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Abstract

In view of the expected cryptanalysis it is important to find alternatives for currently used
cryptographic primitives, which are often based on number theoretic problems. In the past
years, several key exchange protocols were developed which base there security on presumably
quantum-resistant problems, such as lattice problems. We analyze and compare those lattice-
based protocols. Three unauthenticated and five authenticated protocols are part of our study.
We choose parameters for bit security levels of approximately 100 and 192 bit and use those
parameters in our C++ implementations. These implementations are run on a server and the
running times and parameter choices are the base for our comparison. We conclude that the
protocol by Bos et al. (IEEE Security & Privacy 2015) and the protocol by Lyubashevsky et
al. (Eurocrypt 2010) are the best performing unauthenticated protocols, while the protocol
by Fujioka et al. (ASIACCS 2013) and the protocol by Peikert (PQCrypto 2014) are the best
performing authenticated key exchange protocols.
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Notation

N Set of natural numbers
Z Set of integers
Q Set of rational numbers
R Set of real numbers
C Set of complex numbers
Zn Set of integers modulo n
Z×n Multiplicative group of invertible elements modulo n
R Commutative ring with 1
R× Multiplicative group of invertible elements of R
〈x1, . . . , xn〉 The ideal generated by the elements x1, . . . , xn
‖x‖ The `2-norm for x ∈ Cn, also denoted by ‖ · ‖2
f (x) = O(g(x)) limx→∞ | f (x)/g(x)|<∞
f (x) =ω(g(x)) limx→∞ | f (x)/g(x)|=∞
ρσ,v (x) The probability function of the spherical continuous Gaussian distribution

over Rn with center v ∈ Rn and standard deviation σ ∈ R
DZn,σ,v Probability function of the discrete spherical Gaussian distribution over Zn

4(X , Y ) The statistical distance of the two discrete random variables X and Y on
the countable set V

R[X ] The ring of polynomials in one variable with coefficients in R
K Algebraic number field
OK Ring of integers of the algebraic number field K
[K :Q] Degree of the field extension K/Q
%1, . . . ,%r The Q-homomorphisms from K to R, called real embeddings
τ1,τ1 . . . ,τs,τs The Q-homomorphisms from K to C which are not real embeddings, called

complex embeddings
Φm(X ) m-th cyclotomic polynomial
Km m-th cyclotomic number field
Γ Denotes a lattice which is a discrete additive subgroup of Rn

λ1(Γ ) The length of the shortest non-zero vector in the lattice Γ
Γ ∗ The dual lattice of a lattice Γ
Λq(A) = {y ∈ Zm : y = A>s mod q for some s ∈ Zn}, a q-ary lattice
Λ⊥q (A) = {y ∈ Zm : Ay = 0 mod q}, a q-ary lattice
κ Denotes the security parameter
Hr,s = {x ∈ Rr ×C2s : x r+ j = x̄ r+s+ j for all j = 1, . . . , s} ⊂ Cr+2s=n

x̄ = a− i b the complex conjugate of x = a+ i b with a, b ∈ R
j : K →Hr,s The canonical embedding
R = Z[X ]/〈 f 〉 where f ∈ Z[X ] of degree n
Rq = R/qR
c : R→ Rn The coefficient embedding
TrK/Q The field trace of K
IV The dual ideal of the fractional ideal I ⊂ K
KR = K ⊗R
r

$
←−M Element r is drawn uniformly at random from a finite setM

r ← χ Element r is drawn according to the probability distribution χ
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Abbreviations

SV P Shortest vector problem
γ-SV P γ-approximate SV P
GapSV Pγ Decisional γ-approximate SV P
BDDα α-bounded distance decoding problem
SIS Short integer solution problem
LW E Search learning with errors problem
DLW E Decisional learning with errors problem
R-LW E Search ring learning with errors problem
R-DLW E Decisional ring learning with errors problem
R-SIS Ring short integer solution problem
KEM Key encapsulation mechanism
PKE Public key encryption scheme
IND-CPA Indistinguishability under chosen-plaintext attacks
IND-CCA Indistinguishability under chosen-ciphertext attacks
MAC Message authentication code
PRF Pseudorandom function
KDF Key derivation function
Sig Signature scheme
KE Key exchange protocol
AKE Authenticated key exchange protocol
passive PPT Secure against passive probabilistic polynomial-time adversaries
ACC E Secure in the authenticated and confidential channel establishment
wPFS Weak perfect forward secrecy
KCI Key compromise impersonation
MEX Maximal exposure attacks
CK+ Security model that combines the Canetti-Krawczyk security model with

wPFS, and security against KCI and MEX
BR Bellare-Rogaway security model
auth. CCA Secure authenticated CCA encryption scheme
SK Security model by Canetti and Krawczyk [CK02] that implies wPFS
StdM Standard model
ROM Random oracle model
FO(·) Fujisaki-Okamoto transformation of an IND-CPA KEM into an IND-CCA KEM
JD KE by Ding, Xie, and Lin [JD12]
ring-JD KE by Ding, Xie, and Lin [JD12], based on the R-LW E problem
BCNS KE by Bos, Costello, Naehrig, and Stebila [BCNS14]
FSXY12 AKE by Fujioka, Suzuki, Xagawa, and Yoneyama [FSXY12]
FSXY13 AKE by Fujioka, Suzuki, Xagawa, and Yoneyama [FSXY13]
two-pass ZZD two-pass AKE by Zhang, Zhang, Ding, Snook, and Dagdelen [ZZD+14]
one-pass ZZD one-pass AKE by Zhang, Zhang, Ding, Snook, and Dagdelen [ZZD+14]
Peikert AKE by Peikert [Pei14]
LPR PKE by Lyubashevsky, Peikert, and Regev [LPR12]
SS13 PKE by Stehlé and Steinfeld [SS13]
BLISS Signature scheme by Ducas, Durmus, Lepoint, and Lyubashevsky [DDLL13]
ms milliseconds
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Introduction

Cryptography is involved in many parts of our daily life, e.g. credit cards, internet banking,
electronic voting etc. An important aspect of cryptography is methods of exchanging a secret
key through a possibly eavesdropped conversation without sharing any secret before. Those
methods are called key exchange protocols. Many of the currently used key exchange protocols
are based on the assumption that the discrete logarithm or factoring certain numbers are hard
problems. These assumptions do not hold true for quantum algorithms. Therefore, we compare
key exchange protocols that are based on lattice problems as those are assumed to be quantum
resistant. That makes them possible candidates for replacing today’s methods and achieving
quantum resistant security.

The aim of this thesis is to compare lattice-based key exchange protocols. The comparison is
based on a theoretical and a practical analysis. In the theoretical comparison we analyse the
key exchange protocols in terms of the involved cryptographic building blocks. For the practical
analysis we determine parameters for approximate bit security levels of 100 and 192 bit by
using the LWE-Estimator by Albrecht et al. [APS15]. With those parameters we run our C++
implementation which is the base for our running time analysis. Furthermore, we use those
parameters to calculate the amount of bits that need to be communicated in the run of each
protocol.

We start with some basic definitions and mathematical background information in Section 1.
This also contains a brief introduction to algebraic number fields and their special case, namely
cyclotomic number fields. This is intended to motivate lattices and lattice-based cryptography
from a mathematical perspective. Section 2 is devoted to the study of lattices and lattice-based
problems. Most relevant for this thesis are the short integer solution problem and the learning
with errors problem since they exist in a ring-variant. This adds additional structure and thus
makes mathematical operations faster and reduces the needed memory space. Most of the key
exchange protocols that we analyze in this thesis are based on the decisional ring learning with
errors problem. This problem is based on ideal lattices and is defined in Section 3. In Section
4 we define cryptographic primitives and security notations. We explain and analyze different
authenticated and unauthenticated key exchange protocols in Section 5 and 6 respectively. The
unauthenticated key exchange protocols are the ring and non-ring version of the JD protocol
by Ding et al. [JD12] and the BCNS protocol by Bos et al. [BCNS14]. The authenticated key
exchange protocols are two protocols by Fujioka et al. [FSXY12], [FSXY13], the one- and two-
pass version of the ZZD protocol by Zhang et al. [ZZD+14], and Peikert’s protocol [Pei14]. For
each protocol the individual steps are explained, the underlying security assumption is stated,
and some restrictions for parameter choices are given to assure the correctness and security of
the key exchange protocol. The used security model is stated but not explained in further detail
since this is out of scope of this thesis. In Section 7 we use Albrecht et al.’s LWE-Estimator
[APS15] to find safe parameters for bit security levels of approximately 100 and 192 bit for
each previously discussed protocol. A first theoretical analysis showing the connection of the
different protocols is given in Section 8, while Section 9 contains the running time analysis.
We run a C++ implementation and analyze the running times of small building blocks of the
protocols using the parameters from Section 7. This is the basis for our conclusion about the
efficiency and practicality of post-quantum lattice-based key exchange protocols.
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1 Preliminaries

In this section we define some mathematical objects from algebraic number theory that are used
later. We follow the definitions stated in [Neu92], [JS14], [LPR12], and [ZZD+14].

1.1 Mathematical Basics

Let x be a vector in Cn or Rn. When speaking of the length of vector x we mean the `2-
norm

‖x‖2 =

 

n
∑

j=1

|x j|2
!1/2

,

also denoted by ‖ · ‖. Some results hold for any norm, but in most cases only the `2-norm
is of interest to us. The maximum norm of vector x in Cn or Rn is defined by ‖x‖∞ =
max i∈{1,...,n}|x i|.

To describe the asymptotic behaviour of functions, we use the Landau notation. Let f and g
be real functions. With f (x) = O(g(x)) we denote that f has an asymptotic upper bound g,

i.e. limx→∞

�

�

�

f (x)
g(x)

�

�

� <∞. With f (x) = ω(g(x)) we denote that f dominates g asymptotically,

i.e. limx→∞

�

�

�

f (x)
g(x)

�

�

� =∞. The expression Õ( f (x)) denotes that there exists k such that f (x) =

O(g(x)logk(g(x))).

In this thesis a ring is defined as a commutative ring with 1 denoted by R . We denote the set of
multiplicative inverses by R× ⊂R . The elements are called units.

An integral domain is a ring that has no zero divisors, i.e. for x ∈ R \{0} there exists no element
y ∈ R \ {0} such that x y = 0. In this thesis a ring is assumed to be an integral domain if not
announced differently.

An element y 6∈ R× ∪ {0} is called irreducible if y = ab for a, b ∈ R implies that either a or b
is a unit. An element y 6∈ R× ∪ {0} is called prime if whenever y divides a product of two ring
elements a, b ∈ R , it follows that y divides a or y divides b.

An ideal I of R is an additive subgroup in R that is closed under multiplication by ring ele-
ments. In other words, I is a subset of R such that for all a, b ∈ I and r ∈ R it holds that
−a ∈ I , a + b ∈ I , and ar ∈ I . We write I = 〈x1, . . . , xn〉 to denote that the ideal I is generated
by the elements x1, . . . , xn ∈ R .

1.2 Gaussian Distribution and Rejection Sampling

We give a definition of the discrete Gaussian distribution according to [LPR12] and
[ZZD+14].

The probability function of the one-dimensional continuous Gaussian distribution with standard
deviation σ ∈ R and center at v ∈ R is given by

ρσ,v (x) =
1

p
2πσ2

exp

�

−(x − v )2

2σ2

�

.
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While in general an n-dimensional Gaussian distribution requires an n × n covariance matrix,
we restrict ourselves to a continuous spherical Gaussian distribution with center at v ∈ Rn. The
reason is that the distribution is a product distribution where the coordinates are independent
and identically distributed. As we see in Section 3, this is possible because of the structure of
the underlying ring. A spherical Gaussian distribution has a diagonal covariance matrix with
σ ∈ R>0 on its diagonal. The probability function is defined as

ρσ,v (x) =
�

1
p

2πσ2

�n

exp

�

− ‖ x − v ‖2

2σ2

�

.

This can also be viewed as sampling each coordinate of a vector x according to the one-
dimensional Gaussian distribution. The probability function of the discrete Gaussian distribution
over Zn is given by

DZn,σ,v (x) =
ρσ,v (x)

ρσ,v (Zn)
.

If v = 0, we write DZn,σ instead of DZn,σ,0.

It should be noted that the probability function of the Gaussian distribution is by some also
defined as ρr,v (x) = exp

�

−π‖x−v‖2

r2

�

. This corresponds to σ = rp
2π

in DZn,σ,v (x) as the factor
�

1p
2πσ2

�n

cancels in the fraction.

With r
$
←−M we denote that an element r is drawn uniformly at random from a finite set M

and with r ← χ we denote that an element r is drawn according to the probability distribution
χ.

The following lemma, used by Bos et al. [BCNS14] and Zhang et al. [ZZD+14], states that the
product of two Gaussian distributed polynomials is approximately Gaussian distributed .

Lemma 1.1. Let DZ,σ and DZ,θ be two Gaussian distributions and x , y ∈ Z[X ] of degree n − 1.
Furthermore, let the coefficients of x and y be distributed according to DZ,σ and DZ,θ respectively.
The coefficients of the product x y mod X n + 1 are approximately distributed like z← DZ,σθpn.

Let V be a countable set and let X and Y be two given discrete random variables on V . The
statistical distance is defined as 4(X , Y ) = 1

2

∑

x∈V |Pr[X = x]− Pr[Y = x]|.

The statistical distance is used in the rejection sampling theorem, which is used by two of the
analyzed protocols.

Theorem 1.2. [Lyu12][Rejection Sampling] Let V ⊂ Zn such that all elements have norm less than
T , β =ω(T

p

log n) ∈ R and ψ : V → R be a probability distribution. Then there exists a constant
M = O(1), called rejection constant, such that the distribution of the following algorithmA :
1. Sample z1←ψ.
2. Sample z← DZn,β ,z1

.

3. Output (z, z1) with probability min(
DZn,β (z)

M DZn,β ,z1
(z) , 1).

is within statistical distance 2−ω(log n)

M of the distribution of the following algorithm F :

12



1. Sample z1←ψ.
2. Sample z← DZn,β .
3. Output (z, z1) with probability 1

M .
More concretely, if β = τT for any positive τ, then M = ex p(12

τ +
1

2τ2 ) and the statistical difference

between the output of the two algorithms is 2−100

M and the probability thatA outputs something is

at least 1−2−100

M .

A function f is said to be negligible in the security parameter κ (also denoted negl(κ)) if for
every c > 0 there exists an N > 0 such that f (κ)< 1/κc for all κ > N .

An event A holds true with overwhelming probability if there exists a negligible function negl(κ),
such that Pr(A)≥ 1− negl(κ).

1.3 Algebraic Number Theory

To give a mathematical classification of lattices and lattice-based cryptography, we give a brief
introduction to the topic of ring and field extensions, algebraic number fields, and the ring of
integers, following the definitions of [Neu92] and [JS14].

A ring extension of the ring A is a set B such that A⊂ B and B is a ring. A field extension L of K ,
often denoted L/K , is defined similarly.

By A[X ] we denote the smallest ring extension of A to a ring that contains A and X . Hence,
A[X ] = {anX n + · · ·+ a1X + a0 : n ∈ N, ai ∈ A, i = 0, . . . n}. Let K be a field. Define K(X ) to be
the smallest field that contains K and X .

Let L/K be a field extension of K and let α ∈ L. Then the minimal polynomial mα,K of α over K
is the polynomial in K[X ] with smallest degree that has leading coefficient 1 and root α.

Definition 1.3. An algebraic number field K is a finite field extension of the field of rational
numbers Q.

That means the degree of the field extension [K : Q] is finite. In other words, K can be seen as
a Q-vector space of dimension [K :Q].

Let K be an algebraic number field. An element x ∈ K is called algebraic number. This means
that x is a root of a non-zero polynomial f with coefficients inQ or Z. Hence, for every algebraic
number the minimal polynomial over Q exists. If all coefficients of the polynomial are integers
and the leading coefficient equals 1, the element x is called integral element of the algebraic
number field K .

Definition 1.4. Let K be an algebraic number field. The ring of integers OK is the ring of all integral
elements of K .

To see that ideals in the ring of integers OK of an algebraic number field K have a Z-basis, we
define finitely generated modules. Let M be an R-module of the ring R . M is called finitely
generated if there exist x1, . . . , xn ∈ M such that every element of M can be written as a finite
linear combination of x1, . . . , xn with coefficients in R .

13



Theorem 1.5. Let OK be the ring of integers of an algebraic number field K with [K :Q] = n. Then
any finitely generated OK -submodule I 6= 0 has a Z-basis x1, . . . , xn ∈ I with n elements.

It follows that every ideal of OK (as they are always finitely generated OK -submodules) and OK
itself have a Z-basis. Furthermore, it can be shown that this basis is automatically aQ-basis of K .
That means that any Z-basis of OK has n= [K :Q] elements. For proofs refer to [Neu92].

Let K be an algebraic number field with [K : Q] = n. There exist exactly n different Q-
homomorphisms from K to C, denoted by {π1, . . . ,πn} = HomQ(K ,C). They are also called
Q-embeddings. A Q-embedding π is called real, if π(K) ⊂ R, else it is called complex. We
denote the real embeddings by {%1, . . . ,%r} and the complex embeddings as complex conjugate
pairs by {τ1,τ1, . . . ,τs,τs}, with n= r +2s. The complex conjugate embedding τ is defined via
the complex conjugation τ(a) = τ(a) [Neu92].

1.4 Cyclotomic Number Fields

One example of algebraic number fields are cyclotomic number fields. They are the foundation
of ideal-lattice-based cryptography. First, we define and study cyclotomic polynomials.

Definition 1.6. The m-th cyclotomic polynomial Φm(X ) ∈ Z[X ] is the polynomial

Φm(X ) =
∏

k∈Z×m

(X − ζk
m),

where ζm = e2πi/m.

An m-th root of unity is called primitive if it is not a k-th root of unity for some k < m. All
m-th primitive roots are given by ζk

m for k ∈ Z×m, where Zm denotes Z/mZ. Hence, the m-th
cyclotomic polynomial is the polynomial whose roots are the primitive m-th roots of unity in
C.

Φm(X ) is an irreducible polynomial with leading coefficient 1. Hence, it is the minimal poly-
nomial of ζm. Via the map ψ : Z[X ] → Z[ζm], X 7→ ζm we can conclude the following
isomorphism

Z[X ]/〈Φm(X )〉=̃Z[ζm].

Euler’s phi-function is denoted by ϕ(x) and counts the elements in Zx that are relatively prime
to x . The degree of Φm(X ) is given by ϕ(m) = n, since elements in Zm have a multiplicative
inverse if and only if they are relatively prime to m.

Let p ∈ Z be a prime number. The cyclotomic polynomial Φp(X ) can be written as Φp(X ) =
1+ X + · · ·+ X p−1, see [JS14].

Lemma 1.7. Let m = pk. Then Φm(X ) = Φp(X m/p). In particular, Φ2k(X ) = X n + 1, where
n= ϕ(2k) = 2k−1.

Proof. It suffices to show that Φm(X ) and Φp(X m/p) have the same degree and the same roots.

With Φp(X m/p) = Φp(X pk−1
) the degree of Φp(X m/p) equals ϕ(p)pk−1 = pk(1 − 1/p) = ϕ(m),
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where ϕ(m) is the degree of Φm(X ).
An element ζ ∈ C is a root of Φp(X ) if ζp = 1 holds. Hence, ζ ∈ C is a root of Φp(X m/p) if
(ζm/p)p = 1 holds. It follows that ζ ∈ C with (ζm/p)p = 1 is an m-th root of unity and thus a
root of the polynomial Φm(X ).

Now we can define the algebraic number fields of cyclotomic polynomials.

Definition 1.8. The m-th cyclotomic number field is defined as Km =Q(ζm).

The degree of the field extension is [Km : Q] = ϕ(m) = n, since the degree of the minimal
polynomial of ζm is n. Hence, a Q-basis B of Km is given by B = {1,ζm, . . . ,ζn−1

m }. This is also a
Z-basis of OKm

and OKm
= Z[ζm].
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2 Lattices and Lattice Problems

2.1 Lattices

As we compare key exchange protocols that are based on lattice problems, we define lattices first
and look at some of their properties combining definitions from [LPR12], [MR08], and [BAT].
Those definitions are used to define and analyze several lattice and lattice-related problems in
Section 2.2 and Section 2.3.

Definition 2.1. A lattice is a discrete additive subgroup of Rn.

An equivalent definition of a lattice is given in the following lemma.

Lemma 2.2. Γ ⊂ Rn is a lattice if and only if there exist linearly independent vectors b1, . . . , bm ∈
Rn such that Γ = {z1b1 + · · ·+ zmbm : zi ∈ Z}.

Proof. "⇒": Let Γ be a discrete additive subgroup of Rn. Discrete additive subgroups of Rn are
isomorphic to Zm for some m ∈ N [SKR05]. Hence, Γ has a Z-basis, i.e. Γ = {z1b1+ · · ·+ zmbm :
zi ∈ Z}, where b1, . . . , bm are linearly independent vectors in Rn.

"⇒": Let Γ = {z1b1 + · · ·+ zmbm : zi ∈ Z}, where b1, . . . , bm are linearly independent vectors in
Rn. Associativity, commutativity, and discreteness follow from the structure of Z and R. The
neutral element 0 ∈ Rn is an element of Γ since 0 =

∑m
i=1 0 · bi. It remains to show that every

element v = z1b1 + · · · + zmbm ∈ Γ with zi ∈ Z has an additive inverse, which follows from
zi ∈ Z.

The vectors b1, . . . , bm in Lemma 2.2 are called basis of the lattice Γ . The basis matrix B is the
matrix with columns b1, . . . , bm. We write Γ (B) for a lattice generated by basis B. By definition
we see that Γ (B) = {Bz : z ∈ Zm}. If n = m we say that the lattice has full rank. From now on
we only consider full-rank lattices.

Definition 2.3. Let Γ ⊂ Rn be a lattice. The length of the shortest non-zero vector in Γ is denoted
by

λ1(Γ ) = min
0 6=x∈Γ

‖x‖.

More generally, the smallest radius of a ball that contains k linearly independent vectors of the
lattice Γ is denoted by λk(Γ ).

Some computational lattice problems use special latices such as the dual lattice or q-ary lattices.

Definition 2.4. Let Γ ⊂ Rn be a lattice. The dual lattice Γ ∗ of Γ is defined as

Γ ∗ = {x ∈ Rn : 〈x , z〉 ∈ Z ∀z ∈ Γ },

where 〈·, ·〉 is the inner product on Rn defined as 〈x , z〉=
∑n

i=1 x izi.

Definition 2.5. A q-ary lattice is a lattice Γ ∈ Rn that satisfies qZn ⊂ Γ ⊂ Zn for some q ∈ Z.
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Let A be an n×m matrix with entries in Zq. Two important examples for q-ary lattices that are
used in lattice-based cryptography are

Λq(A) = {y ∈ Zm : y = A>s mod q for some s ∈ Zn} and

Λ⊥q (A) = {y ∈ Z
m : Ay = 0 mod q}.

A basis of a lattice Γ in Rn can have at most n elements and is not unique. Different bases for the
same lattice always have the same amount n of basis vectors and those are linearly independent.
Not every set of n linearly independent vectors in Γ is necessarily a basis for lattice Γ , but can
also span a subset of Γ .

Example 2.6. Let B = {e1, e2, . . . , en} and B′ = {2e1, 2e2, . . . , 2en} be two bases, where ei denotes
the i-th standard basis vector. Then the lattice with basis B′ is contained in the lattice with basis B,
but it is not equal to it.

2.2 Computational Lattice Problems

In the following we define several computational lattice problems together with facts and
assumptions about our today’s ability to solve them. Definitions and results follow [MR08],
[Reg09], and [LM09].

We call a problem P hard if there exists no probabilistic polynomial-time algorithm that solves
P with non-negligible probability. A problem P is called NP-hard if for every problem L in NP
there exists a polynomial-time reduction fromL to P . A problemL is in NP if a given solution
of L can be verified as a solution in polynomial time.

One important lattice problem is the Shortest Vector Problem (SV P) and its approximate ver-
sion.

Definition 2.7 (Shortest Vector Problem (SV P)). Given a lattice Γ ⊂ Rn, find a non-zero vector
v in the lattice Γ with length equal to λ1(Γ ).

There is no known quantum algorithm that can solve this problem in polynomial time [MR08].
An often used variant of the SV P is its approximate version defined below.

Definition 2.8 (γ-approximate SV P (γ-SV P)). Given a lattice Γ ⊂ Rn and an approximation
factor γ ∈ R≥1, find a non-zero vector v in the lattice Γ such that

‖v‖ ≤ γλ1(Γ ).

For γ = 1 one obtains γ-SV P = SV P. The γ-SV P is also called search γ-SV P. Its decisional
version is denoted by GapSV Pγ.

Definition 2.9 (Decisional γ-approximate SV P (GapSV Pγ)). Given a lattice Γ ⊂ Rn, an approx-
imation factor γ ∈ R≥1, and d ∈ R, decide whether λ1(Γ )≤ d or whether λ1(Γ )> γd.

17



For a full rank lattice Γ ⊂ Rn there exists no known quantum algorithm that can solve γ-SV P in
polynomial time for γ= pol y(n). Furthermore, it is shown that it is NP-hard for approximation
factors less than

p
2 [Mic98].

The GapSV Pγ is related to another lattice problem, namely the α-bounded distance decoding
problem (BDDα). Lyubashevsky and Micciancio [LM09] showed that for all γ > 2

p

n/ log n
there exists a polynomial-time Turing reduction from GapSV Pγ to BDD1

γ

p
n/ log n in the `2-norm,

with n being the number of basis vectors of the respective lattices. That means that there ex-
ists a polynomial-time algorithm that could solve GapSV Pγ if it has access to an oracle which
can solve BDD1

γ

p
n/ log n. Hence, GapSV Pγ is not harder than BDD1

γ

p
n/ log n. In fact, the BDD1/γ

problem and the GapSV Pγ are equivalent up to polynomial approximation factors [LM09]. Now
we define the BDDα problem.

Definition 2.10 (α-Bounded Distance Decoding Problem (BDDα)). Given a lattice Γ ∈ Rn, an
approximation factor α ∈ R≥1, and a vector x ∈ Rn with distance less than αλ1(Γ ) from the lattice
Γ , find the lattice vector v ∈ Γ such that

‖v − x‖= minu∈Γ‖u− x‖.

There exists also another version of BDDα, where one searches for the lattice vector v ∈ Γ
such that ‖v − x‖ = αλ1(Γ ). Both problems are equivalent under a polynomial-time reduction
[LM09].

The BDDα problem is known to be NP-hard for any constant factor α > 1/
p

2 [LLM06]. Typi-
cally α is chosen to be 1

2 .

2.3 Computational Lattice-Based Problems

In this section we define two problems that are most relevant for the rest of this thesis, namely
the short integer solution problem (SIS) and the learning with errors problem (LW E). Both
problems can be seen as lattice problems, namely as the previously defined lattice problems
γ-SV P and BDDα.

Definition 2.11 (Short integer solution problem (SIS)). [Ajt96] Given n, m > 0, q ≥ 2, β ∈ R,
and A∈ Zn×m

q , find a non-zero vector z ∈ Zm with ‖z‖ ≤ β such that Az ≡ 0 mod q.

The learning with errors problem (LW E) exists in two version, the decisional variant and the
search variant. It was first defined by Regev [Reg09].

Definition 2.12 (The LW E Distribution). Let n and q ≥ 2 be non-negative integers, s ∈ Zn
q , and

χ be a distribution over Z. The LW E distribution is denoted by As,χ and outputs pairs (a, b =

〈a, s〉 + e) ∈ Zn
q × Zq, where a

$
←− Zn

q is uniformly distributed and e ← χ is drawn from the
distribution χ.

The distribution χ is also called error distribution as it is used to sample error terms from it.
This distribution is often chosen to be the discrete Gaussian distribution DZ,σ as defined in Sec-
tion 1.2.
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Definition 2.13 (Search Learning with errors problem (LW E)). Let n and q ≥ 2 be non-negative

integers, s
$
←− Zn

q , and χ be a distribution over Z. Given polynomially many samples (ai, bi) ∈
Zn

q ×Zq from the LW E distribution As,χ , find s ∈ Zq.

Regev [Reg09] showed that for 2 ≤ q ≤ pol y(n) prime the search LW E problem is equivalent
to the decisional LW E problem defined as follows.

Definition 2.14 (Decisional Learning with errors problem (DLW E)). Let n and q ≥ 2 be non-

negative integers, s
$
←− Zn

q , and χ be a distribution over Z. Given polynomially many samples
(ai, bi) ∈ Zn

q ×Zq, decide whether they are drawn from the LW E- distribution As,χ or whether they
are drawn uniformly random from Zn

q ×Zq.

It can be shown that choosing s according to the error distribution does not weaken the hardness
of the problem [ACPS09]. This form is called normal form of the LW E. We denote its decisional
variant for variables n, q, and χ by DLW En,q,χ .

We can also write the pairs (ai, bi = 〈ai, s〉+ ei) for i ∈ {1, . . . , m} with m = pol y(n) in a matrix
and vector notation [MR08]: (A, b = As+ e), where A∈ Zm×n

q , s ∈ Zn
q and e ∈ Zm.

The SIS and the LW E problem can be seen as lattice problems as well. The SIS problem is in
fact a γ-SV P where one searches for a short vector z in the q-ary lattice defined by Λ>q (A) =
{z ∈ Zm : Az = 0 mod q}. The search LW E problem can be seen as a BDDα problem with lattice
Λ>(A) = {y ∈ Zm : y = A>s mod q for some s ∈ Zn}.

We call a problem P worst-case hard if at least one instance of the problem is hard. In contrast,
problem P is called average-case hard if the average instance of the problem is hard. That
means that worst-case hardness is weaker than average-case hardness. A worst-to-average-case
reduction is a reduction from a worst-case problem to an average-case problem.

The approximate SV P has a worst-to-average-case reduction to the LW E problem, i.e. if there
exists an algorithm to solve the LW E problem with q, m ≤ poly(n), q prime, and σ >

p

n/2π,
then there exists a polynomial-time algorithm that solves the approximate SV P in any n-
dimensional lattice in the worst-case. This result was first proven by Regev [Reg09] for
a polynomial-time quantum algorithm. Peikert [Pei09] proved that the same holds for a
polynomial-time non-quantum classical algorithm.
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3 Ideal Lattices and Ideal Lattice Problems

While the LW E and SIS problem offer high security, cryptographic primitives based on them are
often very inefficient. That means that key sizes and computation times are at least quadratic
in the main security parameter [LPR12]. To improve on that, versions of the LW E and SIS
problem are used that work on so called ideal lattices. Ideal lattices are lattices with some addi-
tional properties. Through this additional mathematical structure, the needed memory space is
reduced and computational operations are faster. The resulting R-LW E and R-SIS problems are
the base for the cryptographic primitives analyzed in this thesis.

3.1 Ideal Lattices

By Definition 2.1, any lattice is a group. Ideal lattices have additional structure, namely the
structure of an ideal.

We give a general definition of ideal lattices. Afterwards, we look at more specific examples,
following [BAT] and [LPR12].

Definition 3.1. Let K be an algebraic number field with [K : Q] = n and I ⊂ OK be an ideal in its
ring of integers OK . Let Θ : K → Rn be an additive field homomorphism. Then Θ(I) is a lattice in
Rn. It is called ideal lattice.

We write I instead of Θ(I) when it is clear from the context which homomorphism Θ is
used.

Two homomorphisms, the canonical and the coefficient embedding, are often used in lattice-
based cryptography. We give a definition of both with a focus on the coefficient embedding on
cyclotomic fields since all key exchange protocols that are analyzed in this thesis are based on
the coefficient embedding for cyclotomic fields.

3.1.1 The Canonical Embedding

Let Hr,s = {x ∈ Rr × C2s : x r+ j = x̄ r+s+ j for all j = 1, . . . , s} ⊂ Cn, where n = r + 2s and x̄ j
denotes the complex conjugate of x j. That means for x j = a+ i b ∈ C with a, b ∈ R the complex
conjugate is given by x̄ j = a− i b.

Using the definition of the real and complex embeddings {%1, . . . ,%r} and {τ1,τ1, . . . ,τs,τs}
(see Section 1.3), we give a definition of the canonical embedding according to [Neu92].

Definition 3.2. Let K be an algebraic number field with [K : Q] = n and OK its ring of integers.
Then the canonical embedding is defined by

j : K →Hr,s ⊂ Rr ×C2s; a 7→ (%1(a), . . . ,%r(a),τ1(a), . . . ,τs(a),τ1(a), . . . ,τs(a)).

Theorem 3.3. [Neu92] Let 0 6= I ⊂ OK be an ideal. Then j(I) is a full rank lattice inHr,s
∼= Rn.

With this theorem we obtain that j(I) is an ideal lattice.
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The isomorphism betweenHr,s, with an inner product inherited from Cn, and Rn as inner prod-
uct spaces holds via the map f :Hr,s→ Rn : x 7→ Dx with block matrix

D =
�

Idr 0
0 D2s

�

,

where Idr is the r-dimensional identity matrix and

D2s =
1
p

2

�

Ids Ids
i Ids −i Ids

�

.

3.1.2 The Coefficient Embedding

Let f be a polynomial of degree n in Z[X ] and define the ring R = Z[X ]/〈 f 〉. The ele-
ments of R can be represented by polynomials of degree less than n with coefficients in Z.
Hence, (1, X , . . . , X n−1) is a Z-basis of R and any element a ∈ R can be represented uniquely by
a =

∑n−1
j=0 a jX

j with a j ∈ Z.

Definition 3.4. Let R = Z[X ]/〈 f 〉 and f ∈ Z[X ] be a polynomial of degree n. The coefficient
embedding is defined via the map

c : R→ Rn; a =
n−1
∑

j=0

a jX
j 7→ (a0, . . . , an−1).

The map c is an additive ring homomorphism.

As an example for ideal lattices in combination with the coefficient embedding, we have a closer
look at cyclotomic fields since the coefficient embedding can also be defined for cyclotomic
fields, see [BAT] and [LPR12].

In Section 1.4 we see that the m-th cyclotomic field Km = Q(ζm) has Q-basis (1,ζm . . . ,ζn−1
m ),

which is also a Z-basis of OKm
. Hence, OKm

∼= Z[ζm]. We know that the m-th cyclotomic
polynomial Φm is the minimal polynomial of ζm = e2πi/m. Hence, the following holds

Z[X ]/〈Φm〉 ∼= Z[ζm]∼= OKm
.

Using these isomorphisms we see that for an ideal I ⊂ OKm
we obtain an ideal lattice c(I) ⊂ Zn

under the coefficient embedding since c can be extended to an additive field homomorphism on
Km =Q(ζm) in this case.

In the ring of integers of the m-th cyclotomic field for m= 2k, ideal lattices have some interesting
structure. As stated in Section 1.4, the cyclotomic polynomial is Φm(X ) = X n+1 in this case. This
means that X n = −1 mod Φm(X ). Thus, a multiplication of a representative a =

∑n−1
j=0 a jX

j of
an element in R= Z[X ]/〈X n+1〉 by X can be seen as an anti-cyclic shift. By that we mean

a 7→
n−1
∑

j=1

a j−1X j − an−1.
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Example 3.5. Let a(X ) = 1+ 2X + 3X 3 be the representative of an element in R = Z[X ]/〈 f (X )〉
with f (X ) = X 4+1. Multiplying a(X ) by X results in a polynomial with representative b(X ) = −3+
X + 2X 2 in R. Polynomials in R can be associated with vectors in Z4 via the coefficient embedding.
That means that multiplying c(a(X )) = (1,2, 0,3) with c(X ) results in c(b(X )) = (−3, 1,2, 0) .
Hence, it is a rotation of the coefficients with a negation of the new first coefficient.

Rings of the form R= Z[X ]/〈 f 〉, where f is an irreducible polynomial in Z[X ] with leading co-
efficient 1, have infinitely many equivalence classes. However, in lattice-based cryptography one
deals with finite rings of the form Rq = Zq[X ]/〈 f 〉. This ring has qn different equivalence classes.

Example 3.6. The ring Z3/〈X 2 + 1〉 has nine equivalence classes, which are represented by
0, 1, 2, X , 2X , 1+ X , 2+ X , 1+ 2X , 2+ 2X .

In that case we denote Rq = Zq[X ]/〈 f 〉 and we can identify Rq with Zn
q via the coefficient

embedding defined above. In that sense we also call representatives of equivalence classes of R
elements or vectors. Through this association the `2-norm of an equivalence class of R is defined
as the `2-norm of the associated vector in Zn

q .

Let Rq = Zq[X ]/〈X n + 1〉, i.e. Rq is isomorphic to the ring of integers of the m = 2n = 2k-th
cyclotomic field modulo q. Via the coefficient embedding, sampling an element from Rq from a
discrete Gaussian distribution can be done by sampling each coefficient independently accord-
ing to a one-dimensional discrete Gaussian distribution.

3.2 LWE and SIS on ideal lattices

A variant of the LW E problem on ideal lattices was first given by Lyubashevsky, Peikert, and
Regev [LPR12] and is called R-LW E. We follow their general definition of the R-LW E problem
and state it additionally for the special case of R = Z[X ]/〈X n + 1〉. We also give a definition of
the SIS problem on ideal lattices and analyse the needed memory space when using the R-LW E
and the R-SIS problem compared to the LW E and SIS problem.

Definition 3.7. Let K be an algebraic number field with [K :Q] = n. Its field trace is defined by

TrK/Q : K →Q; x 7→
r
∑

i=1

%i(x) +
s
∑

j=1

(τ j(x) +τ j(x)),

where {%1, . . . ,%r} and {τ1,τ1, . . . ,τs,τs} are the real and complex embeddings defined in Section
1.3.

Definition 3.8. Let K be an algebraic number field with ring of integers OK . A fractional ideal
I ⊂ K is a set I such that dI ⊂ OK is an ideal for some d ∈ OK .

Every fractional ideal I has a Z-basis with [K :Q] = n elements. Similarly to the proof of Theo-
rem 3.3, it can be shown that j(I) is an ideal lattice of full rank inHr,s [Neu92].

Definition 3.9. Let I ⊂ K be a fractional ideal. Its dual ideal IV is defined as

IV = {x ∈ K : TrK/Q(x I) ⊂ Z}.
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It holds that j(IV ) = j(I)∗ and IV = I−1OV
K , see [Con09].

Let K be an algebraic number field, R = OK its ring of integers, q ≥ 2 be an integer, and KR be
the field tensor product KR = K ⊗R∼=Hr,s [LPR12].

Following Lyubashevsky et al. [LPR12], we define the ring learning with errors distribution.

Definition 3.10 (The R-LWE Distribution). Let s ∈ RV
q and φ be an error distribution over KR. The

R-LW E distribution is denoted by AR,s,φ and outputs pairs (a, b = as+e mod qRV ) ∈ Rq×KR/qRV ,

where a
$
←− Rq is uniformly random and e← φ.

The ring learning with errors problem is defined as follows.

Definition 3.11 (Search Ring-Learning With Errors Problem (R-LW E)). Let Ψ be a family of
distributions over KR. Given arbitrarily many independent samples (a, b) from AR,s,φ for arbitrary
φ ∈ Ψ and s ∈ RV

q , find s.

As in the original version of the LW E problem, there exists a decisional version of the search
R-LW E problem, namely the R-DLW E problem.

Definition 3.12 (Decisional Ring-Learning With Errors Problem (R-DLW E)). Let s
$
←− RV

q and

φ
$
←− Ψ be uniformly distributed. Given arbitrarily many independent samples (a, b) ∈ Rq ×

KR/qRV , decide whether they are drawn from the R-LWE distribution AR,s,ψ or whether they are
drawn uniformly random from Rq × KR/qRV .

The hardness of the R-LW E problem can be reduced to the hardness of the SV P over ideal lat-
tices. For more details and a proof refer to [LPR12].

Theorem 3.13. Let Km be the m-th cyclotomic field of degree n = ϕ(m) with ring of integers R =
OK . Let α <

p

log n/n and q = pol y(n) ≥ 2 be prime with q ≡ 1 mod m such that αq ≥ω(
p

n).
Then there exists a polynomial-time quantum reduction from Õ(

p
n/α) approximate SV P on ideal

lattices to R-DLW E given l R-LW E samples, with fixed spherical Gaussian error distribution DZn,β ,

where β = α
�

nl
log(nl)

�1/4
.

We look at the R-LW E problem for the special case of the m-th cyclotomic ring where m = 2k.
That means R= Z[X ]/〈X n + 1〉 holds, where n= 2k−1.

In this special case it holds that nRV = R. Hence, pairs (a, b = (a · s)/q + e mod RV ) can be
transformed to pairs (a, b̃), where b̃ = b · n= (a · s̃)/q+ ẽ with s̃ ∈ Rq and ẽ ∈ R [LPR12].

In cryptography a discretized version of the R-LW E is often used by computing b in a finite set
instead of KR/R

V .

In the authenticated and non-authenticated key exchange protocols analyzed in Section 5 and 6,
we only consider the R-DLW E problem for the m= 2l+1-th cyclotomic field with ring of integers
R = Z[X ]/〈X n + 1〉, where n = 2l for l > 0. Furthermore, the element s ∈ Rq is drawn from the
error distribution φ instead of uniformly random. We state this version of the R-DLW E problem
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explicitly in the following definition and denote it by R-DLW Em,n,q,χ .

Definition 3.14 (R-DLW E problem for m= 2l+1 (R-DLW Em,n,q,χ)). Let m= 2n, n= 2l , l > 0, q
be an integer, R = Z[X ]/〈X n + 1〉, χ be a distribution over R, and s← χ. Given arbitrarily many
pairs (a, b) ∈ Rq×Rq, decide whether they are drawn from the R-LWE distribution AR,s,χ or whether
they are drawn uniformly random from Rq × Rq.

The hardness of the R-DLW Em,n,q,χ problem is equivalent to the hardness of the original R-
DLW E problem of Definition 3.12. For a proof refer to [LPR13]. Brakerski et al. [BV11]
proved that taking an additional factor t ∈ Z∗q in front of the error term e, i.e. looking at pairs
(a, b = as + te) instead of (a, b = as + e), does not weaken the hardness of the R-DLW Em,n,q,χ
problem either. This form of the R-DLW Em,n,q,χ problem is also used in some protocols.

Now we give a definition of the R-SIS in the ring Rq = Zq[X ]/〈X n + 1〉 following [LS12].

Definition 3.15 (R-SIS). Given a1, . . . , at ∈ Rq, find y1, . . . , yt ∈ R such that
∑t

i=1 ai yi = 0
mod q and 0<‖ y ‖≤ β for some fixed β ∈ R.

Since in this specific setting the multiplication of an element ai ∈ Rq with X is just an anti-cyclic
shift, the R-SIS can be seen as an SIS with the matrix A consisting of the rotation matrices of
the elements ai, i.e. A= (rot(a1), . . . , rot(at)) with

rot(ai) =









ai,0 −ai,n−1 · · · −ai,1
ai,1 ai,0 · · · −ai,2
...

... . . . ...
ai,n−1 ai,n−2 · · · ai,0









, ai =
n−1
∑

j=0

ai, jX
j.

For the R-LW E problem a similar process is possible, just that we take the transpose of A. That
means that the R-LW E problem can be seen as an LW E problem with matrix

A=









rot(a1)
rot(a2)

...
rot(at)









.

The advantage of the R-LW E and R-SIS problem compared to the LW E and SIS problem is that
the needed memory space is much less. This is because one does not need to save the whole
matrix A but just one column of each rotation matrix rot(ai). Saving the matrix A from above
requires saving nt elements of Zq while the matrix A has n2 t entries. Hence, the additional
structure of ideal lattices reduces the needed memory space by a factor of n.

24



4 Cryptographic Primitives and Definitions

Key exchange protocols, especially authenticated protocols, often use cryptographic primitives
such as key encapsulation mechanism, public key encryption schemes, and signature schemes.
Definitions are given below together with often used security properties.

A key encapsulation mechanism (KEM) is a scheme in which a key k is produced as the out-
put of the senders encapsulation algorithm using only the receivers public encapsulation key.
More formally, a KEM E is defined via the three probabilistic polynomial-time algorithms
E = (Ke yGen, EnCap, DeCap) defined as follows [FSXY13]:

KeyGen(1κ) input: security parameter κ
output: a pair consisting of a decapsulation and an encapsulation key (dk, ek)

EnCap(ek) input: encapsulation key ek
output: ciphertext c ∈ C and a key k ∈ K , where C is the ciphertext space and
K the key space

DeCap(c, dk) input: decapsulation key dk and a ciphertext c ∈ C , where C is the ciphertext
space
output: key k ∈ K , where K is the key space, or a decapsulation failure sym-
bol ⊥.

A KEM is said to be correct if there exists a negligible function negl(κ) in the security pa-
rameter κ such that for any (dk, ek) ← Ke yGen(1κ) and (c, k) ← EnCap(ek), it holds that
Pr[DeCap(c, dk) = k]≥ 1− negl(κ).

A public key encryption scheme (PKE) E is defined via the following three probabilistic
polynomial-time algorithms E = (Gen, Enc, Dec) [FSXY13]:

Gen(1κ) input: security parameter κ
output: a pair consisting of a secret and a public key (sk, pk)

Enc(M , pk) input: public key pk and a plaintext M ∈M , whereM is the message space
output: ciphertext c ∈ C , where C is the ciphertext space

Dec(c, sk) input: secret key sk and a ciphertext c ∈ C , where C is the ciphertext space
output: plaintext M ∈M , whereM is the message space or a decryption fai-
lure symbol ⊥.

A PKE is said to be correct if for any M ∈M and (sk, pk)← Gen(1κ), there exists a negligible
function negl(κ) in the security parameter κ such that Pr[Dec(Enc(M , re, pk), sk) = M] ≥ 1−
negl(κ) holds. The PKE is called perfectly correct if Pr[Dec(Enc(M , re, pk), sk) = M] = 1.

When a PKE (or KEM) E = (Gen, Enc, Dec) is used in a key exchange protocol, E is often
required to fulfill a security property such as IND-CPA or IND-CCA security. Those secu-
rity properties are defined via the IND-CPA and the IND-CCA game defined below, following
[KL07].

The IND-CPA game:
The key generation algorithm of a PKE E = (Gen, Enc, Dec) (KEM) is run and outputs
(sk, pk) ← Gen(1κ). The adversary A receives pk and has access to an encryption oracle
Enc(·, pk). A chooses two messages m0, m1 ∈ M . Afterwards, a random bit b ∈ {0,1} is
chosen and the ciphertext c ← Enc(mb, pk) is computed by the oracle and given to A . The
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adversary can continue to query the encryption oracle. Finally,A outputs a guess b′ ∈ {0, 1}. If
b′ = b,A wins the game, elseA loses.

Definition 4.1 (IND-CPA). A PKE E = (Gen, Enc, Dec) (KEM) is said to be IND-CPA secure if for
all probabilistic, polynomial-time adversaries A , there exists a negligible function negl(κ) in the
security parameter κ such that

Pr[A wins the IND-CPA game]≤
1
2
+ negl(κ).

A stronger security property for PKE schemes is given by indistinguishability under chosen-
ciphertext attacks (IND-CCA).

The IND-CCA game:
The key generation algorithm of a PKE E = (Gen, Enc, Dec) (KEM)is run and outputs
(sk, pk) ← Gen(1κ). The adversary A receives pk and has access to a decryption oracle
Dec(·, sk). A chooses two messages m0, m1 ∈ M . Afterwards, a random bit b ∈ {0,1} is
chosen and the ciphertext c = Enc(mb, pk) is computed and given to A . The adversary can
continue to query the decryption oracle but may not ask for the decryption of c. Finally, A
outputs a guess b′ ∈ {0, 1}. If b′ = b,A wins the game, elseA loses.

Definition 4.2 (IND-CCA). A PKE E = (Gen, Enc, Dec) (KEM) is said to be IND-CCA secure if
for all probabilistic, polynomial-time adversaries A , there exists a negligible function negl(κ) in
the security parameter κ such that

Pr[A wins the IND-CCA game]≤
1
2
+ negl(κ).

An IND-CPA secure KEM can be obtained from an IND-CPA secure PKE by taking K = M
and vice versa. Therefore, we also write (sk, pk) for the key pair (dk, ek) and note that a
KEM can be instantiated by a PKE scheme. Fujikoa et al. [FSXY13] make use of this in their
authenticated key exchange protocol described in Section 6.2. In that case the public key en-
cryption algorithms Gen, Enc, Dec replace the KEM algorithms Ke yGen, EnCap, DeCap. The
algorithm Ke yGen(1κ) outputs a decapsulation-encapsulation key pair (dk, ek) which corre-
sponds to the secret-public key pair (sk, pk)← Gen(1κ). The ciphertext c and key k as outputs
(c, k) ← EnCap(ek) of the encapsulation algorithm correspond to the randomly chosen input
message M and the ciphertext output c← Enc(M , pk) of the encryption algorithm. The output
k← DeCap(c, dk) of the decapsulation algorithm corresponds to the output M ← Dec(c, sk) of
the decryption algorithm. That means that the key of the KEM is derived as a randomly chosen
message of the PKE.

A signature scheme Π is defined via the following three probabilistic polynomial-time algorithms
Π= (Sig.Gen, Sign, Ver) [PW07]:

Sig.Gen(1κ) input: security parameter κ
output: a pair of verification and signing key (v k, sk)

Sign(sk, M) input: signing key sk and a message M ∈M , whereM is the message space
output: signature σ

Ver(v k, M ,σ) input: verification key v k, a message M ∈M , and a signature σ
output: 1 if σ is a valid signature for message M , else 0.

26



A signature scheme is called complete if for any (v k, sk) ← Sig.Gen(1κ) and any M ∈
M , there exists a negligible function negl(κ) in the security parameter κ such that
Pr[Ver(v k, M , Sign(sk, M)) = 1] ≥ 1 − negl(κ) holds. The signature scheme is called per-
fectly complete if Pr[Ver(v k, M , Sign(sk, M)) = 1] = 1.

The security property for signature schemes that we use in this thesis is defined via the signature
game [KL07].

The signature game:
The key generation algorithm Sig.Gen of a signature scheme Π = (Sig.Gen, Sign, Ver) gener-
ates a valid key pair (v k, sk) ← Sig.Gen(1κ) and sends the verification key to the adversary
A . A has access to a signing oracle Sign(sk, ·) which returns valid signatures for any message
M ∈M ofA ’s choice. A outputs a pair (M ′,σ′). LetQ be the set of all messages whose signa-
tures were previously requested by A . The adversary A wins the game if Ver(v k, M ′,σ′) = 1
and M ′ 6= M for any message M ∈Q.

Definition 4.3. A signature scheme is called existentially unforgeable under adaptive chosen mes-
sage attacks if for all probabilistic polynomial-time adversariesA , there exists a negligible function
negl(κ) in the security parameter κ such that

Pr[A wins the signature game]≤ negl(κ).

All authenticated key exchange protocols that are analyzed in this thesis use hash functions.

Definition 4.4 (Hash Function). A hash function H is a function that takes a string of arbitrary
length as input and outputs a string of fixed length l:

H : {0,1}∗→ {0,1}l .

A hash function is called collision resistant if for all probabilistic polynomial-time adversariesA
the probability to find x , x ′ with x 6= x ′ and H(x) = H(x ′) is negligible.

Such a hash function is often instantiated by SHA-256. SHA-256 outputs elements of 256 bits
and achieves a security of 128 bits against collision attacks. In this thesis we instantiate all hash
functions by SHA-256.

Hash functions can also be used to obtain message authentication codes. A message authenti-
cation code (MAC) Π consists of the following three probabilistic polynomial-time algorithms
Π= (Gen,O , V r f y):

Gen(1κ) input: security parameter κ
output: a uniformly distributed key k ∈ {0, 1}κ

O (k, M) input: key k and a message M ∈ {0,1}∗
output: t ∈ {0,1}∗ for a message M ∈ {0,1}∗, where t is called MAC tag

Vrfy(k, M , t) input: key k, a message M ∈ {0, 1}∗, and a MAC tag t ∈ {0, 1}∗
output: 1 if t is a valid MAC tag for message M , else 0

Furthermore, for all k, M ∈ {0, 1}∗, Pr[V r f y(k, M ,O (k, M)) = 1] > 1 − negl(κ) holds
true.
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The MAC game:
The key generation algorithm Gen(1κ) of a MAC Π = (Gen,O , V r f y) generates a ran-
dom key k ∈ {0,1}κ. The adversary A is given access to the oracle O (k, ·) which returns
(M , t) ← O (k, M) on input M . The adversary A wins the game if it finds (M ′, t ′) such that
V r f y(k, M ′, t ′) = 1 and M 6= M ′ for all previously queried M .

Definition 4.5. A MAC is called existentially unforgeable under adaptive chosen message attacks
(or simply secure), if for all probabilistic polynomial-time adversaries A there exists a negligible
function negl(κ) in the security parameter κ such that

Pr[A wins the MAC game]≤ negl(κ).

A MAC can be obtained through a collision resistant hash function H by taking O (k, M) =
HMAC(k, M) = H((k ⊕ opad‖H(k ⊕ ipad)‖M)), where opad, ipad are constants. This means
that a MAC can be seen as a keyed hash function. Hence, this only works if both parties share a
key.

Since this is the case in this thesis whenever message authentication codes are needed, we again
use SHA-256 as an instantiation for MACs.

Another cryptographic primitive that is used in one of the analyzed authenticated key exchange
protocols is a pseudorandom function.

Definition 4.6 (PRF). [KL07] A keyed function F : {0,1}∗ × {0, 1}∗ → {0, 1}∗ is called pseu-
dorandom function (PRF) if it is efficient, length preserving and no probabilistic polynomial-time
distinguisher D can distinguish with more than negligible probability the output of F(k, ·) from the
output of a truly random function fκ(·), where the length of the input equals κ for both functions,
i.e.

|Pr[DFk(·)(1κ) = 1]− Pr[D fκ(·)(1κ) = 1]| ≤ negl(κ),

where k
$
←− {0,1}κ and fκ chosen uniformly random from the set of functions mapping κ-bit strings

to κ-bit strings.

The final shared session key of the sender and the receiver is in some cases the output of a cer-
tain function. This function can be either a pseudorandom function or a so called key derivation
function.

Definition 4.7 (KDF). [FSXY12] A key derivation function (KDF) is a function D : Sal t ×Dom→
Rng, with finite domain Dom, finite range Rng and non-secret random salt Sal t. Furthermore,
for the security parameter κ no probabilistic polynomial-time distinguisher D can distinguish with
more than negligible probability the output of D from the output of a truly random function f on
Rng.

We conclude this section with a definition of k-bit security of a cryptographic scheme.

Definition 4.8. Let Π be a cryptographic scheme and A be an algorithm that breaks the security
of Π in time tA with probability εA . The scheme Π is called k-bit secure if tA

εA
≥ 2k.
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5 Key Exchange Protocols

A key exchange protocol (KE) is a method that describes how different parties can generate a
common secret key via a public network communication [KL07]. Those parties do not share any
secret information before. That means that several parties want to agree on a common key that
no other party is able to obtain or compute while their only way of communication is possibly
eavesdropped. More formally, in a KE protocol each party computes a public-secret-key pair
and sends his public key to the other party. Using their own public-secret key pair and the other
party’s public key, they compute a shared session key.

In this section we analyse three lattice-based KE protocols. We call the first two protocols JD
and ring-JD and they were developed by Ding et al. [JD12]. The third protocol was developed
by Bos et al. [BCNS14] and we call it BCNS protocol.

For each protocol we give a short introduction including a statement of the lattice problem on
which the security of the protocol is based. The used security model is stated but not defined
since this is out of the scope of this thesis. A definition of needed additional functions together
with a description of the protocol follows. Furthermore, we quote lemmas that state parameter
conditions for the correctness of the protocol, i.e. under which the computed session keys of the
two parties are the same.

5.1 The JD and ring-JD Key Exchange by Ding, Xie, and Lin

Ding et al. [JD12] propose one key-exchange protocol based on the LW E problem and one
based on its ring variant. We call them JD and ring-JD from now on. The basic idea can be seen
as a Diffie-Hellman key exchange protocol based on the LW E and R-LW E problem.

Both key exchange protocols are secure against passive probabilistic polynomial-time (PPT)
adversaries if the DLW En,q,DZn,σ

and R-DLW E2n,2l ,q,χ problem with factor t = 2 are hard. For a
proof and an exact definition of this security model refer to [JD12].

The JD and the ring-JD protocol use some specific functions. Similar methods are also used
in Section 6.3 by the ZZD protocols. Ding et al. [JD12] define the functions δ0, δ1, S and E
via

δ0 : Zq→ {0, 1}, x 7→

¨

0 if x ∈ [−
�q

4

�

,
�q

4

�

]
1 otherwise,

δ1 : Zq→ {0, 1}, x 7→

¨

0 if x ∈ [−
�q

4

�

+ 1,
�q

4

�

+ 1]
1 otherwise,

S : Zq→ {0,1}, x 7→ δb(x) where b ∈ {0, 1} uniformly random, and

E : Zq × {0, 1} → {0, 1}, (x ,δ) 7→
�

x +δ
q− 1

2
mod q

�

mod 2.

For any odd q > 2 if x ∈ Zq is chosen uniformly random, then E(x ,δ) ∈ {0,1} is uniformly
distributed conditioned on δ← S(x) [JD12], i.e. for any δ, b′ ∈ {0,1} it holds that

Pr
x

$←−Zq,b
$←−{0,1}

[E(x ,δ) = b′|δb(x) = δ] =
1
2

.
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Let q > 8 be odd. Ding et al. [JD12] show that for all x , y ∈ Zq such that |x − y| ≤ q
4 − 2 and

x − y is even, the equality E(x , S(y)) = E(y, S(y)) holds. The proof is very similar to the proof
of Lemma 6.5. This is used to make sure that both parties compute the same shared session key
SKS = SKR.

The two versions of the key exchange protocol are depicted in Figure 1 and Figure 2. A descrip-
tion of the JD protocol follows now.

Public parameters: The protocol depends on the parameters n, q, and σ. Let n, q ∈ N, q be
an odd prime, and σ be the standard deviation of the discrete Gaussian distribution DZn,σ.
Furthermore, let A∈ Zn×n

q be a uniformly sampled matrix.

Initiation: The sender computes a public-secret key pair by sampling the secret key sS ← DZn,σ
and computing the public key pS = AsS + 2eS mod q, where eS ← DZn,σ. The public key is
sent to the receiver.

Response: The receiver computes a public-secret key pair by sampling the secret key sR ←
DZn,σ and computing the public key pR = AT sR + 2eR mod q, where eR ← DZn,σ. The
receiver samples an additional error term e′R← DZ,σ, computes kR = pT

S sR+2e′R mod q and
δ← S(kR), and obtains the session key SKR = E(kR,δ). The public key pR and the bit δ are
finally sent to the sender.

Finish: The sender samples e′S ← DZ,σ, computes kS = sT
S pR + 2e′S mod q, and obtains the

session key SKS = E(kS,δ).

The sender and the receiver share only one secret bit after running the protocol described in
Figure 1. To extent it to multiple shared secret bits, each party chooses secret matrices SS, SR ∈
Zn×n

q instead of secret vectors sS, sR ∈ Zn.

Sender Receiver
sS, eS ← DZn,σ sR, eR← DZn,σ
pS = AsS + 2eS mod q pR = AT sR + 2eR mod q

pS−−→ e′R← DZ,σ
kR = pT

S sR + 2e′R mod q
pR,δ
←−− δ← S(kR)

e′S ← DZ,σ SKR = E(kR,δ)
kS = sT

S pR + 2e′S mod q
SKS = E(kS,δ)

Figure 1: The JD key exchange protocol

Lemma 5.1 (Correctness). [JD12] If 16(σπ)2n ≤ q
4 − 2, then SKS = SKR with overwhelming

probability.

Ding et al. [JD12] suggested the parameters n = λ, q ≈ λ4, and σ = λp
2π

. These parameters

not only guarantee correctness but also satisfy σ
p

2π >
p

n, which is a condition for the worst-
to-average-case reduction from the SV P to the LW E problem (see Subsection 2.3).
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From this key exchange protocol, Ding et al. [JD12] obtained a key exchange protocol based on
the R-DLW E problem. The functions δ0,δ1, S, and E are extended coefficient-wise to elements
in Rq. A short overview of the protocol, which we call ring-JD, is given in Figure 2.

Public parameters: The protocol depends on the parameters n, q, and σ. Let n = 2l be the
degree of the field extension of the m-th cyclotomic field Km for m = 2n and q be a prime
such that q ≡ 1 mod 2n. Let σ be the parameter of the error distribution χ such that
Pr[‖x‖ >

p
2πnσ : x ← χ] ≤ negl(n) holds. Furthermore, let a ∈ Rq be a uniformly

sampled polynomial.

Initiation: The sender computes a public-secret key pair by sampling the secret key sS ← χ and
computing the public key pS = asS + 2eS mod q, where eS ← χ. The public key is sent to
the receiver.

Response: The receiver computes a public-secret key pair by sampling the secret key sR ← χ
and computing the public key pR = asR + 2eR mod q, where eR← χ. The receiver samples
an additional error term e′R ← χ, computes kR = pSsR + 2e′R mod q and δ ← S(kR), and
obtains the session key SKR = E(kR,δ). The public key pR and the n-bit string δ is finally
sent to the sender.

Finish: The sender samples e′S ← χ, computes kS = sS pR + 2e′S mod q, and obtains the session
key SKS = E(kS,δ).

A distribution χ that depends on the parameter σ such that Pr[‖x‖ >
p

2πnσ : x ← χ] ≤
negl(n) holds can be obtained by taking the discrete Gaussian distribution DZn,σ with parame-
ter σ. This follows from Lemma 5.2.

Lemma 5.2. [MR07] For any σ ≥ω(
p

log(n)) we find Pr[‖x‖>
p

2πnσ : x ← DZn,σ]≤ 2−n.

Sender Receiver
sS, eS ← χ sR, eR← χ
pS = asS + 2eS mod q pR = asR + 2eR mod q

pS−−→ e′R← χ
kR = pSsR + 2e′R mod q

pR,δ
←−− δ← S(kR)

e′S ← χ SKR = E(kR,δ)
kS = sS pR + 2e′S mod q
SKS = E(kS,δ)

Figure 2: The ring-JD key exchange protocol

Equivalently to Lemma 5.1 the correctness of the scheme is guaranteed by the following lemma.

Lemma 5.3 (Correctness). [JD12] If 16π(nσ)2 ≤ q
4 − 2, then SKS = SKR with overwhelming

probability.

Ding et al. [JD12] propose the parameters n = λ, q ≈ λ4 and σ = λp
2πλ

, which fulfill the
conditions for the correctness given above.
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Both key exchange schemes by [JD12] are only proven to be secure in the two-user setting. A
multi-user variant is proposed in the same paper, but its security is not yet proven.

5.2 The BCNS Key Exchange by Bos, Costello, Naehrig, and Stebila

Bos, Costello, Naehrig, and Stebila [BCNS14] introduced a key exchange protocol that replaces
the traditional number theoretic key exchange in the Transport Layer Security protocol (T LS)
[DR06] by one based on the R-LW E problem. Together with RSA or elliptic curve digital sig-
natures it forms an authenticated key exchange protocol. We only analyze the lattice-based
unauthenticated key exchange protocol, which we call BCNS protocol. Furthermore, we note
that Alkim et al. [ADPS15] recently proposed a new version of the BCNS protocol, which can
be interesting for future research.

This new T LS protocol is secure in the authenticated and confidential channel establishment
(ACC E) security model, which is based on the Bellare-Rogaway model. A definition of the secu-
rity model exceeds the scope of this thesis. For more details refer to Bos et al. [BCNS14].

The key exchange protocol uses some specific rounding functions and concepts that were first
defined by Peikert [Pei14]. Therefore, the resulting key exchange protocol is a special case of
Peikert’s key encapsulation mechanism which is described in Subsection 6.4.

Peikert proved that the BCNS protocol is IND-CPA secure for parameters n= 2l , q, and χ, if the
R-DLW E2n,2l ,q,χ problem is hard to solve [Pei14].

First, we define the needed functions. Afterwards, we give a description of the scheme, which
is depicted in Figure 3, and state parameters for its correctness.

The general rounding function is denoted by

b·e : R→ Z, x 7→ z, where x ∈ [z − 1/2, z + 1/2).

Definition 5.4. For a positive modulus q the modulus rounding function is defined by

b·eq,2 : Zq→ Z2, x 7→
�

2
q

x
¤

mod 2.

The cross rounding function is defined via

〈·〉q,2 : Zq→ Z2, x 7→
�

4
q

x
�

mod 2.

Let q be an even modulus. Then we obtain

bv eq,2 =

¨

0 v ∈ {0,1, . . . ,
�q

4

�

− 1} ∪ {
�3q

4

�

, . . . , q− 1}
1 v ∈ {

�q
4

�

, . . . ,
�3q

4

�

− 1}
.

Let I0 = {0,1, . . . ,
�q

4

�

− 1} and I1 = {−
�q

4

�

, . . . ,−1} be two sets. In Zq the elements of I1 can
be represented by the elements in {

�3q
4

�

, . . . , q − 1}. This is denoted by I1 = {
�3q

4

�

, . . . , q − 1}
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mod q. In the same way we obtain {
�q

4

�

, . . . ,
�3q

4

�

−1}=
��

I0 +
q
2

�

∪
�

I1 +
q
2

��

mod q. Analysing
the cross rounding function 〈·〉q,2, we obtain

〈v 〉q,2 =

¨

0 v ∈ I0 ∪
�

I0 +
q
2

�

1 v ∈ I1 ∪
�

I1 +
q
2

�

.

If q is an odd integer, the modular rounding function on Zq would be biased. Therefore, Peikert
[Pei14] introduced a randomized doubling function

d bl : Zq→ Z2q, x 7→ 2x − e, where e =











−1 with probability 1/4,

0 with probability 1/2,

1 with probability 1/4.

Lemma 5.5. [Pei14] Let q be an odd integer and v ∈ Zq be chosen uniformly random. Then
bd bl(v )e2q,2 is uniformly distributed given 〈d bl(v )〉2q,2.

Before looking at the key exchange protocol, one more function needs to be defined that is used
to calculate the shared session key. Let I ′b be defined by replacing q by 2q in the set Ib, i.e.
we obtain I ′1 = {−

�q
2

�

, . . . ,−1} and I ′0 = {0, 1, . . . ,
�q

2

�

− 1}. The reconciliation function rec is
defined as

rec : Z2q ×Z2→ Z2, (v , b) 7→

¨

0 if v ∈
��

I ′b +
�

−q
4 , q

4

��

mod 2q
�

,

1 otherwise.

Lemma 5.6. Let q be odd and w = v + e ∈ Zq with w, e ∈ Zq and 2e ± 1 ∈
�

−q
4 , q

4

�

⊂ Zq. Then it
holds that rec(2w, 〈d bl(v )〉2q,2) = bd bl(v )e2q,2.

Proof. On the left-hand side of the equation we obtain rec(2w, 〈d bl(v )〉2q,2) = 0 if and only if

2w= 2v + 2e ∈
�

I ′b +
h

−
q
4

,
q
4

��

mod 2q and 〈d bl(v )〉2q,2 = b.

Let 〈d bl(v )〉2q,2 = b. This holds if and only if d bl(v ) ∈ I ′b ∪
�

I ′b + q
�

.
In this case we obtain on the right-hand side of the equation bd bl(v )e2q,2 = 0 if and only if
d bl(v ) ∈ I ′b. With d bl(v ) = 2v − ẽ and ẽ ∈ {−1, 0,1}, this is equivalent to

2w= 2v + 2e = d bl(v ) + ẽ+ 2e ∈
�

I ′b +
h

−
q
4

,
q
4

��

.

Hence, the claim follows.

The functions b·e2q,2, 〈·〉2q,2, and d bl can be extended to functions over Rq by applying them to
each coefficient.

A description of the key exchange protocol BCNS as depicted in Figure 3 follows.

Public parameters: The protocol depends on the parameters n, q, and σ. Let n = 2l be the
degree of the field extension of the m-th cyclotomic field Km for m = 2n and q be an
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Sender Receiver
sS, eS ← χ sR, eR← χ .
pS = asS + eS pR = asR + eR

pS−−→ e′R← χ
v = pSsR + e′R
v̄ ← d bl(v )

pR,c
←−− Set c = 〈v̄ 〉2q,2

SKS = rec(2pRsS, c) SKR = bv̄ e2q,2

Figure 3: The BCNS key exchange protocol

odd positive integer. Let σ be the parameter of the discrete Gaussian distribution χ over
R= Z[X ]/〈X n + 1〉 and a ∈ Rq be a uniformly sampled polynomial.

Initiation: The sender computes a public-secret key pair by sampling the secret key sS ← χ and
computing the public key pS = asS+ eS mod q, where eS ← χ. The public key is sent to the
receiver.

Response: The receiver computes a public-secret key pair by sampling the secret key sR ← χ
and computing the public key pR = asR + eR mod q, where eR ← χ. The receiver samples
an additional error term e′R ← χ and computes v = pSsR + e′R mod q and v̄ = d bl(v ).
The polynomial v̄ is passed to the functions b·e2q,2 and 〈·〉2q,2 to compute c = 〈v̄ 〉2q,2 and
the session key SKR = bv̄ e2q,2. The public key pR and the n-bit string c are sent to the
sender.

Finish: The sender obtains the session key SKS via SKS = rec(2pRsS, c).

To guarantee a 128-bit security level, Bos, Costello, Naehrig, and Stebila suggest parameters
n= 1024, q = 232 − 1, and χ = DZ,σ(x) with σ = 8/

p
2π.

Lemma 5.7 (Correctness). [BCNS14] Let n = 1024, q = 232 − 1, and χ = DZ,σ(x) with
σ = 8/

p
2π. If both parties execute the BCNS protocol honestly, the probability that the two

keys SKS and SKR are the same is greater than 1− 2−217
.
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6 Authenticated Key Exchange Protocols

A key exchange protocol that also authenticates the identities of the involved parties is called
authenticated key exchange protocol (AKE). More formally, in an AKE protocol each party
has a static public-secret key pair. The static public key is certified with the party’s identity.
When running the protocol, each party generates an ephemeral secret key and, depending on
that, a corresponding ephemeral public key. The public key is sent to the other party. Each
party computes a shared session state by using the ephemeral and the static keys. This shared
session state is passed to a key derivation function which outputs the session key [ZZD+14].
Each invocation of the protocol is called session and identified by a session identity denoted by
sid. The session identity sid usually consists of public information such as the identities of the
involved parties and public keys. By IS and IR we denote the identities of the sender and the
receiver respectively.

In the following subsections we describe and analyze five different lattice-based authenticated
key exchange protocols. The first two protocols were developed by Fujioka, Suzuki, Xagawa, and
Yoneyama and we call them FSXY12 and FSXY13. Zhang, Zhang, Ding, Snook, and Dagdelen
constructed a two- and a one-pass AKE called two-pass ZZD and one-pass ZZD respectively. The
last protocol was developed by Peikert and we refer to it as the Peikert protocol.

Most of those AKE protocols make use of other cryptographic primitives like key encapsulation
mechanisms, public key encryption schemes, and signature schemes.

For each protocol we give a short introduction including a statement of the lattice problem on
which the security of the protocol is based. The used security model is stated but not defined
since this is out of the scope of this thesis. A definition of needed additional functions together
with a description of the protocol follows. Furthermore, we quote lemmas that state conditions
for the correctness and security of the protocol.

6.1 The FSXY12 Key Exchange by Fujioka, Suzuki, Xagawa, and Yoneyama

Fujioka, Suzuki, Xagawa, and Yoneyama developed a generic construction of an authenticated
key exchange protocol from key encapsulation mechanisms [FSXY12]. It is a generalization
with stronger security based on a previous construction by Boyd et al. [BCNP08, BCNP09] that
was based on the Diffie-Hellman assumption.

The constructed AKE satisfies one of the strongest security models for AKE under certain con-
ditions, namely CK+ security in the standard model. CK+ is a combination of several security
models, namely the Canetti-Krawczyk (CK) security model, security against key compromise im-
personation (KCI), weak perfect forward secrecy (wPFS), and security against maximal exposure
attacks (MEX). For more details and definitions of those attacks, see [FSXY12].

The AKE consists of three different pseudorandom functions, a key derivation function, and two
not necessarily different key encapsulation mechanisms with certain properties. However, the
resulting AKE protocol is not necessarily lattice-based unless one decides to use a lattice-based
instantiation.
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In the following we describe the needed cryptographic primitives before looking at the generic
protocol in Figure 4. An overview of the quantities of the used primitives is given in Table 8 in
Section 8.

Let κ be the security parameter and

kem= (Ke yGen, EnCap, DeCap),
wkem= (wKe yGen, wEnCap, wDeCap)

be two key encapsulation mechanisms with random space RSG for the key generation algo-
rithms and random space RSE for the encapsulation algorithms. That means that the key
generation and the encapsulation algorithms have an additional random input from those ran-
dom spaces which is used as a random seed. Furthermore, let

F :{0,1}∗ ×FS →RSE,

F ′ :{0,1}∗ ×FS →RSE, and

G :{0,1}∗ ×FS → {0,1}κ

be three pseudo-random functions with key space FS and |FS |= κ.
Let

kd f : Sal t × K →FS

be a key derivation function with a non-secret salt s ∈ Sal t, where Sal t is the salt space and K
is the key space of the key encapsulation mechanisms kem and wkem.

Public parameters: The protocol depends on the security parameter κ, the cryptographic
primitives of two KEMs, three PRFs, and one KDF . Let F , F ′, and G, as de-
fined above, be the three PRFs, kem = (Ke yGen, EnCap, DeCap) and wkem =
(wKe yGen, wEnCap, wDeCap) be the two KEMs, and kd f be the needed KDF .

Key generation: Both parties generate a static public-secret key pair (sk, pk)← Ke yGen(1κ, r),

where r
$
←− RSG is a seed for the key generation algorithm Ke yGen. Furthermore, σ

$
←−

FS and σ′
$
←− {0, 1}κ are part of the static secret keys.

Initiation: The sender samples seeds rS
$
←− {0, 1}κ, r ′S

$
←− FS , and rTS

$
←− RSG and gener-

ates an ephemeral public-secret key pair (skT , pkT ) ← wKe yGen(1κ, rTS). He computes
(cS, kS)← EnCap(FσS

(rS)⊕ F ′
r′S
(σ′S), pkR), where FσS

(rS)⊕ F ′
r′S
(σ′S) serves as random input

seed, and sends (cS, pkT ) to the receiver.

Response: The receiver samples seeds rR
$
←− {0,1}κ, r ′R

$
←− FS , and rTR

$
←− RSE. He

computes (cR, kR) ← EnCap(FσR
(rR) ⊕ F ′

r′R
(σ′R), pkS) and (cT , kT ) ← wEnCap(rTR, pkT ),

where FσR
(rR) ⊕ F ′

r′R
(σ′R) and rTR respectively serve as random input seeds, and sends

(cR, cT ) to the sender. The receiver obtains kS ← DeCap(cS, skR) and, through the
KDF , k′1 = kd f (s, kS), k′2 = kd f (s, kR), and k′3 = kd f (s, kT ). With the session identity
sid = (IS, IR, pkS, pkR, cS, pkT , cR, cT ) he obtains the session key SK = Gk′1

(sid)⊕ Gk′2
(sid)⊕

Gk′3
(sid).
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Sender Receiver
Long-term keys Long-term keys

σS
$
←−FS , σ′S

$
←− {0, 1}κ σR

$
←−FS , σR

$
←− {0,1}κ

r
$
←−RSG r ′

$
←−RSG

(sS, pS)← Ke yGen(1κ, r) (skR, pkR)← Ke yGen(1κ, r ′)

rS
$
←− {0,1}κ

r ′S
$
←−FS

rTS
$
←−RSG

(cS, kS)
← EnCap(FσS

(rS)⊕ F ′
r′S
(σ′S), pkR)

(skT , pkT )← wKe yGen(1κ, rTS)
(cS ,pkT )−−−−→

rR
$
←− {0,1}κ

r ′R
$
←−FS

rTR
$
←−RSE

(cR, kR)
← EnCap(FσR

(rR)⊕ F ′
r′R
(σ′R), pkS)

(cR,cT )←−−−− (cT , kT )← wEnCap(rTR, pkT )
kR← DeCap(cR, sS) kS ← DeCap(cS, skR)
kT ← wDeCap(cT , skT )
k′1 = kd f (s, kS) k′1 = kd f (s, kS)
k′2 = kd f (s, kR) k′2 = kd f (s, kR)
k′3 = kd f (s, kT ) k′3 = kd f (s, kT )
Session identity, session key: Session identity, session key:
sid = (IS, IR, pkS, pkR, cS, pkT , cR, cT ) sid = (IS, IR, pkS, pkR, cS, pkT , cR, cT )
SK = Gk′1

(sid)⊕ Gk′2
(sid)⊕ Gk′3

(sid) SK = Gk′1
(sid)⊕ Gk′2

(sid)⊕ Gk′3
(sid)

Figure 4: The FSXY12 authenticated key exchange protocol

Finish: The sender computes kR ← DeCap(cR, sS) and kT ← wDeCap(cT , skT ). Through
the KDF he obtains k′1 = kd f (s, kS), k′2 = kd f (s, kR), and k′3 = kd f (s, kT ). With
the session identity sid = (IS, IR, pkS, pkR, cS, pkT , cR, cT ) he computes the session key
SK = Gk′1

(sid)⊕ Gk′2
(sid)⊕ Gk′3

(sid).

Theorem 6.1. [FSXY12] If kem = (Ke yGen, EnCap, DeCap) is an IND-CCA secure and κ-min-
entropy KEM , wkem = (wKe yGen, wEnCap, wDeCap) is an IND-CPA secure and κ-min-entropy
KEM , F, F ′, and G are PRFs, and kd f is a KDF , then the AKE construction depicted in Figure 4
is CK+ secure in the standard model.

For a proof refer to [FSXY12, appendix].

We refrain from a definition of κ-min-entropy, as lattice-based PKE schemes are κ-min-entropy
KEMs if the message space is larger than the security parameter κ and the message is chosen
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uniformly at random [FSXY12]. As seen in Section 4, the uniformly chosen message of the PKE
corresponds to the derived key of the encapsulation and decapsulation algorithms of the KEM
in this case.

This authenticated key exchange protocol is correct as long as both KEMs are correct.

Key encapsulation mechanisms based on the hardness of the ring LW E problem that fulfill the
above conditions exist as well as PRFs constructed from the ring LW E assumption. Hence, from
this generic construction of an AKE, an AKE based on lattices can be obtained. However, all
known lattice-based KEMs that are IND-CCA secure in the standard model need huge keys and
the resulting AKE is therefore neither practical nor efficient. Therefore, this authenticated key
exchange protocol is mostly of theoretical interest. A more practical variant of this construction
is given in Subsection 6.2.

6.2 The FSXY13 Key Exchange by Fujioka, Suzuki, Xagawa, and Yoneyama

As mentioned above, the authenticated key exchange by Fujioka et al. [FSXY12], which is CK+

secure in the standard model, is very inefficient when instantiated by lattice-based KEMs. Fu-
jioka et al. [FSXY13] propose a more practical generic post-quantum CK+ secure AKE by using
one-way secure KEMs in the random oracle model. That means that by using hash functions
that are modelled as random oracles, the IND-CCA secure KEM can be obtained from an IND-
CPA secure KEM . Therefore, this AKE can be seen as a practical variant of the one described
in Section 6.1. We call it FSXY13 protocol. Fujioka et al. [FSXY13] prove CK+ security in the
random oracle model but do not consider quantum random oracle models.

Compared to the FSXY12 protocol, the FSXY13 protocol only needs two KEMs with certain
properties and two hash functions that are modelled as random oracles.

In the following we describe the needed cryptographic primitives for this generic AKE protocol
as well as the needed Fujisaki-Okamoto (FO) transformation that transforms an IND-CPA secure
KEM into an IND-CCA secure KEM . An overview of the generic protocol is depicted in Figure
5 and a summary of its building blocks and their quantities can be seen in Table 8 in Section
8.

Let κ be the security parameter and

kem= (Ke yGen, EnCap, DeCap),
wkem= (wKe yGen, wEnCap, wDeCap)

be two key encapsulation mechanisms with random space RSG for the key generation algo-
rithms and random space RSE for the encapsulation algorithms. Again that means that the
key generation and the encapsulation algorithms have an additional random input from those
random spaces which is used as a random seed. Furthermore, let

H1 :{0, 1}∗→RSE and

H2 :{0, 1}∗→ {0,1}κ

be two hash functions.
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Sender Receiver
Long-term keys Long-term keys

r
$
←−RSG r ′

$
←−RSG

(skS, pkS)← Ke yGen(1κ, r) (skR, pkR)← Ke yGen(1κ, r ′)

rS
$
←− {0,1}κ

rTS
$
←−RSG

(cS, kS)← EnCap(H1(rS, skS), pkR)

(skT , pkT )← wKe yGen(1κ, rTS)
cS ,pkT−−−→

rR
$
←− {0,1}κ

rTR
$
←−RSG

(cR, kR)← EnCap(H1(rR, skR), pkS)
cR,cT←−−− (cT , kT )← wEnCap(rTR, pkT )

kR← DeCap(cR, skS) kS ← DeCap(cS, skR)
kT ← wDeCap(cT , skT )
Set session identity, session key Set session identity, session key
sid = (IS, IR, pkS, pkR, cS, pkT , cR, cT ) sid = (IS, IR, pkS, pkR, cS, pkT , cR, cT )
SK = H2(kS, kR, kT , sid) SK = H2(kS, kR, kT , sid)

Figure 5: The FSXY13 authenticated key exchange protocol

Public parameters: The protocol depends on the security parameter κ, the cryptographic prim-
itives of two KEMs and two hash functions. Let kem = (Ke yGen, EnCap, DeCap) and
wkem= (wKe yGen, wEnCap, wDeCap) be the two KEMs and H1 and H2 be the two hash
functions.

Key generation: Both parties generate a static public-secret key pair (sk, pk)← Ke yGen(1κ, r),

where r
$
←−RSG is a random seed for the key generation algorithm.

Initiation: The sender samples seeds rS
$
←− {0, 1}κ and rTS

$
←− RSG and generates an

ephemeral public-secret key pair (skT , pkT )← wKe yGen(1κ, rTS). He computes (cS, kS)←
EnCap(H1(rS, sS), pkR), where H1(rS, sS) serves as random input seed, and sends (cS, pkT )
to the receiver.

Response: The receiver samples seeds rR
$
←− {0,1}κ and rTR

$
←− RSE. He com-

putes (cR, kR) ← EnCap(H1(rR, skR), pkS) and (cT , kT ) ← wEnCap(rTR, pkT ), where
H1(rR, skR) and rTR respectively serve as random input seeds, and sends (cR, cT ) to the
sender. The receiver obtains kS ← DeCap(cS, skR) and with the session identity sid =
(IS, IR, pkS, pkR, cS, pkT , cR, cT ) the session key SK = H2(kS, kR, kT , sid).

Finish: The sender computes kR ← DeCap(cR, sS) and kT ← wDeCap(cT , skT ). With the
session identity sid = (IS, IR, pkS, pkR, cS, pkT , cR, cT ) he computes the session key SK =
H2(kS, kR, kT , sid).
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Theorem 6.2. [FSXY13] If kem = (Ke yGen, EnCap, DeCap) is an OW-CCA secure KEM and
wkem = (wKe yGen, wEnCap, wDeCap) an OW-CPA secure KEM , then the AKE depicted in Fig-
ure 5 is CK+ secure, where H1 and H2 are modelled as random oracles.

This FSXY13 protocol is correct if both KEMs are correct.

OW in OW-CCA and OW-CPA stands for one-way. We refrain from a formal definition, since
Fujioka et al. [FSXY13] instantiate the two needed secure KEMs by IND-CPA secure public key
encryption schemes. Using PKE schemes instead of KEMs is possible because passively secure
KEMs can be easily converted to passively secure PKEs and vice versa. For more details refer
to Section 4.

To obtain the needed efficient OW-CCA secure PKE, Fujioka et al. [FSXY13] apply the Fujisaki-
Okamoto conversion to transform an IND-CPA secure PKE into an IND-CCA secure PKE. This
conversion is called FO transformation. Since for sufficiently large plaintext spaces IND-CCA
security implies OW-CCA security [FO99], one obtains the needed OW-CCA security. We give a
short description of the FO transformation and refer to [FO99] for more details.

Let wpke = (wGen, wEnc, wDec) be an OW-CPA secure PKE scheme with message space wM ,
random spaces wRSE and wRSG and ciphertext space wC . By applying the FO transformation
to wpke we obtain an OW-CCA secure PKE scheme pke = (Gen, Enc, Dec) = FO(wpke) with
message spaceM and ciphertext space C such that wM =M ×RSE and wC = C holds. Let
H : {0, 1}∗→ wRSE be a hash function. The FO transformation outputs

Gen(1n, rg) = wGen(1n, rg),
Enc(M , re, pk) = wEnc((M , re), H(M , re), pk), and

Dec(c, sk) =

¨

⊥ if wDec(c, sk) =⊥ or c 6= wEnc(wDec(c, sk), H(wDec(c, sk), pk))
M if c = wEnc(wDec(c, sk), H(wDec(c, sk), pk)) with (M , re) = wDec(c, sk).

Fujioka et al. [FSXY13] give two suggestions for IND-CPA secure public key encryption schemes
based on the R-LW E problem, namely the PKE by Lyubashevsky, Peikert and Regev and the
PKE by Stehlé and Steinfeld. A description of both is given in the following subsections. In
both PKEs the random input of the key generation and the encryption algorithm is then used
as random seed for the sampling processes.

6.2.1 The LPR Public Key Encryption Scheme by Lyubashevsky, Peikert, and Regev

The LPR scheme is a modified version of the public key encryption scheme described in [LPR12]
and [LPR13] that guarantees perfect correctness.

Let n be a power of two and q ≡ 1 mod 2n be a prime. Furthermore, identify a polynomial in
Rq with its image under the coefficient embedding, hence, as a vector in Zn

q . Elements in Zq are

represented by elements in
�

−q−1
2 , q−1

2

�

.

Public parameters: The LPR scheme depends on the parameters n, q, p, t, and k. Let n = 2l

be the degree of the field extension of the m-th cyclotomic field Km for m = 2n and q be
an odd prime such that q ≡ 1 mod 2n. Let p = 2 and t = ω(

p

lg n). Furthermore, let

χ = bN(0, k2/2π)e be a distribution defined through the parameter k ≤
Ç

q−p
2(2n+1)pt2 and

a ∈ Rq be a uniformly sampled polynomial.
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Key generation: First, the polynomials sS, eS ← χ are sampled. If ‖sS‖∞,‖eS‖∞ ≤ kt, the
algorithm continues, else it resamples. The public key pS = asS + eS ∈ Rq is computed and
the public-secret key pair pk = (a, pS), sk = sS is obtained.

Encryption: The algorithm samples polynomials sR, eR, e′R ← χ. If ‖sR‖∞,‖eR‖∞,‖e′R‖∞ ≤ kt,
the algorithm continues, else it resamples. The public key pR = asR + eR ∈ Rq and the

polynomial v = pSsR + e′R ∈ Rq are computed. The algorithm samples the key k′
$
←− wM =

{0, 1}n, encrypts it via computing c = v+b q
p k′e, and obtains the ciphertext C = (pR, c).

Decryption: The algorithm computes d = c−pRsS ∈ Rq and outputs the decrypted key k′ = b p
q de

mod p.

The distribution bN(0, k2/2π)e is statistically indistinguishable from DZn,k/
p

2π.

For a proof that the LPR scheme is perfectly correct and that the following security theorem
holds, refer to [FSXY13] and personal conversation with the authors. When the LPR scheme is
used as an instantiation of the KEM for the FSXY13 protocol, the random input seeds are used
as seeds for sampling from the distribution χ.

Theorem 6.3. [FSXY13] The PKE obtained by applying the FO conversion to the LPR scheme

with the random oracle H : {0,1}∗ → wRSE and the sets M = RSE = Z
n
2
p , wM = Zn

p,
wRSE = {0,1}∗, and wC = R2

q, is IND-CCA secure if the R-DLW E2n,2l ,q,χ problem is hard for
q ≡ 1 mod 2n.

6.2.2 The SS13 Public Key Encryption Scheme by Stehlé and Steinfeld

The SS13 scheme is a modified version of the public key encryption scheme by Stehlé and
Steinfeld [SS13]. Fujioka et al. [FSXY13] added a resampling step to make the PKE scheme by
Stehlé et al. perfectly correct.

As in the LPR scheme, we associate polynomials in Rq with their image under the coefficient
embedding.

Public parameters: The SS13 scheme depends on the parameters n, q, p, t, k, ε, and σ. Let n=
2l be the degree of the field extension of the m-th cyclotomic field Km for m= 2n and q be
an odd prime such that q ≡ 1 mod 2n. Let p = 2 and t =ω(

p

lg n). Furthermore, let χ =
bN(0, k2/2π)e be a distribution defined through the parameter k ≤

Ç

q−p
2(2n+1)pt2 and σ ≥

2n
p

ln(8nq)q
1
2+2ε with ε ∈ (0, 1

4) be the parameter of the discrete Gaussian distribution
DZn,σ. Let a ∈ Rq be a uniformly sampled polynomial.

Key generation: A polynomial f ′ ← DZn,σ is sampled and f = p f ′ + 1 ∈ Rq is computed. If
f 6∈ R∗q or ‖ f ‖2 ≥ 4p

p
nσ, the algorithm resamples f ′, else it continues. A polynomial

g ← DZn,σ is sampled. If g 6∈ R∗q or ‖g‖2 ≥
p

nσ, the algorithm resamples g, else it
continues. The polynomial h = pg/ f ∈ R∗q is computed and the public-secret key pair
pk = h, sk = f is obtained.
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Encryption: Polynomials s, e ← χ are sampled. If ‖s‖∞,‖e‖∞ ≤ kt, the algorithm continues,

else it resamples. The algorithm samples the key k′
$
←− Z2[X ] of degree n− 1, encrypts it

via computing c = hs+ pe+ k′ ∈ Rq, and outputs the ciphertext c.

Decryption: The algorithm computes d = c f ∈ Rq and outputs the decrypted key k′ = d
mod p.

For a proof of perfect correctness of the SS13 scheme and the following security theorem refer
to [FSXY13] and personal conversations with the authors. When the SS13 scheme is used as an
instantiation of the KEM for the FSXY13 protocol, the random input seeds are used as seeds for
sampling from the distributions DZn,σ and χ.

Theorem 6.4. [FSXY13] The PKE obtained by applying the FO conversion to the SS13 scheme

with the random oracle H : {0, 1}∗ → wRSE and the sets M = RSE = Z
n
2
p , wM = R/pR,

wRSE = {0,1}∗, and wC = Rq, is IND-CCA secure if the R-DLW E2n,2l ,q,χ problem is hard for
q ≡ 1 mod 2n.

6.3 The ZZD Key Exchange by Zhang, Zhang, Ding, Snook, and Dagdelen

Zhang, Zhang, Ding, Snook, and Dagdelen [ZZD+14] described an implicit AKE, i.e. no signa-
ture is needed to authenticate the identities of the involved parties. It is the first post-quantum
AKE of its kind. There exists a two-pass and a one-pass version of the protocol which we call
two-pass ZZD and one-pass ZZD respectively.

First, we define the needed cryptographic primitives and two additional functions. Afterwards,
the protocol is described and some steps of the protocol are explained. A short overview of
the two-pass ZZD protocol is depicted in Figure 6. The correctness condition is derived and the
hardness assumption is stated. The one-pass ZZD protocol is described in Subsection 6.3.1.

The one- and two-pass ZZD protocols need a hash function and a key derivation function defined
as

H1 : {0, 1}∗→ DZn,γ and

H2 : {0, 1}∗→ {0, 1}n.

Furthermore, the two functions Cha and Mod2 are needed, which work similar to the functions
in the protocol of Section 5.1. More formally, let q > 2 be an odd prime and define the set
E = {−bq

4c, . . . , bq
4e} and the functions

Cha : Zq→ Z2, v 7→

¨

0 if v ∈ E,

1 otherwise,

and

Mod2 : Zq × {0,1} → {0, 1}, (v , b) 7→
��

v + b
q− 1

2

�

mod q
�

mod 2.

The following lemma proven by Zhang et al. [ZZD+14] guarantees that the derived session keys
SKS and SKR of the sender and the receiver are the same.
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Lemma 6.5. Let q be an odd prime and v , e ∈ Zq such that |e| < q
8 . Then it holds that

Mod2(v , Cha(v )) = Mod2(v + 2e, Cha(v )).

Proof. Let v ∈ Zq. We find that v + Cha(v )q−1
2 mod q ∈ E = {−bq

4c, . . . , bq
4e}, i.e. if we add 2e,

we obtain v + Cha(v )q−1
2 mod q + 2e ∈ {−bq

2c, . . . , bq
2e}. Hence, v + Cha(v )q−1

2 mod q + 2e =
v + Cha(v )q−1

2 + 2e mod q = w + Cha(v )q−1
2 mod q. Hence, we obtain Mod2(v , Cha(v )) =

Mod2(v + 2e, Cha(v )).

The functions Cha and Mod2 can be extended to elements of Rq by applying them coefficient-
wise to the image of elements of Rq under the coefficient embedding c.

A description of the two-pass ZZD protocol follows and is depicted in Figure 6.

Public parameters: The protocol depends on the parameters n, q, δ, β , M , a hash function,
and a key derivation function. Let n = 2l be the degree of the field extension of the m-th
cyclotomic field Km, for m = 2n and q > 0 be an odd prime such that q ≡ 1 mod 2n.
Let δ and β be the parameters of the two error distributions χδ = DZn,δ and χβ = DZn,β .
Furthermore, let M be the rejection constant determined by Theorem 1.2 and a ∈ Rq be a
uniformly sampled polynomial. Let the hash function and the KDF be given by H1 and H2
as defined above.

Key generation: Both parties compute a static public-secret key pair by sampling the secret key
s, e← χδ and computing the public key p = as+ 2e mod q.

Initiation: The sender samples rS, fS ← χβ and computes xS = arS + 2 fS. With hash function
H1 the sender derives dS = H1(IS, IR, xS) and computes r̂S = sSdS + rS and f̂S = eSdS + fS.
Let z = (c(r̂S), c( f̂S)) ∈ Z2n and z1 = (c(sSdS), c(eSdS)) ∈ Z2n. The sender repeats the

initiation protocol with probability 1 −min(
DZ2n,β (z)

M DZ2n,β ,z1
(z) , 1). Afterwards, xS is sent to the

receiver.

Response: The receiver samples rR, fR← χβ and computes xR = arR + 2 fR. With hash function
H1 the receiver derives dR = H1(IR, IS, xR, xS) and computes r̂R = sRdR + rR and f̂R = eRdR +
fR. Let z = (c(r̂R), c( f̂R)) ∈ Z2n and z1 = (c(sRdR), c(eRdR)) ∈ Z2n. The receiver repeats

the response protocol with probability 1−min(
DZ2n,β (z)

M DZ2n,β ,z1
(z) , 1). The receiver samples gR←

χβ , computes dS = H1(IS, IR, xS), and derives the session state kR = (pSdS + xS)(r̂R) +
2dS gR. The n-bit strings wR = Cha(kR) and σR = Mod2(kR, wR) are computed and the
session key SKR = H2(IS, IR, xS, xR, wR,σR) is derived. Afterwards, xR and wR are sent to
the sender.

Finish: The sender samples gS ← χβ and computes dR = H1(IR, IS, xR, xS) and the session state
kS = (pRdR + xR)(r̂S) + 2dRgS. The sender derives σS = Mod2(kS, wR) and obtains the
session key SKS = H2(IS, IR, xS, xR, wR,σS).

If we can apply Theorem 1.2 to z and z1 of the two-pass ZZD protocol depicted in Step 4 and
Step 7 in Figure 6, we achieve that ri and r̂i, and fi and f̂i are statistically indistinguishable, for
i ∈ {S, R}. In step 2 the message x i is computed by x i = ari + 2 fi, i.e. ri is used as a signature.
To guarantee that the signature contains the secret key si and that it is hard to obtain si given
x i, the closeness of ri and r̂i is necessary.
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Sender Receiver
Long-term keys Long-term keys

1. sS, eS ← χδ sR, eR← χδ
pS = asS + 2eS pR = asR + 2eR

2. rS, fS ← χβ rR, fR← χβ
xS = arS + 2 fS xR = arR + 2 fR

3. dS = H1(IS, IR, xS)
r̂S = sSdS + rS

f̂S = eSdS + fS

4. z = (c(r̂S), c( f̂S)) ∈ Z2n

z1 = (c(sSdS), c(eSdS)) ∈ Z2n

Repeat steps 2-4 with

probability 1−min(
DZ2n,β (z)

M DZ2n,β ,z1
(z) , 1)

5.
xS−−→

6. dR = H1(IR, IS, xR, xS)
r̂R = sRdR + rR

f̂R = eRdR + fR

7. z = (c(r̂R), c( f̂R)) ∈ Z2n

z1 = (c(sRdR), c(eRdR)) ∈ Z2n

Repeat steps 2, 6, 7 with

probability 1−min(
DZ2n,β (z)

M DZ2n,β ,z1
(z) , 1)

8.
xR←−−

9. gS ← χβ gR← χβ
dR = H1(IR, IS, xR, xS) dS = H1(IS, IR, xS)
kS = (pRdR + xR)(r̂S) + 2dRgS kR = (pSdS + xS)(r̂R) + 2dS gR

10.
wR←−− wR = Cha(kR)

11. σS = Mod2(kS, wR) σR = Mod2(kR, wR)
SKS = H2(IS, IR, xS, xR, wR,σS) SKR = H2(IS, IR, xS, xR, wR,σR)

Figure 6: The two-pass ZZD authenticated key exchange protocol

Combining [MR07] and [Ban93], we can conclude that for large enough σ all samples from
DZn,σ are small.

Lemma 6.6. Let σ = ω(
p

log n) ∈ R and t > 1p
2π

constant, then Prx←DZn,σ
[‖x‖ > tσ

p
n] ≤

1
2(t
p

2πee−πt2
)n.

This can be used to guarantee that Theorem 1.2 is applicable. With Lemma 1.1, z1 =
(c(sidi), c(eidi)) is Gaussian distributed with parameter δγ

p
n. Applying Lemma 6.6 with t = 1

2
to σ =

p
nδγ, we obtain Pr[‖eidi‖,‖eidi‖ ≤

1
2δγn] ≤ 2 · 0.943n. That means that the norm of

z1 is less than 1
2δγn with high probability. Hence, 1

2δγn serves as the bound T in Theorem 1.2,
which is in this case applicable if β ≥ 1

2τδγn holds. Furthermore, Theorem 1.2 implies that
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the expected number of repetitions of the Steps 2-4 and 2,6, and 7 in Figure 6 is given by the
rejection constant M = ex p(12

τ +
1

2τ2 ).

Next, we analyze the condition under which the two computed secret keys are the same. The
proof is based on ideas by Zhang et al. [ZZD+14].

Lemma 6.7 (Correctness). The sender and the receiver compute the same shared secret key SKS =
SKR with overwhelming probability if 16 · 7β2pn< q.

Proof. The sender and the receiver compute the same shared secret session key if σS = σR. This
is the case if kS = kR + 2e with |e|< q

8 as seen in Lemma 6.5. It holds that

kS = (pRdR + xR)(sSdS + rS) + 2dRgS

= (asRdR + 2eRdR + arR + 2 fR)(sSdS + rS) + 2dRgS

= a(sRdR + rR)(sSdS + rS) + 2(eRdR + fR)(sSdS + rS) + 2dRgS

and similarly

kR = a(sRdR + rR)(sSdS + rS) + 2(eSdS + fS)(sRdR + rR) + 2dS gR.

Hence, SKS = SKR holds if

‖((eRdR + fR)(sSdS + rS) + dRgS)− ((eSdS + fS)(sRdR + rR) + dS gR)‖∞ <
q
8

.

For that is suffices to guarantee that ‖((eRdR+ fR)(sSdS+ rS)+dRgS)‖∞ and ‖((eSdS+ fS)(sRdR+
rR) + dS gR)‖∞ are small. We only show this for the first one, as the argument for the second is
analogous.

By Theorem 1.2 and Lemma 1.1 we can already conclude that (eRdR + fR)(sSdS + rS) is
Gaussian distributed with parameter β2pn and dRgS is Gaussian distributed with parameter
γβ
p

n. Therefore, ‖(eRdR + fR)(sSdS + rS)‖∞ ≤ 6β2pn with overwhelming probability. Fur-
thermore, ‖dRgS‖∞ ≤ 6βγ

p
n holds true with overwhelming probability since erfc(6) ≈ 2−55

(er f c(x/σ
p

2) = 1− er f (x/σ
p

2) = 1− Pr[‖a‖ ≤ x |a← Dσ]).

This yields

‖(eRdR + fR)(sSdS + rS) + dRgS‖∞ ≤ 6β2pn+ 6βγ
p

n≤ 7β2pn.

The same holds for ‖(eSdS+ fS)(sRdR+ rR)+dS gR‖∞. Hence, if 16 ·7β2pn< q, SKS = SKR holds
with overwhelming probability.

Zhang et al. [ZZD+14] proved that the security of the two-pass ZZD protocol relies on the R-
DLW E problem.

Theorem 6.8. [ZZD+14] Let n be a power of 2 satisfying 0.97n ≥ 2κ for security parameter κ,
q > 203 be a prime satisfying q ≡ 1 mod 2n, and β = ω(δγn

p

n log n). Then the two-pass
ZZD protocol is secure in the Bellare-Rogaway (BR) security model in the random oracle model if
R-DLW E2n,2l ,q,χδ with additional factor t = 2 is hard.
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6.3.1 The One-Pass ZZD Protocol

Zhang et al. [ZZD+14] also proposed a one-pass variant of their AKE protocol, called one-pass
ZZD. We depict it in Figure 7. The main difference is that the receiver is neither supposed to do
rejection sampling, nor to send anything to the sender. Hence, this reduces the needed compu-
tations of this scheme. On the other hand, this protocol, unlike the two-pass ZZD protocol, does
neither satisfy wPFS nor is it resistant against replay attacks. However, a weaker security state-
ment for one-pass protocols can be proven, namely that the one-pass ZZD protocol is a secure
authenticated CCA encryption scheme in the random oracle model [ZZD+14]. For the one-pass
ZZD protocol a smaller q suffices for correctness. More concretely, q can be chosen β/δ-times
smaller than in the two-pass ZZD protocol. The public parameters and the key generation algo-
rithm are the same as in the two-pass ZZD protocol. A description of the initiation and finish
algorithm follows.

Sender Receiver
Long-term keys Long-term keys

1. sS, eS ← χδ sR, eR← χδ
pS = asS + 2eS pR = asR + 2eR

2. rS, fS ← χβ
xS = arS + 2 fS

3. dS = H1(IS, IR, xS)
r̂S = sSdS + rS

f̂S = eSdS + fS

4. z = (c(r̂S), c( f̂S)) ∈ Z2n

z1 = (c(sSdS), c(eSdS)) ∈ Z2n

Repeat steps 2-4 with

probability 1−min(
DZ2n,β (z)

M DZ2n,β ,z1
(z) , 1)

5. gS ← χβ
kS = pR r̂S + 2gS

6. wS = Cha(kS)
7.

xS ,wS−−−→
gR← χδ
dS = H1(IS, IR, xS)
kR = (pSdS + xS)sR + 2dS gR

8. σS = Mod2(kS, wS) σR = Mod2(kR, wS)
SKS = H2(IS, IR, xS, wS,σS) SKR = H2(IS, IR, xS, wS,σR)

Figure 7: The one-pass ZZD authenticated key exchange protocol

Initiation: The sender samples rS, fS ← χβ and computes xS = arS+2 fS. With hash function H1

the sender derives dS = H1(IS, IR, xS) and computes r̂S = sSdS + rS and f̂S = eSdS + fS. Let
z = (c(r̂S), c( f̂S)) ∈ Z2n and z1 = (c(sSdS), c(eSdS)) ∈ Z2n. The sender repeats the initiation

protocol with probability 1−min(
DZ2n,β (z)

M DZ2n,β ,z1
(z) , 1). The sender samples gS ← χβ and derives

kS = (pR r̂S) + 2gS. The n-bit strings wS = Cha(kS) and σS = Mod2(kS, wS) are computed
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and the session key SKR = H2(IS, IR, xS, wS,σS) is derived. Afterwards, xS and wS are sent
to the receiver.

Finish: The receiver samples gR ← χδ and computes dS = H1(IS, IR, xS) and the session state
kR = (pSdS+xS)sR+2dS gR. The receiver derives σR = Mod2(kR, wS) and obtains the session
key SKS = H2(IS, IR, xS, wS,σR).

6.4 The Peikert Key Exchange by Peikert

Chris Peikert [Pei14] designed a lattice-based AKE from a generic AKE developed by Canetti
and Krawczyk. He showed that the Diffie-Hellman key exchange mechanism can be replaced
by any passively secure key encapsulation mechanism. We call the proposed authenticated key
exchange protocol Peikert protocol.

Now we describe the steps of the Peikert protocol and depict it in Figure 8.

Public parameters: Let κ be the security parameter. The Peikert protocol, consists of an
IND-CPA secure KEM wkem = (wKe yGen, wEnCap, wDeCap) with key space K , a dig-
ital signature scheme SIG = (Sig.Gen, Sign, Ver), a message authentication code Π =
(Gen,O , V r f y) with key space K ′ and message space {0,1}∗, and a pseudorandom func-
tion F : K × {0,1} → K ′.

Key generation: Both parties have a long-term verification-signing key pair (v k, sk).

Initiation: The sender generates a public-secret key pair (sS, pS)← wKe yGen(1κ) and sends pS
to the receiver.

Response: The receiver computes (c, k) ← wEnCap(pS) and the session state (k0, k1) =
(Fk(0), Fk(1)), where k0 is the session key. He computes a MAC tag tR← O (k1, (1, sid, IR))
for message (1, sid, IR) and key k1. Furthermore, the receiver computes a signature σR =
Sign(skR, (1, sid, pS, c)) with his long-term signing key skR for the message (1, sid, pS, c).
The MAC tag tR, the signature σR, and c are sent to the sender.

Finish sender: The sender computes k ← wDeCap(c, sS) and the session state (k0, k1) =
(Fk(0), Fk(1)), where k0 is the session key. The sender verifies the signature σR of the
message (1, sid, pS, c) with the long-term verification key v kR of the receiver by comput-
ing Ver(v kR, (1, sid, pS, c),σR). Furthermore, he verifies the MAC tag tR of the message
(1, sid, IR) with key k1 by computing V r f y(k1, (1, sid, IR), tR). If both verifications are
positive, he accepts k0 as session key. He computes a MAC tag tS ← O (k1, (0, sid, IS))
for the message (0, sid, IS) with key k1. Moreover, the sender computes a signature
σS = Sign(skS, (0, sid, pS, c)) for message (0, sid, pS, c) with his long-term signing key skS.
The MAC tag tS and the signature σS are sent to the receiver.

Finish receiver: The sender verifies the signature σS of the message (0, sid, pS, c) with the
long-term verification key of the sender by computing Ver(v kS, (0, sid, pS, c),σS). Fur-
thermore, he verifies the MAC tag tS of the message (0, sid, IS) with key k1 by computing
V r f y(k1, (0, sid, IS), tS) and accepts k0 as the session key.

Theorem 6.9. The Peikert protocol is SK secure in the post-specified peer model, if SIG =
(Sig.Gen, Sign, Ver) and MAC = (Gen,O , V r f y) are existentially unforgeable under chosen-
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message attacks, wkem = (wKe yGen, wEnCap, wDeCap) is an IND-CPA secure KEM , and F is a
secure pseudorandom function.

SK security ensures for example weak perfect forward secrecy. A definition of this and the post-
specific peer model is out of the scope of this thesis. For more details and the proof of Theorem
6.9, refer to [Pei14] and [CK02].

Sender Receiver
Long-term signing and verification key Long-term signing and verification key
(v kS, skS) (v kR, skR)

(sS, pS)← wKe yGen(1κ)
pS−−→

(c, k)← wEnCap(pS)
(k0, k1) = (Fk(0), Fk(1))
tR←O (k1, (1, sid, IR))
σR← Sign(skR, (1, sid, pS, c))

c,σR,tR←−−−−
k← wDeCap(c, sS),
(k0, k1) = (Fk(0), Fk(1))
Ver(v kR, (1, sid, pS, c),σR)
V r f y(k1, (1, sid, IR), tR)
tS ←O (k1, (0, sid, IS))

σS ← Sign(skS, (0, sid, pS, c))
c,σS ,tS−−−−→ Ver(v kS, (0, sid, pS, c),σS)

Session key k0 = Fk(0) V r f y(k1, (0, sid, IS), tS)
Session key k0

Figure 8: The Peikert authenticated key exchange protocol

Peikert himself suggested an IND-CPA secure lattice-based KEM . Its description and possible
choices of parameters are part of the next subsection.

6.4.1 A Key Encapsulation Mechanism by Peikert

Peikert’s KEM uses the functions rec, d bl, b·e2, and 〈·〉2 from Section 5.2, which were first de-
fined by Peikert in 2014.

Public parameters: The KEM depends on the parameters m, n, q, and r. Let m > 0 be an
integer for the m-th cyclotomic field Km with ring of integers R and degree n = ϕ(m).
Let q be an odd integer which is coprime with every integer dividing m. Furthermore, let
χ = b m̂

g D̃re be a discretized error distribution , where D̃r has probability function ρr(x) =

exp(−πx2

r2 )/r. The factor m̂
g is the translation from RV to R and m̂ equals m

2 if m is even and

m̂ equals m if m is odd. Let a
$
←− Rq be a uniformly sampled polynomial.

Furthermore, we define

g =
∏

odd prime p|m

(1− ζp) ∈ R, where ζp = e2πi/p.
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Since q is coprime with every odd prime dividing m, g is coprime with q. Therefore, q is often
chosen to be prime such that q ≡ 1 mod m which implies the coprimality condition.

Key generation: The algorithm samples sS, eS ← χ, computes pS = asS + eS ∈ Rq, and outputs
the public-secret key pair pk = pS, sk = sS.

Encapsulation: On input pS the algorithm samples sR, eR, e′R← χ and computes the polynomials
pR = asR + eR ∈ Rq and v = gpSsR + e′R ∈ Rq. It derives c = 〈d bl(v )〉2 and outputs the
ciphertext C = (pR, c). The session key k is computed by k = bd bl(v )e2 ∈ R2 and also
output.

Decapsulation: On input C the algorithm computes w = gpRsS ∈ Rq and outputs the session
key k = rec(w, c).

The correctness of the protocol depends on certain parameter conditions given by the following
lemma.

Lemma 6.10 (Correctness). [Pei14] If ‖gsS‖2 ≤ l, ‖geS‖2 ≤ l and q2

64 ≥ (r
′2(2l2 + n) + π

2 )ω
2 for

some ω > 0 and with r ′2 = r2 + 2πrad(m)
m , then the key encapsulation mechanism described above

is correct with probability at least 1− 2n exp(3δ−πω2) for some δ ≤ 2−n.

The radical rad(m) of m is the product of all prime numbers dividing m, i.e.

rad(m) =
∏

p|m, p prime

p.

If m is a power of two, we find that g = 1 as there is no odd prime dividing m and hence, the
product is empty. For g = 1 this scheme is exactly the same as the BCNS protocol from Section
5.2. It is possible to take the same parameters to achieve the same bit security level.

Using the facts that rad(m)/m ≤ 1, ‖geS‖2,‖gsS‖2 ≤ m̂(r + 1)
p

n except with probability 2−n,
and r ′2 ≤ r2 + 2π, one can calculate that those parameters fulfill Lemma 6.10.

Theorem 6.11. Peikert’s key encapsulation mechanism is IND-CPA secure if the R-DLW Em,n,q,χ
problem is hard given two samples.

For a proof refer to [Pei14].

6.4.2 The Signature Scheme BLISS

Peikert’s key exchange needs a signature scheme, that is existentially unforgeable under chosen
message attacks. In this case we choose BLISS (Bimodal Lattice Signature Scheme), introduced
by Ducas et al. [DDLL13], which is currently the fastest lattice-based signature scheme satis-
fying the security condition. Its security is based on the assumption that the R-SIS problem is
hard.

In the following we describe the scheme, explain the individual steps and the reason for its
efficient running time.

The high efficiency is mainly due to a new procedure that samples very efficiently from a Gaus-
sian distribution over Zm.
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We start with a much simpler signature scheme. Assume we choose a verification-signing key
pair pk = (A, T ) = (A, AS mod q) ∈ Zn×m × Zn×n and sk = S ∈ Zm×n small. To sign a message
M , we sample y ← DZm,σ, compute c = H(Ay mod q, M) and z = Sc + y , where H is a hash
function with random outputs in Zn with small norms. The signature of message M is then
given by (z, c). Since y is distributed according to DZm,σ, we find that z = Sc + y is distributed
according to DZm,σ,Sc. To make sure that the signature does not leak any information about the
secret signing key S, we use Theorem 1.2 and obtain that z appears to be distributed according
to DZm,σ. The repetition rate of the rejection sampling process is M = exp(1 + 1

2τ2 ) ≈ exp(1)
for σ = τ‖Sc‖. Ducas et al. [DDLL13] show that a much lower rejection rate is possible if

z = Sc+ y is changed to z = bSc+ y for b
$
←− {−1,1}. This yields that z is distributed according

to 1
2 DZm,σ,Sc +

1
2 DZm,σ,−Sc. To assure that z appears to be distributed according to DZm,σ, we find

for the same repetition rate M = exp(1), a lower value σ = ‖Sc‖/
p

2. We examine an upper
bound of this norm below.

To verify a given signature, the verification algorithm checks if ‖z‖2 ≤ B2 = η
p

mσ for some
η ∈ [1.1,1.4) (z is distributed according to DZm,σ, which is concentrated around ‖z‖2 =

p
mσ),

‖z‖∞ ≤
q
4 (this is needed in the security proof), and c = H(Az − Tc mod q, M) hold.

This verification algorithm does not always verify a correct signature as correct when taking
z = bSc + y as above, because

Az − Tc = A(bSc + y)− Tc = Ay + bTc − Tc.

Hence, for Ay = Az − Tc mod q to be true, one needs −Tc = Tc mod q, which is only true for
T = 0 if q is prime.

To overcome this problem, a modulus of 2q instead of q is needed and AS = T = qI mod 2q is
required in the key generation algorithm. For more details refer to [DDLL13].

Furthermore, Nς(S) = maxI⊂{1,...,n},#I=ς
∑

i∈I

�

maxJ⊂{1,...,n},#J=ς
∑

j∈J Ti, j

�

, where T = S tS, is an

upper bound for ‖Sc‖, i.e. ‖Sc‖2 ≤ Nς(S) for any real matrix S and c ∈ {0, 1}n such that exactly
ς entries of c are equal to 1. Nς(S) is used during the key generation to make sure that the
number of repetitions in the rejection sampling process does not become too big.

We describe the final signature scheme and explain some steps of the signing algorithm below.
Let Rq = Zq[X ]/〈X n+1〉, where n is a power of two and q ≡ 1 mod 2n is a prime number.

Key generation: The algorithm chooses uniform polynomials f , g ∈ Rq with exactly d1 en-
tries in {±1} and d2 entries in {±2} and obtains S = (s1, s2)t = ( f , 2g + 1)t . If Nς(S) ≥
5C2(d1+4d2)ς resampling takes place, else aq =

2g+1
f mod q (if f is not invertible restart).

The algorithm outputs the verification key pk = A = (a1 = 2aq, q − 2) ∈ R1×2
2q and the

corresponding signing key sk = S = (s1, s2)t ∈ R2×1
2q .

Signing: The algorithm samples y1, y2← DZn,σ and computes u = ζa1 y1 + y2 mod 2q and c =
H(bued mod p, M) for message M . A random bit b is chosen and z1 = y1 + (−1)bs1c, z2 =
y2+(−1)bs2c is computed. Repeat from the start with probability 1− 1

M exp(− ‖Sc‖2
2σ2 ) cosh( 〈z,Sc〉

σ2 )
.

Set z†
2 = (bued − bu− z2ed) mod p and output the signature (z1, z†

2, c) for message M .
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Verifying: On input (z1, z†
2, c), reject if ‖(z1|2dz†

2)‖2 > B2. If ‖(z1|2dz†
2)‖∞ > B∞, reject. Ac-

cept (z1, z†
2, c) as a signature for message M if and only if c = H(bζa1, z1 + ζqced + z†

2
mod p, M).

We find AS = 2aq f + (q − 2)(2g + 1) = 2gq + q. This equals 0 modulo q, 1 modulo 2 and
q modulo 2q. We saw before that this is exactly what we need to ensure that the verification
algorithm verifies correct signatures as correct.

The signing algorithm looks slightly different than explained before. This is due to the fact that
we compress the signature, i.e. we drop the low-order bits of z2. We only give the necessary
definitions, for a proof of correctness, refer to [DDLL13].

Let d be the number of bits to be dropped. Then every integer x ∈ [−q, q) can be uniquely
written as x = bxed2d + [x mod 2d], where [x mod 2d] ∈ [−2d−1, 2d−1) are the low order bits.
Furthermore, ζ is chosen such that ζ(q−2) = 1 mod 2q and p = b2q/2dc. The hash function H
uniformly outputs elements in {0, 1}n with exactly ς entries equal to 1.

Through the described rejection sampling and dropping high order bits, the signature scheme
BLISS obtains its high efficiency in running time as well as signature sizes. Therefore, we
instantiate the signature scheme in the Peikert protocol by BLISS.
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7 Parameter Selection and Bit Security

To estimate the bit security of the key exchange protocols described above, we use the LWE-
Estimator by Albrecht, Player, and Scott [APS15].

Except for BLISS and the JD protocol, all protocols are based on the R-LW E problem. Since
the introduction of R-LW E, the question arises whether the additional structure of ideal lattices
can be used to solve an R-LW E instance more efficiently than an LW E instance. Up to now no
such efficient algorithm is applicable to our schemes. Therefore, we use the LWE-Estimator to
estimate the hardness of R-LW E since R-LW E can be seen as an instantiation of LW E.

The LWE-Estimator estimates the bit-hardness of the LW E problem against four kinds of differ-
ent attacks: embedding approaches, decoding attacks, the BKW algorithm, and the Arora-Ge
algorithm. We give a brief and informal description of those attacks and refer the reader to
[APS15] for more details. Moreover, we do not consider the Arora-Ge algorithm in our analysis
since it requires a very large number of samples. Therefore, it is not applicable in our case.

The embedding attack, called kannan by the LWE-Estimator, reduces the LW E problem to a
uSV P instance, which is then solved via basis reduction. Basis reduction algorithms are for
example BKZ, LLL, enumeration or sieving algorithms. The decoding attack, called dec by the
LWE-Estimator, reduces the LW E instance to a BDD instance. The BKW algorithm solves LW E
via the SIS strategy. That means it solves a DLW E instance by finding a short vector v such that
〈v , a〉= 0 holds.

The bit security depends on the three values n, q, and α of the LW E problem, where α=
p

2πσq
for the Gaussian parameter σ in DZ,σ. For αq ≥ 8 the continuous Gaussian distribution with
σ = αqp

2π
≥ 8p

2π
approximates the discrete Gaussian distribution well [ZZD+14]. Therefore, we

choose α and q such that they fulfill this condition.

We determine two sets of parameters for each protocol that satisfy the needed conditions for
correctness and for which the LWE-Estimator estimates a bit security level of approximately 100
and 192 bit. All ring-based protocols require that n = 2l holds. Hence, n is sparsely populated.
Therefore, it often is not possible to reach exactly 100 or 192 bit.

For increasing values of q the LWE-Estimator returns a decreasing bit security. Furthermore,
higher values of q increase the running time of mathematical operations since the involved
numbers are greater. Hence, we keep q as small as possible.

Mostly the parameter restrictions that guarantee correctness give a lower bound for q that de-
pends approximately linearly or quadratic on αq. Hence, choosing αq as small as possible yields
the smallest q. As mentioned above, a lower bound for αq is given by 8.

In most protocols the parameter condition for correctness is given by

(αq)x y + z ≤ q,

where x ∈ {1, 2}, y is a variable independent of q and α, and z is small. Increasing the value of
α yields a greater right-hand side. That implies a greater q, but q appears with a higher power
on the left-hand side of the inequality which results in a contradiction. Hence, increasing the
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value of αq does neither yield a higher bit security level nor a faster running time. Therefore,
we always use α= 8/q.

Hence, there are not many possibilities to change parameters to obtain a bit security level of
100 and 192 bit. We derive and state the best possible approximations.

All estimations by the tool are based on version f69b17a published on November 10th, 2015.

7.1 A detailed Parameter and Bit Security Analysis

Parameters for JD

For the JD protocol the parameter restrictions for correctness are given in Lemma 5.1. Addition-
ally, q has to be an odd prime number. Ding et al. suggest to take the parameters n= λ, q ≈ λ4,
and σ = λp

2π
, which satisfy this condition for q ≥ 33:

16(σπ)2n= 8λ3 ≤
λ4

4
− 2=

q
4
− 2.

Those parameters are chosen to also satisfy the worst-case-to-average-case reduction. Since we
do not consider this for the parameters of the other schemes, we do not consider it here either.
Hence, we take σ = αq/

p
2π with α= 8/q and obtain q > 32 · 64n+ 8. We reach a bit security

level of 100 bit for n = 411 and q = 841741 and a bit security of 192 bit for n = 790 and
q = 1617929 under the decoding attack.

Parameters for ring-JD

The ring-JD protocol requires n = 2l and an odd prime q such that q ≡ 1 mod 2n holds. With
σ = αq/

p
2π and the parameter conditions for correctness given in Lemma 5.3, we obtain

16π(nσ)2 = 8(nqα)2 ≤
q
4
− 2.

Ding et al. proposed the parameter relations n = λ, q ≈ λ4, and σ = λp
2πλ

. Again those
are chosen to satisfy the worst-case-to-average-case reduction and hence, we do not use them.
Instead we stick to α= 8/q and obtain

q > 2048n2 + 8, such that q ≡ 1 mod 2n.

With the smallest q that fulfills the above conditions, we obtain bit security levels of 76, 150,
and 306 bit under the decoding attack (see Table 1). These are not very close to the bit security
levels of 100 and 192 bit, but the best we achieve.

Parameters for BCNS

Bos et al. [BCNS14] are the only authors who give explicit parameters (see Section 5.2). The
LWE-Estimator estimates a bit security of 145 bit for those parameters. Since the BCNS key ex-
change protocol is the same as Peikert’s KEM from Section 6.4 for n= 2l , we choose parameters
according to Lemma 6.10 to guarantee correctness. With αq = 8 this yields

q >

√

√

64ω2

��

64+
2π
n

�

(128n3 + 2n2 + n+ 32n2.5) +
π

2

�

,
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Table 1: Parameters with the bit security under the best attack estimated by the LWE-Estimator
for the ring-JD protocol

n 512 1024 2048
q 536881153 2147493889 8589987841
α 8/q 8/q 8/q
Bit Security 76 150 306
under dec dec dec

where ω > 0 influences the probability of incorrectness, which is less than 2n exp(3 · 2−128 −
πω2). With ω =

Ç

ln(2n/er)
π , we obtain an error probability of less than the value of parameter

er. The parameter q only needs to be odd, not prime. We take er = 2−128 and the smallest
possible value for q and state the parameter sets with the best achieved bit security in Table 2.
We can not get closer to the security levels of 100 and 192 bit. To obtain a higher security level,
a smaller q is required and hence, the probability for incorrectness increases.

Table 2: Parameters with the bit security under the best attack estimated by the LWE-Estimator
for an error probability of less than 2−128 for the BCNS protocol. The parameter ω
determines the error probability, which is 2−128.

n 512 1024 2048
q 46565383 131964963 374164875
α 8/q 8/q 8/q
ω 5.52 5.54 5.56
Bit Security 91 180 371
Best Attack dec dec dec

Parameters for LPR

The LPR scheme requires n = 2l and an odd prime q such that q ≡ 1 mod 2n holds. Further-
more, the condition k ≤

Ç

q−p
2(2n+1)pt2 with p = 2 for χ = bN(0, k2/2π)e ≈ DZn,k/

p
2π restricts

possible choices and by definition k = αq holds. With k ≈ 8 we obtain

256(2n+ 1)t2 + 2≤ q.

The value t =ω(
p

log2(n)) influences the number of resampling in the scheme. More precisely,
the probability that no resampling is required equals er f (

p
πt). Hence, we obtain t ≥ 0.66 for

a probability of 90% and t ≥ 1.032 for 99%. We try different combinations of n and t, calculate
the corresponding q and test the bit security with the LWE-Estimator. The parameters that yield
the desired bit security are n= 512, t = 7, and q = 12865537 for 100 bit and n= 1024, t = 10,
and q = 52457473 for 192 bit under the decoding attack.
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Parameters for SS13

In Section 6.2.2 we list the parameter restrictions to guarantee correctness for the SS13 scheme.
Let n= 2l and q be an odd prime such that q ≡ 1 mod 2n. Furthermore, σ ≥ 2n

p

ln(8nq)q
1
2+2ε

and k ≤ q
4nσt p(4p+1) hold, where t =ω(

p

log2(n)) and k = αq. Combining both we obtain

q > 72 · 8nσt = 576nσt > 11522 t2n4 ln(8nq)

with k = 8 and p = 2. For n= 512 this yields q > 256, which is rather inefficient.

Cabarcas, Weiden, and Buchmann analyzed this PKE and the LPR scheme in [CWB14]. Their
conclusion supports our hypothesis since they conclude that the LPR scheme is more efficient.
Therefore, we do not analyze the SS13 scheme any further.

Parameters for two-pass ZZD

The two-pass ZZD protocol requires n = 2l and an odd prime q such that q ≡ 1 mod 2n holds.
Lemma 6.7 states that for the correctness of the protocol, q > 16 · 7β2pn with β = 1

2τδ
2n has

to hold. The parameter δ = αq/
p

2π denotes the Gaussian parameter. The repetition rate for
the rejection sampling is given by M = exp(12

τ +
1

2τ2 ).

With τ = 12, we obtain M = 2.72, n = 1024, q = 14186338877441, α = 8/q, and β =
62914.56. For those parameters the LWE-Estimator estimates a bit security of 100 bit under the
decoding attack. For a higher bit security we need n = 2048. Since the tool fails to return a
result, we restate the estimations given by Zhang et al. [ZZD+14] in Table 3.

Table 3: Parameters with their bit security under the LWE-Estimator for the one-pass ZZD proto-
col and parameters with their bit security determined by Zhang et al. for the two-pass
ZZD protocol. The parameter M is the rejection constant, τ determines M , and δ, β ,
and γ are parameters of Gaussian distributions.

Protocol two-pass two-pass one-pass one-pass
n 2048 2048 512 1024
q 1125899906949121≈ 250 ≈ 247 255111169 721563649
δ 3.397 3.397 3.2 3.2
β 425396.146≈ 218.7 217.1 31457.28≈ 214.9 62914.56≈ 215.9

γ 3.397 3.397 3.192 3.192
τ 36 12 12 12
M 1.396 2.728 2.728 2.728
Bit Security 210 230 81 160
estimated by [ZZD+14] [ZZD+14] LWE-Estimator LWE-Estimator

Parameters for one-pass ZZD

In the one-pass ZZD protocol, q can be chosen β/δ-times smaller than in the two-pass ZZD
protocol. Hence,

q > 16 · 7βδ
p

n= 16 · 7(
1
2
τδ2n)δ

p
n= 112(

1
2
τ3.22n)3.2

p
n
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holds. For different values of n, τ, and the resulting smallest q, it is not possible to get close to
a bit security level of 100 or 192 bit. For n = 512 we obtain a security level of 81 for τ = 12.
Smaller values of τ increase the bit security but also the rejection constant M to a value above
3. This is not practical. For n = 1024 we obtain a bit security level between 151 and 160 bit
for values of τ between 12 and 36. For n = 2048 and τ = 36 the bit security level is 313 bit
under the decoding attack. Hence, bit security levels of 81 and 160 bit are the best we achieve.
Concrete parameters are stated in Table 3.

Parameters for BLISS

Ducas et al. [DDLL13] state different possible parameter sets for their signature scheme BLISS.
Since the LWE-estimator does not return any bit security level estimation for those parameters,
we restate three parameter sets given by Ducas et al. [DDLL13] with its estimated security level
under a BKZ 2.0 attack simulation. For more details refer to [DDLL13].

In Table 4 the parameter τ determines the repetition constant M and the parameter of the
LWE-Estimator, which is usually denoted by α, can be obtained via σ = αqp

2π
.

Table 4: Parameters with their bit security determined by Ducas et al. for BLISS.
Bit Security 128 160 190
m= 2n 512 512 512
q 12289 12289 12289
σ in DZ,σ 215 250 271
δ1,δ2 as secret key densities(di = dδine) 0.3, 0 0.42, 0.03 0.45, 0.06
τ in rejection constant M = ex p( 1

2τ2 ) 1 0.7 0.55
ς for Nς 23 30 39
Secret key resampling constant C 1.62 1.75 1.88
d dropped bits in z2 10 9 8
B2, B∞ as verification bounds 12872, 2100 10206, 1760 9901, 1613

7.2 An Overview of the Parameter Selection and Bit Security

In this section we give an overview in Table 5 and Table 6 of all previously proposed parameters
and their bit security for bit security levels of approximately 100 and 192 bit. The bit security
level is estimated by the LWE-Estimator or if that is not possible cited from other sources .

The parameter α in Table 5 and Table 6 that is used in the LWE-Estimator stands for the discrete
Gaussian distribution DZ,σ with σ = αqp

2π
.
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Table 5: Overview of the parameters of all protocols for a bit security level of approximately 100
bit.

JD ring-JD BCNS LPR
n 411 512 512 512
q 841741≈ 219.7 536881153≈ 229 46565383≈ 225.5 12865537≈ 223.6

α 8
q

8
q

8
q

8
q

Bit Security 100 76 91 100
under decoding decoding decoding decoding

two-pass ZZD one-pass ZZD BLISS
n 1024 512 512
q ≈ 243.7 255111169≈ 227.9 12289≈ 213.6

α 8
q

8
q

p
2π215

q
Bit Security 100 81 128
under decoding decoding [DDLL13]

Table 6: Overview of the parameters of all protocols for a bit security level of approximately 192
bit.

JD ring-JD BCNS LPR
n 790 1024 1024 1024
q 1617929≈ 220.6 2147493889≈ 231 131964963≈ 227 52457473≈ 225.6

α 8
q

8
q

8
q

8
q

Bit Security 192 150 180 192
best attack decoding decoding decoding decoding

two-pass ZZD one-pass ZZD BLISS
n 2048 1024 512
q ≈ 250 721563649≈ 229.4 12289≈ 213.6

α
p

2π3.397
q

8
q

p
2π271

q
Bit Security 210 160 190
best attack [ZZD+14] decoding [DDLL13]
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8 Theoretical Comparison

The aim of this section is to compare key exchange protocols from a theoretical point of view
including the underlying hardness assumptions, similarities, building blocks, and needed cryp-
tographic primitives.

All previously described protocols are described in the two-user setting. However, except of the
JD and ring-JD protocols, all protocols are proven to be secure in the multi-user setting. Ding et
al. [JD12] propose a multi-user variant, but it is not proven to be secure yet.

Table 7: Overview of the protocols, their underlying hardness assumption, a statement whether
the protocol is an AKE or not, the security model in which it is proven to be secure, and
the message-passes. For an explanation of the security model abbreviations refer to the
list of abbreviations on page 9.

Hardness Is the protocol Security Message
Assumption authenticated? Model -passes

JD DLW E no passive PPT 2-pass
ring-JD R-DLW E no passive PPT 2-pass
BCNS R-DLW E no IND-CPA 2-pass
FSXY12 depends on instantiation yes CK+ in StdM 2-pass
FSXY13 with LPR/SS13 R-DLW E yes CK+ in ROM 2-pass
two-pass ZZD R-DLW E yes BR in ROM 2-pass
one-pass ZZD R-DLW E yes auth. CCA 1-pass
Peikert R-DLW E, R-SIS yes SK 3-pass

We compare eight different lattice-based key exchange protocols. Five of them are authenti-
cated. All key exchange protocols are listed with the underlying hardness assumption, the used
security model, and their message-passes in Table 7. As Table 7 indicates, the underlying hard-
ness assumption is always the decisional variant of the learning with errors problem. Only the
signature scheme BLISS used in Peikert’s AKE relies on the hardness assumption of the SIS prob-
lem. The generic protocol by Fujioka et al. [FSXY12] depends on the choice of instantiation.
Except for one version of Ding et al.’s protocol, all protocols are defined over rings.

Most protocols need either additional functions or other cryptographic primitives like hash func-
tions, pseudorandom functions, or key encapsulation mechanisms with certain security proper-
ties. Additional cryptographic primitives are only used in the authenticated protocols. Figure
9 shows that the five different authenticated key exchange protocols often rely on the same
cryptographic primitives. The BCNS protocol can be used as one of the needed cryptographic
primitives, namely as an IND-CPA secure KEM .

Furthermore, it can be seen how many different cryptographic primitives are needed in which
protocol. The generic protocols, which are not necessarily lattice-based but can be instantiated
as such, tend to need more cryptographic primitives in general. Since especially the FSXY12, the
FSXY13, and the Peikert protocol are generic with a couple of cryptographic primitives, we give
a more detailed overview of those protocols. In Table 8 we decompose the protocols in smaller
building blocks and state the quantities for the three different protocols. All three protocols
need an IND-CPA secure KEM . Where the two protocols by Fujioka et al. require twice an IND-
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Authenticated key exchange

FSXY12

IND-CCA KEM PRF

FSXY13

IND-CPA KEM

BCNS

Peikert

Sig MAC

JD/ring-JD

Unauthenticated key exchange

two-pass ZZD

KDF

one-pass ZZD

Hash

Figure 9: Key exchange protocols and their building blocks, where Sig abbreviates signature
scheme and Hash abbreviates hash function. For all other abbreviations refer to the
list of abbreviations on page 9.

CCA secure KEM , Peikert’s protocol uses a signature scheme twice. This is also visible in the
communication bits. The two protocols by Fujioka et al. communicate three ciphertexts while
Peikert’s protocol replaces two of the ciphertexts by signatures. Additionally, Peikert’s protocol
uses message authentication codes which contribute to the communication bits. The amount
of additional functions such as PRFs, KDFs or hash functions is much higher in the FSXY12
protocol compared to the FSXY13 protocol and Peikert’s protocol.

Table 8: Quantities of building blocks and primitives for FSXY12, FSXY13, and Peikert.
Building Block Quantity in FSXY12 Quantity in FSXY13 Quantity in Peikert
IND-CPA KEM 1 1 1
IND-CCA KEM 2 2
Sig 2

Hash function 4
MAC 2
PRF 10 4
KDF 6
xor 6
Communication bits 2 Signatures,

2 MAC tags,
1 public key 1 public key 1 public key,
3 ciphertexts 3 ciphertexts 1 ciphertext

Peikert’s protocol needs a key encapsulation mechanism that is IND-CPA secure. A possible
candidate is stated in the original paper [Pei14]. It is available in an IND-CPA and an IND-
CCA secure version and could therefore be a possible candidate for the AKEs by Fujioka et al.
from Section 6.1 and 6.2. Peikert’s AKE furthermore needs a signature scheme. We propose to
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use BLISS. Looking at Table 8, we notice that Peikert’s protocol is the only one that explicitly
requires a signature scheme.

All three unauthenticated key exchange protocols are very concrete and need no additional
cryptographic primitives. The two variants of the authenticated key exchange protocols by
Zhang et al. [ZZD+14] are also very concrete. They only need a KDF and an additional hash
function.

Furthermore, some protocols share the same needed additional functions. The key exchange by
Bos et al. [BCNS14] in Section 5.2 for example uses the same reconciliation function as Peikert
in his key encapsulation mechanism from Section 6.4. Having a closer look we actually see that
the first one is just a special case of the latter. We notice the same in the authenticated key
exchange protocol by Zhang et al. from Section 6.3. The functions Cha and Mod2 work in the
same way as the functions of the key exchange by Ding, Xie, and Lin from Section 5.1.

A decomposition of each protocol in building blocks that are either cryptographic primitives or
mathematical operations are given in appendix A together with the quantity of each building
block and its running times for the two parameter sets. The running time is the result of a C++
implementation and is discussed in the next section.
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9 Running Time Analysis

In this section we compare the running times of the separate operations of the different proto-
cols. The implementation is written in C++ and was run on a server with a 3.60GHz Intel(R)
Core(TM) i7-4790 CPU processor with four cores and 8GB RAM. We measure the time of each
mathematical operation with the C++ function std::clock() and take the mean of 10000 runs if
not stated differently.

9.1 Gaussian Sampling Algorithms

First, we compare the timings of the following four different Gaussian sampling algorithms: re-
jection sampling [GPV08], inverting the cumulative distribution function (inverse-CDF) [Pei10],
the Ziggurat algorithm [BCG+13], and the Knuth-Yao algorithm [DG14]. A description of those
methods is out of the scope of this thesis.

We measure the average running time of sampling n elements from the discrete Gaussian dis-
tribution DZ,σ. In this case the average is taken over Nr of runs runs instead of 10000 runs. In
the analyzed protocols the largest value of σ equals 425396 and the smallest value of σ equals
3.19. We test all four Gaussian sampling algorithms for those two values of σ and state the
result of the performance test in Table 9. For both values of σ the Knuth-Yao sampling method
has the fastest running time. Hence, we choose this sampling method in all protocols.

Table 9: Running times of Gaussian samplers. The times refer to the average running time of
sampling n elements from DZ,σ over No. o f runs runs. Times are given in ms.

Parameter Running time
n σ No. of runs Rej. Sampling Inverse-CDF Knuth-Yao Ziggurat

2048 3.19 10000 5 ms 0.8155 ms 0.2445 ms 2 ms
2048 425396 100 7.5622 ms 4.7646 ms 0.831 ms 3.6264 ms

9.2 Main Mathematical Operations of Key Exchange Protocols

We now analyze the running time of small building blocks or mathematical operations of the
different protocols. Therefore, we first give an overview of the measured times for operations
that are part of all protocols. We state rudimentary results about those measured running times
and compare the running times of different operations as well as the running times of different
protocols for the same operation. Afterwards, we turn to a more detailed and separate analysis
of some of the protocols.

In Table 10 we state the running times of the four main mathematical operations of each pro-
tocol. We list the times for the parameters of a bit security level of 100 and 192 bit. The table
contains the three explicit key exchange protocols analyzed in Section 5, both variants of the
ZZD protocol and the KEM by Lyubashevsky et al. [LPR12] which is used in the FSXY13 pro-
tocol. We obtain the running times of the FSXY13 protocol and Peikert’s protocol by adding
the running times of their building blocks. This is done in Section 9.4. We refrain from a run-
ning time analysis of the FSXY12 protocol since Fujioka et al. [FSXY13] state that the FSXY13
protocol is its more practical version.
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The four mathematical operations which are used in each of those six protocols are sampling
from the Gaussian distribution DZn,σ for σ = 3.19, taking a polynomial or vector times two, mul-
tiplying two polynomials, and adding two polynomials. In case of the non-ring version of the
JD key exchange we take vector addition in place of polynomial addition and replace the poly-
nomial multiplication by a multiplication of a matrix with a vector. Additionally to those four
building blocks, the table contains the times for sampling from the Gaussian distribution DZn,β .
This is part of the two ZZD protocols, which needed the two different Gaussian distributions
DZn,δ and DZn,β . In this section the parameter δ equals σ.

The times stated in Table 10 are the result of running our C++ implementation and taking the
mean of the measured times of 10000 runs. Since almost each operation occurs several times in
each protocol, the listed times are again the means of those measured times. Gaussian sampling
for variable σ, for example, occurs four times in the key exchange by Bos et al. [BCNS14].
Hence, the stated times 0.101 and 0.192 are the mean of those four measured running times
which are already the means of 10000 runs of the protocol. Running times are rounded and
given in milliseconds.

Table 10: Running times of mathematical operations. Times are given in ms.
JD JD BCNS LPR ZZD ZZD

non-ring ring two-pass one-pass

bit security 100
n, log2(q) 411, 19.7 512, 29 512, 25.5 512, 23 1024, 43.7 512, 27.9
Gauss sampling σ 0.099 0.099 0.101 0.140 0.188 0.101
Gauss sampling β - - - - 0.311 0.159
2 times Poly/Vect. 0.026 0.032 0.043 0.059 0.064 0.030
Poly/Matrix Mult. 3.622 0.862 0.863 0.867 2.373 0.866
Poly/Vector Add. 0.015 0.017 0.021 0.020 0.033 0.017

bit security 192
n, log2(q) 790, 20.6 1024, 31 1024, 27 1024, 25.6 2048, 50 1024, 29.4
Gauss sampling σ 0.187 0.191 0.192 0.272 0.377 0.191
Gauss sampling β - - - - 0.790 0.313
2 times Poly/Vect. 0.049 0.062 0.085 0.118 0.129 0.063
Poly/Matrix Mult. 13.441 1.815 1.819 1.819 5.133 1.811
Poly/Vector Add. 0.030 0.034 0.041 0.039 0.066 0.033

When looking at all running times of Table 10, we immediately see that the slowest operation
is the multiplication of a matrix with a vector. Even for relatively small values of n and q the
result is already four to five times slower than the times of polynomial multiplication. For bigger
values of n and q this difference gets even bigger. Hence, polynomial multiplication is time-wise
more efficient than multiplying a matrix with a vector. Nonetheless, polynomial multiplication
remains the slowest mathematical operation in each protocol. It is five to ten times slower than
Gaussian sampling, which is the second slowest operation. The Gaussian sampling for variable
β is slower than the one for variable σ since β is much larger than σ. The fastest operation is
the addition of two polynomials or vectors. Sorting those four mathematical operations by their
running time, results in the same order for all protocols.
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In almost all cases the value of n doubles when increasing the bit security level from 100 to 192
bit. The running times of all mathematical operations also increase by a factor of approximately
two.

Gaussian sampling in the LPR scheme is approximately 1.4 times slower than for comparable
variable values in other protocols. This is because the times include checking for the necessity of
resampling depending on the absolute value of the sampled polynomial (see Section 6.2.1). For
our choice of the variable t, we find with our implementation that in no of the 10000 runs of
the protocol a resampling took place. Hence, one can think about removing this step to improve
the performance of the protocol.

The running time of doubling a vector or polynomial is completely different in different pro-
tocols. This is because the doubled polynomials look different in different protocols. In both
JD protocols and in both ZZD protocols the polynomials are Gaussian sampled polynomials.
In the remaining two protocols the polynomials are uniformly distributed. Therefore, taking
a Gaussian sampled polynomial times two seems to be faster than taking a uniformly sampled
polynomial times two.

A similar observation can be made for polynomial addition. This operation is slower in the BCNS
protocol and the LPR scheme than in the other protocols. In most protocols the polynomial
additions are between two polynomials that are statistically indistinguishable from Gaussian
sampled polynomials. In the two mentioned protocols, additions between other polynomials
are involved as well. In the BCNS protocol, for example, one calculates 2v + e, where v can
be seen as uniformly distributed in Rn

q and e is a polynomial with coefficients in {−1,0, 1}.
The average running times of polynomial addition between Gaussian sampled polynomials are
similar in all analyzed protocols.

For polynomial multiplication the running time increases noticeably for very large values of q.
Each protocol additionally computes one or more constants as bounds for other functions. This
can be anything from dividing the modulus q by two, subtracting one from a constant involving
q, or rounding a fraction. Those operations take between 0.0001 and 0.0002 milliseconds and
do not seem to depend significantly on the value of q. Hence, we do not consider them any
further.

9.3 Individual Functions and Peculiarities of some Protocols

Aside from the four mathematical operations discussed in the previous section, each protocol
contains some special functions, some protocols need uniformly sampled variables, and some
use hash functions. The running time of those operations are analyzed in this section. After-
wards, other peculiarities of some of the protocols are stated.

Running times of individual functions of the protocols and sampling uniformly distributed
elements

The running times of the additional functions used in each protocol are listed in Table 11 and are
rather small. They range between the running time for polynomial addition and approximately
half of the running time for Gaussian sampling. As for the previously analyzed operations, the
running times increase by a factor of around two when changing from low to high bit security.
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The special functions of the LPR scheme have slightly higher running times than the ones of the
other protocols. Besides, the two-pass ZZD protocol is fairly fast for the fact that it has much
higher values of n and q.

Table 11: Running times of special functions. Times are given in ms.
Protocol Operation Time for Time for

level 100 level 192

ring JD Sampling uniform bit string 0.025 0.049
Function S(·) 0.051 0.100
Function E(·, ·) 0.037 0.053

BCNS Sampling uniform polynomial in {−1, 0,0, 1} 0.026 0.051
Crossrounding function 〈·〉2q,2 0.020 0.039
Rounding function b·e2q,2 0.016 0.032
Reconciliation function rec(·, ·) 0.048 0.094

LPR Sampling uniform bit string 0.026 0.050
Polynomial times constant (part of encoding) 0.037 0.074
Polynomial times two (part of decoding) 0.059 0.118
Last step of decoding (part of decoding) 0.070 0.140

two-pass ZZD Function Cha 0.086 0.173
Function Mod2 0.034 0.067

one-pass ZZD Function Cha 0.047 0.093
Function Mod2 0.038, 0.066 0.076, 0.132

Hash Function SHA-256

All authenticated key exchange protocols need one or more hash functions. In our case we al-
ways instantiate them by SHA-256 and apply the hash function to elements of Zx ·n

q × {0, 1}y·n,
where x , y ∈ N. The running time depends on the value of x , y, n and q. As expected, the times
increase with larger input and hashing elements of Zq takes much longer than hashing bits.
For example hashing a 1024-bit-string takes 0.01 ms while hashing an element in Z1024

q takes
between 0.035 and 0.05 milliseconds for different values of q.

The non-ring JD protocol

The non-ring based version of the JD key exchange protocol has very small times for the pro-
tocol execution without the key generation. This is because it results in just one shared secret
bit instead of a shared secret bit string of length n. To make this protocol comparable to the
other protocols, one would need to compute n shared secret bits. However, this requires secret
key matrices instead of vectors which results in more matrix-vector multiplications. As seen in
Table 10, this is by far the most inefficient operation and hence, we conclude that the ring-based
version is the faster and more efficient option.

The ZZD protocols

When running the one-pass variant, we notice that the evaluation of the function Mod2(·, ·)
takes more time when it is run by the sender than when it is run by the receiver. This is because
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the sender needs to convert a polynomial to a vector before evaluating the function. This is not
necessary in the run of the receiver since the conversion already took place in the evaluation of
the function Cha(·).

Moreover, the running time for multiplying a Gaussian sampled polynomial by two or by a uni-
formly sampled polynomial, is a bit larger for the larger Gaussian parameter β than it is for
the Gaussian parameter σ. For the parameters of a bit security level of 100 for the two-pass
variant, the running time of doubling a polynomial is 0.063 ms for parameter σ and 0.066 ms
for parameter β . Differences of the same magnitude can be observed for level 192 as well as for
both levels of the one-pass variant.

The Peikert protocol

The authenticated key exchange protocol proposed by Peikert [Pei14] consists of several build-
ing blocks as stated in Table 8. This means the total running time of this protocol is obtained by
adding the running time of the signature scheme BLISS twice to the running time of the KEM .
The KEM is similar to the key exchange protocol BCNS. Furthermore, four times the evaluation
of a PRF and four times the evaluation of a HashMAC needs to be added. The running time of
BLISS is given in Table 12 according to Ducas et al. [DDLL13].

Table 12: Running times for BLISS. Times are given in ms.
Operation Time for bit security 128 Time for bit security 192
Sign 0.124 ms 0.375 ms
Verify 0.030 ms 0.032 ms

9.4 Overall Running Times

We summarize the most relevant information from the running time analysis before continuing
on a bigger scale.

• The order of the running time of the four main mathematical operations from slow to
fast is the same for each protocol, namely polynomial multiplication, Gaussian sampling,
doubling a polynomial, and adding two polynomials. We note that we do not use any
further optimization of polynomial multiplication, such as fast Fourier transforms (FFT) or
number theoretic transforms (NTT).

• Each protocol needs some additional functions, which are usually rather fast compared to
other mathematical operations.

• Most operations take approximately twice the time when changing to a higher security
level, i.e. when doubling n. Usually that factor is a bit smaller than two, except for
polynomial multiplication, where it is a bit greater than two.

• The running time of multiplications and additions does depend on the coefficients of the
polynomials, but the differences are in most cases very small.

To conclude which protocols are most efficient, we summarize the overall running times and
communication bits for each protocol and for a high and low bit security level in Table 13. The
overall running time is divided into three running times, which are the key generation and the
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protocol of the receiver and the sender. For the unauthenticated key exchange protocols the key
exchange is part of each run of the protocol for each party. By contrast, in the authenticated
protocols it is only run once and then kept the same for each run of the protocol.

We add the LPR scheme to the three unauthenticated key exchange protocols from Section 5
since it can be seen as a key exchange protocol under certain conditions. As we see in Section
9.3, the non-ring JD protocol is less efficient than its ring-version and hence, not interesting for
our comparison. The BCNS protocol is faster and needs to communicate fewer bits than the
ring-JD. In the same sense the BCNS protocol is better than the LPR scheme, except from the
total time of protocol receiver where the LPR scheme is faster. In fact the LPR scheme is not
far off in the rest either and the running time of the key generation process can be improved by
dropping the check for the necessity of resampling. Besides, its bit security level is even slightly
higher than the one of the BCNS protocol. The downside is relatively many communication bits.
Nonetheless, this key exchange can be a good choice as well. The ring-JD protocol has slightly
slower running times and its amount of communication bits if neither low nor high. Looking
at the bit security level, we find that it is lower than for the other two protocols. With this we
conclude that the LPR scheme from Section 6.2.1 and the BCNS protocol from Section 5.2 are
the two most efficient unauthenticated protocols.

Our analysis contains four authenticated key exchange protocols from Section 6. The generic
FSXY12 protocol is not included since Fujioka et al. state that the FSXY13 protocol is its more
practical version [FSXY13]. The one-pass ZZD protocol outperforms the other three clearly in
its amount of communication bits. It is faster than the two-pass ZZD protocol but slower than
the FSXY13 and the Peikert protocol. However, one important part of Peikert’s protocol is the
signature scheme BLISS, whose running times are cited from Ducas et al. [DDLL13]. This means
that the timings were not obtained on the same server via the same implementation. Since
Ducas et al.’s implementation is also a proof-of-concept implementation, we assume that the
measured times are still comparable. This assumption is also based on the fact that our running
times for the ZZD protocols are comparable to the ones derived by Zhang et al. [ZZD+14].
The two-pass ZZD protocol is much slower than all other protocols. Its running time is, even
without counting the time for repetition, three times slower than FSXY13. Also the number of
communication bits is much higher for the two-pass ZZD protocol than for the other protocols.
As Zhang et al. [ZZD+14] show, the running time of both ZZD protocols can be significantly
reduced by choosing parameters for a lower repetition rate. However, this also reduces the bit
security. Hence, we conclude that two out of four authenticated key exchange protocols have
rather good running times and few communication bits. Since the running time of FSXY13 is
approximately two times slower than the one of the Peikert protocol, we conclude that the best
results are obtained by Peikert’s protocol.
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Table 13: Overall running times and communication bits. Times are given in ms. Communication
bits are given as the total amount of communication bits.

Protocol Low Bit High Bit
Security Security

non-ring JD Bit security 100 192
Communication bits 2n log2(q) + 1 16180 32590
KeyGen total time 3.859 13.895
Protocol Receiver total time 0.013 0.023
Protocol Sender total time 0.012 0.022

ring JD Bit security 76 150
Communication bits 2n log2(q) + n 30208 64512
KeyGen total time 1.108 2.293
Protocol Receiver total time 1.123 2.306
Protocol Sender total time 1.047 2.158

BCNS Bit security 91 180
Communication bits 2n log2(q) + n 26596 56270
KeyGen total time 1.082 2.236
Protocol Receiver total time 1.130 2.341
Protocol Sender total time 0.943 1.975

LPR Bit security 100 192
Communication bits 3n log2(q) 36276 78780
KeyGen total time 1.167 2.402
Protocol Receiver total time 1.094 2.266
Protocol Sender total time 1.011 2.107

FSXY13 Bit security 100 192
Communication bits 4n log2(q) 48368 105040
KeyGen total time 1.167 2.402
Protocol Receiver total time 5.58 11.53
Protocol Sender total time 5.497 11.371

two-pass ZZD Bit security 100 210
Communication bits 2n log2(q) + n 90500 206848
KeyGen total time 2.842 6.050
Protocol Receiver total time 29.623 41.396
Protocol Sender total time 29.364 40.974

one-pass ZZD Bit security 81 160
Communication bits n log2(q) + n 14810 31157
KeyGen total time 1.117 2.288
Protocol Receiver total time 2.867 5.963
Protocol Sender total time 9.413 19.514

Peikert Bit security 91 180
Communication bits 3n log2(q)+

2 · 256+ 2 log2(σ) 50838 96381
KeyGen total time ? ?
Protocol Receiver total time 2.41 5.056
Protocol Sender total time 2.223 4.69
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10 Conclusion

Three unauthenticated and five authenticated key exchange protocols are analyzed in this thesis.
We include the LPR protocol in our analysis of unauthenticated key exchange protocols since
those protocols can be seen as key encapsulation mechanisms under certain conditions. Since
Fujioka et al. [FSXY13] already announce themselves that the FSXY13 protocol is the more
practical version of the FSXY12 protocol, we only discuss the FSXY13 protocol further. For each
protocol we either suggest or quote parameters for bit security levels of approximately 100 and
192 bit, compare them from a theoretical point of view and in terms of their running time. This
section gives an overall conclusion and suggests possible future research.

The selected protocols are based on different security models, which makes it hard to compare
them in security aspects. A detailed security analysis would be out of the scope of this thesis.
Nonetheless, we state a short summary that is based on the original papers of the protocols.
Since the unauthenticated JD protocol is not proven secure in the multi-user setting yet, one
might prefer the BCNS or the LPR protocol. Both are IND-CPA secure key encapsulation mech-
anisms. One of the strongest security models for authenticated protocols is the CK+ security
model, which is used in the FSXY13 protocol, but this does not imply that the other AKEs are
weaker. Unlike all other AKEs, the one-pass ZZD protocol is weak to replay attacks and does
not fulfill wPFS. This is because it has only one message-pass. A more detailed analysis could
be part of future research.

We look at the amount of cryptographic primitives involved in each AKE. The protocol by Peikert
uses MACs and pseudorandom functions. A disadvantage of the latter is that it lacks an efficient
and direct construction from lattice problems [ZZD+14]. The security of the two ZZD protocols
and the FSXY13 protocol relies completely on the R-LW E problem. The advantage of both ZZD
protocols is that they are the only protocols that do not use an explicit signature.

The amount of exchanged ring elements is seven for the FSXY13 protocol and thus much higher
than for the Peikert, the two-pass ZZD, and the one-pass ZZD protocols, which need three, two,
and one, respectively. But the amount of communication bits is still higher in the two-pass
version of ZZD than in any other protocol because of the size of q. The one-pass version of ZZD
has the fewest communication bits followed by the FSXY13 protocol. In the unauthenticated
case the BCNS protocol uses the fewest communication bits.

We analyze the different protocols in terms of their running times on a server. As seen in Table
10 the fastest unauthenticated key exchange is the BCNS protocol, closely followed by the LPR
protocol. The latter can be improved by removing the error checking step in the Gaussian
sampling procedure. In the authenticated case Peikert’s protocol is the fastest protocol followed
by the FSXY13 protocol. At the cost of bit security the one-pass ZZD protocol can achieve similar
running times to those two protocols by choosing a smaller rejection constant.

To summarize, the LPR and the BCNS protocol are fast and secure unauthenticated key exchange
protocols. While the LPR protocol has the potential for faster running times, the BCNS protocol
provides fewer communication bits. The conclusion for the authenticated protocols is more
complex. The FSXY13 and Peikert’s protocol have good running times. The one-pass ZZD
protocol has few communication bits and can possibly achieve good running times but is based
on a weaker security model since it is a one-pass protocol. The Peikert and the FSXY13 protocol
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have more communication bits but are based on a stronger security model. Overall, Peikert’s
protocol has the fastest running times and is therefore our preferred authenticated key exchange
protocol.

For future research it can be interesting to investigate the possibility of using the LPR protocol in
Peikert’s AKE and Peikert’s key encapsulation mechanism BCNS in the FSXY13 protocol. This is
because they are both IND-CPA secure key encapsulation mechanisms and perform well in our
analysis. Another possible instantiation of IND-CPA secure KEMs is given by the PKE of Linder
and Peikert [LP11]. Furthermore, it can be interesting to analyze the new version of the BCNS
protocol by Alkim, Ducas, Pöppelmann, and Schwabe [ADPS15].
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A Building Blocks and Running Times

Table 14: Building blocks and running times of unauthenticated key exchange protocols. Times
are given in ms and refer to the average running time over 10000 runs of one compu-
tation of the corresponding building block.

Protocol Building Block Quantity Time for bit Time for bit
protocol/KeyGen security 100 security 192

non-ring JD Gauss Sampling on Zn 0 / 4 0.099 0.187
Vector times two 0 / 2 0.026 0.049
Matrix-Vector Multiplication 0 / 2 3.622 13.441
Vector Addition 0 / 2 0.015 0.030
Gauss Sampling on Z 2 0.0019 0.0031
Number times two 2 0.0007 0.0009
Scalar Multiplication 2 0.0089 0.0175
Number addition 2 0.0003 0.0003
Sampling uniform bit 1 0.0004 0.0005
Function S 1 0.0003 0.0006
Function E 2 0.0006 0.0005

ring JD Gauss Sampling on Rq 2 / 4 0.099 0.191
Polynomial times two 2 / 2 0.032 0.062
Polynomial Multiplication 2 / 2 0.862 1.815
Polynomial Addition 2 / 2 0.017 0.034
Sampling uniform n-bit string 1 0.025 0.049
Function S 1 0.050 0.099
Function E 2 0.037 0.053

BCNS Gauss Sampling on Rq 1 / 4 0.101 0.192
Polynomial Multiplication 2 / 2 0.863 1.819
Polynomial/Vector Addition 1 / 2 0.017 0.034
d bl 1 0.112 0.221
〈·〉2q,2 1 0.020 0.039
b·e2q,2 1 0.016 0.032
Two times pR 1 0.033 0.065
rec 1 0.048 0.094

LPR Gauss Sampling on Rq 5/4 0.14 0.272
Polynomial Multiplication 4/2 0.867 1.819
Polynomial/Vector Addition 5/2 0.02 0.039
Sampling uniform bit string 1 0.026 0.05
Polynomial times constant 1 0.037 0.074
Polynomial times two 1 0.059 0.118
Rounding in decoding 1 0.07 0.14
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Table 15: Building blocks and running times of authenticated key exchange protocols. Times are
given in ms and refer to the average running time over 10000 runs of one computation
of the corresponding building block.

Protocol Building Block Quantity Time for bit Time for bit
protocol/KeyGen security 100 security 192

FSXY13 LPR 3 4.439 9.177
Hash function H1 2 0.017 0.032
Hash function H2 2 0.013 0.023

two-pass ZZD Gaussian sampling χδ 0 / 4 0.188 0.377
Gaussian sampling χβ 2+ 4M 0.311 0.790
Polynomial times two 2+2M / 2 0.064 0.129
Polynomial Multiplication 6+6M / 2 2.373 5.133
Polynomial Addition 4+6M / 2 0.033 0.066
Hash function H1 on Rq 1+M 0.050 0.108
Hash function H1 on R2

q 1+M 0.096 0.213
Cha 1 0.086 0.173
Mod2 2 0.034 0.067
KDF H2 on R2

q × {0,1}2n 2 0.109 0.239
one-pass ZZD Gaussian sampling χδ 1 / 4 0.101 0.191

Gaussian sampling χβ 2M+1 0.159 0.313
Polynomial times two 2+M / 2 0.030 0.063
Polynomial Multiplication 4+3M / 2 0.866 1.811
Polynomial Addition 3+3M / 2 0.017 0.033
Hash function H1 on Rq 1+M 0.019 0.035
Cha 1 0.047 0.093
Mod2 2 0.038, 0.066 0.076, 0.132
KDF H2 on Rq × {0,1}2n 2 0.025 0.049

Peikert Pseudorandom function 4 0.006 0.01
BCNS 1 4.237 8.788
BLISS 2 0.154 0.407
MAC 4 0.016 0.026
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