZZ/nZZ, runs On(a1) and obtains b1 such that
g1 = a1 + b1n ∈ GM-Paillier.

2. A generates a random a2 in ZZ/nZZ, runs On(a2) and obtains b2 such that
g2 = a2 + b2n ∈ GM-Paillier.

3. A computes a3 = a1a2 mod n, runs On(a3) and obtains b3 such that g3 =
a3 + b3n ∈ GM-Paillier.

4. Output λ = (a−1
1 b1 + a−1

2 b2 − (a1a2)
−1b3)

−1 mod n.

In step 1 and step 2 we know the relationships: L(aλ
1) + λa−1

1 b1 = 1 mod n and
L(aλ

2) + λa−1
2 b2 = 1 mod n. From L(aλ

1a
λ
2) = L(aλ

1) + L(aλ
2) mod n, we have L(aλ

1) +
L(aλ

2) + λ(a1a2)
−1b3 = 1 mod n in step 3. Thus we obtain the following equation:

λa−1
1 b1 + λa−1

2 b2 − λ(a1a2)
−1b3 = 1 mod n. (4)

If we know λ, the modulus n can be factored with at least probability 1/2. Let t, ε
be the time and the advantage of the oracle On. The time and the advantage of the
algorithm A is t +O((log n)2) and ε3, respectively.

From this theorem, it is as intractable as factoring n to generate the public key
g for a given public key n. The information obtained from the public key g for
the M-Paillier cryptosystem is essentially different from that for the original Pail-
lier cryptosystem. The C-CRP/D-CRP for the GM-Paillier differs from the original
C-CPR/D-CRP. Thus the one-wayness or semantic security for the M-Paillier cryp-
tosystem are generally not same as those for the original Paillier cryptosystem.
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We often proof the correctness of key generation during the key generation in order
to convince of it to other parties. There are several researches for the modulus n,
namely proving that the modulus is a square free Blum integer [BFL91], the product
of quasi-safe primes [GMR98], or the product of safe primes [CM99], etc. In this
case, the public key of the Paillier/M-Paillier cryptosystem is not only the modulus
n but also the key g. We have to develop a proof system that the public key g is
correctly generated, e.g., g is random in ZZ/n2ZZ, or g is in the set GM-Paillier. It
is an open problem to investigate the relationship between the proof system and
theorem 5.

6 Chosen Ciphertext Attack

We describe the chosen ciphertext attack against the M-Paillier cryptosystem. An
attacker is allowed to ask queries to the decryption oracle. The proposed chosen
ciphertext attack against the M-Paillier cryptosystem factors the modulus n. If we
use the technique used in section 4, the chosen ciphertext attack can be constructed.
In the real attack we do not have to generate a ciphertext, which is randomly
distributed in (ZZ/n2ZZ)× and therefore the attack is easier.

Our chosen ciphertext attack works as follows: At first we change the public key g
to g + n, and we encrypt a message m and the public key g + n using a random
h ∈ ZZ/nZZ. The decryption oracle decrypts the ciphertext based on the secret key
λ, which computes L((g + n)λ mod n2). Then the attacker can recover the secret
key λ based on the answer L((g+n)λ mod n2) from the decryption oracle. Thus the
modulus n is factored. We summarize the chosen ciphertext attack as follows:

• Generation of a ciphertext:

1. Choose a random integer h ∈ ZZ/nZZ.

2. Change the public key g to g + n.

3. Compute c = (g + n)mhn mod n2.

4. Return the ciphertext c of the message m.

• Decryption oracle:

1. Return m′ = L(cλ).

• Factorization of n:

1. Compute λ = g(m′m−1 − 1) mod n.

2. Factor n using the λ.

We can prove the correctness of the chosen ciphertext. We have the following theo-
rem.
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6. Theorem The above chosen ciphertext attack factors the modulus n.

Proof: Let g = a + bn ∈ GM-Paillier, then we have the following relationships:

(g + n)λ = gλ + λgλ−1n mod n2

= (a + bn)λ + λgλ−1n mod n2

= 1 + (L(aλ) + λa−1b + λa−1)n mod n2

= 1 + (1 + λa−1)n mod n2.

Here the decryption oracle decrypts the ciphertext c as follows: cλ = ((g+n)λ)mhλn mod
n2 = 1 + (1 + λa−1)mn, and L(cλ) = (1 + λa−1)m. We thus obtain the mes-
sage m′ = (1 + λa−1)m from the decryption oracle. The λ can be recovered by
λ = a(m′m−1 − 1) mod n = g(m′m−1 − 1) mod n.

The chosen ciphertext attack against the M-Paillier cryptosystem is effective because
the public key is chosen from a special distribution GM-Paillier. The attacker knows
that the key g satisfies the condition gλ = 1+n mod n2. On the contrary, the public
key g from the original Paillier cryptosystem does not satisfy such a condition, but it
satisfies gλ = 1 + rn mod n2 for an unknown random integer r ∈ ZZ/nZZ. Attackers
have to guess the random integer r in addition with the secret key λ. The chosen
ciphertext attack does not work for the original Paillier cryptosystem. There is a
security gap in the M-Paillier scheme and the original Paillier scheme.

The above chosen ciphertext attack aims at the cryptographic primitive of the M-
Paillier cryptosystem. As we discussed in section 5, we can enhance a cryptographic
primitive of a public-key cryptosystem to be semantically secure against the cho-
sen ciphertext attack [FO99a], [FO99b], [OP01b], [Poi00]. Especially, Paillier and
Pointcheval proposed a conversion technique, which makes the Paillier public-key
primitive to be an IND-CCA2 scheme [PP99]. If we use these techniques, we can
make the M-Paillier cryptosystem secure against the chosen ciphertext. However,
the M-Paillier cryptosystem is used as a cryptographic primitive without the con-
versions for security protocols, and we should take care of its security.

7 Okamoto-Uchiyama Scheme

In this section we discuss the relationship between the Okamoto-Uchiyama scheme
[OU98] and the M-Paillier cryptosystem. We call the Okamoto-Uchiyama scheme
as the OU scheme in the following. The OU scheme is constructed over the ring
ZZ/nZZ, where n = p2q and p, q are primes. The one-wayness and the semantic
security of the OU scheme are as intractable as factoring the modulus n and solving
the p subgroup problem, respectively [OU98].
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The public key of the OU scheme is the modulus n and an element g ∈ (ZZ/nZZ)×

whose order in the subgroup (ZZ/p2ZZ)× is divisible by p. If we choose a random g
from (ZZ/nZZ)×, the probability that the order of g in (ZZ/p2ZZ)× is divisible by p
is 1 − 1/p. The secret key is the primes p and gp = gp−1 mod p2. A message m ∈
{0, 1, ..., 2k−2} is encrypted by c = gm+rn mod n for a random integer r ∈ ZZ/nZZ,
where k is the bit-length of p. The ciphertext c is decrypted by m = L(cp−1 mod
p2)L(gp−1 mod p2)−1 mod n using the secret key p, where L(a mod n2) = (a− 1)/n
for an integer a such that a = 1 mod n.

Key Generation
k, the bit length of prime p
n = p2q, the modulus
g ∈ ZZ/nZZ s.t. p|ordp2(g)
gp = g mod p2

Public-key: (n, g, k), Secret key: p, gp

Encryption of m
m ∈ {0, 1, ..., 2k−2}, a message
r ∈ ZZ/nZZ, a random integer
c = gm+rn mod n, a ciphertext

Decryption of c
m = L(cp−1 mod p2)L(gp−1

p mod p2)−1 mod p

Figure 3: Okamoto-Uchiyama Cryptosystem

Fujisaki and Okamoto enhanced the security of the OU scheme using the random
oracle model [FO99a]. We call it as the FO scheme in the following. The IND-CCA2
security of the FO scheme can be proved as hard as factoring the modulus n with a
tight security reduction. They modified the generation of the keys n, g in order to
match their security proof. The primes p, q of the key n = p2q are safe primes, i.e.,
(p − 1)/2, (q − 1)/2 are also primes. The key g is the integer g of (ZZ/nZZ)× whose
order in the group (ZZ/p2ZZ)× is p(p − 1). The probability that the order of g in
(ZZ/p2ZZ)× is p(p− 1), which is at least 2−1(1− 2−k+1), where k is the bit-length of
prime p.

Coi et al. proposed a modified version of the Okamoto-Uchiyama scheme [CCW01].
We call it the modified OU (M-OU) scheme in the following. The M-OU scheme
uses a key contained in the following the set

GM-OU = {g ∈ (ZZ/n2ZZ)× s.t. gp−1 = 1 + p mod p2}. (5)

There are at most p elements which satisfy ap−1 = 1 + p mod p2 for a ∈ (ZZ/p2ZZ)×.
Then the probability that a random g from (ZZ/nZZ)× is contained in the set of keys
is at most 1/ϕ(p), which is negligible in the bit length of p. It is an open problem
to prove the one-wayness of the Okamoto-Uchiyama scheme for g ∈ GM-OU .

In table 1, we summarize the probability on the distribution for the public key g
for different schemes described in this paper. The probabilities for the M-Paillier
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cryptosystem and the M-OU cryptosystem are negligible in the bit length of the
public key.

Table 1: Comparison of the probability on the distribution for public key g
Paillier[Pai99] M-Paillier[CCW01] OU[OU98] FO[FO99a] M-OU[CCW01]

1− 1/n 1/ϕ(n) 1− 1/p > 2−1(1− 2−k+1) 1/ϕ(p)
overwhelming negligible overwhelming ≈ 1/2 negligible

8 Conclusion

We analyzed the modified Paillier (M-Paillier) cryptosystem proposed by Choi et al
[CCW01]. Firstly, we proved the one-wayness of the M-Paillier cryptosystem is as
intractable as factoring the modulus n, if the public key g can be generated only
by the public information n. Secondly, we proved that the oracle that can generate
the public-key can factor the modulus n. Thus the public keys cannot be generated
without knowing the factoring n, although the public key of the original Paillier
cryptosystem can be generated from only the public modulus information. Thirdly,
we proposed a chosen ciphertext attack against the M-Paillier cryptosystem. Our at-
tack can factor the modulus n by only one query to the decryption oracle. This type
of total breaking attack has not been reported for the original Paillier cryptosystem.
Finally, we discussed the relationship between the M-Paillier cryptosystem and the
Okamoto-Uchiyama scheme.

The Paillier cryptosystem has been extended to the schemes over elliptic curves
[Gal01] or other types of modulus [DJ01]. It is an interesting open problem to
enhance the results in this paper to these schemes. Coi et al. also proposed a
modification of the Okamoto-Uchiyama scheme, which uses the key g ∈ (ZZ/nZZ)×

such that gp−1 = p + 1 mod p2 [CCW01]. It is also an open problem to investigate
the security of the modified Okamoto-Uchiyama scheme.
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