
Mutant Algebraic
Side-Channel Attack
Mutierte Algebraische Seitenkanalangriffe
Master-Thesis von Qi Zhang aus Darmstadt
Tag der Einreichung:

1. Gutachten: Prof. Dr. Johannes A. Buchmann
2. Gutachten: Dr. Mohamed Saied Emam Mohamed

Fachbereich Informatik
Institut CDC

Mutant Algebraic Side-Channel Attack
Mutierte Algebraische Seitenkanalangriffe

Vorgelegte Master-Thesis von Qi Zhang aus Darmstadt

1. Gutachten: Prof. Dr. Johannes A. Buchmann
2. Gutachten: Dr. Mohamed Saied Emam Mohamed

Tag der Einreichung:

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-12345
URL: http://tuprints.ulb.tu-darmstadt.de/1234

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 2.0 Deutschland
http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Erklärung zur Master-Thesis

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter nur mit den an-
gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen
entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den December 2, 2015

(J. Walker)

Abstract

Algebraic side-channel attacks (ASCA), combining side-channel attacks with algebraic techniques in a

very effective manner, have been introduced as a potentially powerful cryptanalysis technique against

block ciphers for years [34]. However, though the feasibility of ASCA has been successfully proven, yet

its capability was not exploited to the greatest extent. In order to conquer this, one primary action is to

reduce the huge size of the algebraic system constructed by ASCA.

In this master project, a more efficent algebraic side-channel attack named as Mutant algebraic side-

channel attack (MASCA) has been proposed. Not only reduces MASCA the size of an algebraic system

but also optimizes the system. The so-called "Mutants" indicate the short and simple clauses which

are obtained through exhaustive search and optimization of the algebraic representation of the leaked

side-channel information and can substitute the long clauses gained through standard representation

of a Boolean function employed by Renauld et al. [27]. Subsequently, the mutants are inserted into

the algebraic system of a cryptographic algorithm, which eventually brings a good influence on the

performance, such as speeding up the process of solving SAT problems, increasing the success rate,

etc. In this way, the optimization is the focus of this work and it is achieved through two filters proposed

in this master project. So far, all side-channel information with which MASCA deals is correct Hamming

weight leakages. However, MASCA is also able to handle incorrect Hamming weight leakages and such

an ability is called error tolerance. In addition, the optimization works also well in the case of erroneous

Hamming weight leakages.

2

Contents

1 Introduction 9

2 Preliminaries 11
2.1 Block Ciphers . 11

2.1.1 Specification . 11
2.1.2 Security and Attacks . 11
2.1.3 Iterated Block Ciphers . 12
2.1.4 AES Algorithm . 12
2.1.5 PRESENT Algorithm . 13

2.2 Algebraic Cryptanalysis . 18
2.2.1 Specification . 18
2.2.2 SAT Problems . 18
2.2.3 SAT Solvers . 19

2.3 Side-Channel Attacks . 20
2.3.1 Specification . 20
2.3.2 Power Analysis . 21
2.3.3 Template Attacks . 21

2.4 Algebraic Side-Channel Attacks . 21

3 MASCA: Mutant Algebraic Side-Channel Attacks 23
3.1 Motivation . 23
3.2 Main Ideas . 23
3.3 Specification . 24

3.3.1 The Weights of Hamming Weight Pairs . 24
3.3.2 Generating Clauses . 24
3.3.3 Optimizing Clauses . 27

4 Experiments 31
4.1 Experimental Settings . 31
4.2 Experimental Steps . 32
4.3 Experiments for PRESENT Algorithm . 32

4.3.1 Improving Solving Time . 32
4.3.2 Reducing Hamming Weight Leakages . 35

4.4 Experimental Results for AES . 36
4.4.1 Improving Solving Time . 36
4.4.2 Reducing Hamming Weight Leakages . 39

5 Error Tolerance 41
5.1 Specification . 41
5.2 Experiments for Error Tolerance . 45

6 Conclusion 49

Appendix A An Example of Boolean Expressions in CNF 53

Appendix B Number of Clauses for Mix Error Classes 54

Appendix C Java Implementation of the Two Proposed Filter 57

3

List of Tables

1 Key-Block-Round Comibinations . 13
2 Weights of Hamming weight pairs of PRESENT . 24
3 Weights of Hamming weight pairs of AES . 25
4 Number of unfiltered clauses for Hamming weight pairs of PRESENT-80 26
5 Number of unfiltered clauses for Hamming weight pairs of AES-128 26
6 Number of filtered clauses for Hamming weight pairs of PRESENT-80 26
7 Number of filtered clauses for Hamming weight pairs of AES-128 26
8 Quantity of Hamming weighs required by MASCA and ASCA for PRESENT-80 in a known

plaintext/ciphertext attack scenario . 36
9 Quantity of Hamming weighs required by MASCA and ASCA for PRESENT-80 in an un-

known plaintext/ciphertext attack scenario . 36
10 Quantity of Hamming weighs required by ASCA, IASCA in [27], and MASCA for AES-128

in a known plaintext/ciphertext attack scenario . 40
11 Quantity of Hamming weighs required by ASCA, IASCA in [27], and MASCA for AES-128

in an unknown plaintext/ciphertext attack scenario . 40
12 The targeted intervals for error classes . 42
13 Number of unfiltered clauses for Hamming weight pairs of PRESENT-80 in the case of EC1 43
14 Number of unfiltered clauses for Hamming weight pairs of AES-128 in the case of EC1 . . 43
15 Number of unfiltered clauses for Hamming weight pairs of PRESENT-80 in the case of EC2 44
16 Number of unfiltered clauses for Hamming weight pairs of AES-128 in the case of EC2 . . 44
17 Number of filtered clauses for Hamming weight pairs of PRESENT-80 in the case of EC1 . 44
18 Number of filtered clauses for Hamming weight pairs of AES-128 in the case of EC1 44
19 Number of filtered clauses for Hamming weight pairs of PRESENT-80 in the case of EC2 . 45
20 Number of filtered clauses for Hamming weight pairs of AES-128 in the case of EC2 45
21 A certainty vector for PRESENT-80 . 46
22 A certainty vector for AES-128 . 46
23 The distribution of error classes . 46
24 Experimental results of PRESENT-80 with error tolerance . 47
25 Experimental results of AES-128 with error tolerance . 47
26 Number of filtered clauses for Hamming weight pairs of PRESENT-80 in the case of (EC0,
EC1) . 54

27 Number of filtered clauses for Hamming weight pairs of PRESENT-80 in the case of (EC1,
EC0) . 54

28 Number of filtered clauses for Hamming weight pairs of PRESENT-80 in the case of (EC0,
EC2) . 54

29 Number of filtered clauses for Hamming weight pairs of PRESENT-80 in the case of (EC2,
EC0) . 54

30 Number of filtered clauses for Hamming weight pairs of PRESENT-80 in the case of (EC1,
EC2) . 55

31 Number of filtered clauses for Hamming weight pairs of PRESENT-80 in the case of (EC2,
EC1) . 55

32 Number of filtered clauses for Hamming weight pairs of AES-128 in the case of (EC0, EC1) 55
33 Number of filtered clauses for Hamming weight pairs of AES-128 in the case of (EC1, EC0) 55
34 Number of filtered clauses for Hamming weight pairs of AES-128 in the case of (EC0, EC2) 56
35 Number of filtered clauses for Hamming weight pairs of AES-128 in the case of (EC2, EC0) 56
36 Number of filtered clauses for Hamming weight pairs of AES-128 in the case of (EC1, EC2) 56
37 Number of filtered clauses for Hamming weight pairs of AES-128 in the case of (EC2, EC1) 56

4

List of Figures

1 The scheme of double encrypton . 12
2 The scheme of triple encrypton . 12
3 An illustration of PRESENT algorithm . 16
4 Solving time of MASCA and ASCA in a known plaintext/ciphertext attack scenario for

PRESENT-80 . 34
6 Solving time of MASCA and ASCA in a known plaintext/ciphertext attack scenario for

PRESENT-80 using Hamming weights of R10, R11, R12, and R13 34
5 Solving time of MASCA and ASCA in an unknown plaintext/ciphertext attack scenario for

PRESENT-80 . 35
7 Solving time of MASCA and ASCA in an unknown plaintext/ciphertext attack scenario for

PRESENT-80 using Hamming weights of R10, R11, R12, and R13 35
8 Solving time of MASCA, IASCA in [27], and ASCA in a known plaintext/ciphertext attack

scenario for AES-128 . 37
9 Solving time of MASCA, IASCA in [27], and ASCA in an unknown plaintext/ciphertext

attack scenario for AES-128 . 38
10 Solving time of MASCA, IASCA in [27], and ASCA in a known plaintext/ciphertext attack

scenario for AES-128 using Hamming weights of R5, R6, and R7 38
11 Solving time of MASCA, IASCA in [27], and ASCA in an unknown plaintext/ciphertext

attack scenario for AES-128 using Hamming weights of R5, R6, and R7 39

5

List of Algorithms

1 The encryption process of AES . 14
2 The decryption process of AES . 14
3 The encryption process of PRESENT . 17
4 The algorithm of the FilterOne . 28
5 The algorithm of the FilterTwo . 29

6

Listings

1 Shell script for automatic run of 100 experiments . 33
2 The java implementation of the first filter . 57
3 The java implementation of applying the second filter . 58
4 The java implementation of the part 1 of the second filter . 59
5 The java implementation of the part 2 of the second filter . 59

7

1 Introduction

For the last decades, considerable cryptograhic algorithms have been developed and proposed. In the

course of implementing a cryptographic algorithm, e.g. a block cipher, not only is the security of this

algorithm itself important, but also that the implementation of this algorithm doesn’t unintentionally

leak any information about the processed data plays a significant roll. The attacks which can utilize such

leaked information to retrieve the secret key of a cryptographic primitive are called side-channel attacks.

In a classical cryptanalysis which is aiming at block ciphers, adversaries are often able to acquire the

input/ouput pairs of a target cryptographic algorithm. Side-channel attacks supply the adversaries with

some additional information about the intermediate values leaked by a device on which the implementa-

tion of the cryptographic algorithm is carried out. Moreover, there are two common examples for leakage

models, Hamming distance and Hamming weight models [8]. In this work, the Hamming weight model is

adopted. This kind of attacks are more powerful and less general because of their individual peculiarity

in terms of the implementation of the specific cryptographic algorithms [34].

The recently introduced algebraic side-channel attack (ASCA) associates side-channel attacks with al-

gebraic cryptanalysis and gains benefits from both classical attacks to a great extent [8]. Combining

the information acquired from a side-channel attack with an algebraic system which represents a crypto-

graphic primitive assists attackers to effectively retrieve the secret key even though the number of traces

in an attack phase is too low (e.g. only a single trace) for a statistical side-channel attack. In addition,

due to the adaptability and descriptiveness of the algebraic representation, any processed intermediate

values, e.g. the side-channel information, can be inserted into an algebraic system so that the process of

retrieving the secret key can be accelerated and the accuracy is also accordingly improved, which makes

ASCA a very powerful side-channel attack when an attacker is assumed to be profiling based [34, 33].

ASCA constructs a system of algebraic equations describing a cryptographic algorithm and side-channel

information leaked by a device. Since the system is usually of a considerably great size, it may be

inefficient and perhaps very hard to find solutions for the system. In this context, a variant of algebraic

side-channel attacks (ASCA) is proposed in this master project, the Mutant algebraic side-channel attack

(MASCA) which is more efficient. This variant focuses on the optimization of the representation of

algebraic systems by simplifying the representation in two aspects, minimizing the number of clauses

and shortening the length of clauses. Because both great length and great quantity of clauses hinder SAT

solvers from finding a solution for the algebraic system in a reasonable time [7]. For the improvement

in the length of clauses, a proper length ` (` ∈ N and ` ≤ 4) is determined in this work. All the clauses

of length ≥ `max where `max = 4 are not considered. For the improvement in the number of clauses,

two filters are proposed to remove the redundancy existing among the identified set of clauses and

choose clauses more carefully. After the optimization, these resulting clauses are the so-called "mutants".

Inserting theses mutants into the algebraic system may lead to higher efficiency and success rate of

MASCA than ASCA.

The above work is based on the hypothesis that all the leaked Hamming weights are error-free. How-

ever, the erroneous Hamming weights cannot be avoided in real attacks and injecting the clauses describ-

ing such Hamming weights into the system may result in incorrect solutions or even the unsolvability of

9

the system. Therefore, the capability of handling incorrect Hamming weights is considerably necessary

for attackers. MASCA is designed to be able to deal with this problem and this ability is called error

tolerance.

This master thesis is organized as follows. In section 2, some preliminary techniques are introduced,

such as algebraic cryptanalysis, side-channel attacks, as well as block ciphers, in order to make this

master project more clear and easier to understand. The key algorithms of MASCA are specified in

Section 3. Section 4 presents and illustrates the comparisons of the experimental results of MASCA and

other attacks to support the better performance of MASCA. Besides, Section 5 explains how MASCA copes

with erroneous Hamming weights and shows the corresponding experimental results. Finally, Section 6

concludes this master project.

10

2 Preliminaries

In this section, some preliminaries as the cornerstones of this master project are introduced. They are

helpful to better and more clearly understand the ideas proposed in this work.

2.1 Block Ciphers

A block cipher is a function which can encrypt plaintexts (n-bit blocks and the set of these blocks is

denoted as P) to ciphertexts (n-bit blocks and the set of these blocks is denoted as C) where n is the block

length. The encryption function must be invertible so that the unique decryption is allowed. Furthermore,

a k-bit key K which is taken from the key space K is utilized to parameterize the function and is generally

hypothesized to be selected randomly. Besides, the data expansion can be avoided because of the usage

of plaintext- and ciphertext-blocks of the same size n. The encryption function is a bijection for n-bit

plaintext P and ciphertext blocks C and a fixed key K [26].

2.1.1 Specification

A block cipehr is an invertible function which performs encipherment and decipherment on data blocks

of fixed size. It can be denoted as a tuple (P ,C,K,E ,D) where P is the set of plaintext blocks, C is the set

of ciphertext blocks, and K is the set of keys. In addition, E and D express the encryption and decryption

functions, respectively. The two functions are in the following forms:

EK : P ×K −→ C

DK : C ×K −→ P

where K ∈K [26] and DK = E−1
K .

2.1.2 Security and Attacks

A block cipher devote itself to supply the confidentiality, while an attacker dedicates itself to break the

block cipher which is to recover the secret key to the best of its ability. If the secret key is retrieved, the

block cipher is totally broken. By contrast, if the part of plaintext is recovered from ciphertext, the block

cipher is partially broken. What needs to be noted are two assumptions for assess the security of block

ciphers — (I) all data which are transmitted through the ciphertext channel are accessible to adversaries

and (II) (Kerckhoffs’ assumption) adversaries know all details of the encryption/decryption function other

than the secret key. Based on these two hypotheses, attacks are categorized in terms of what kind of

information is known to adversaries except for the intercepted ciphertext. Three prominent examples are

[26]:

11

• ciphertext-only — only the intercepted ciphertext is known to adversaries.

• known-plaintext — except for the intercepted ciphertext, plaintext is also known to adversaries.

• chosen-plaintext — adversaries choose a plaintext by themselves, the corresponding ciphertext is

available.

2.1.3 Iterated Block Ciphers

If a block cipher is susceptible to recover the secret key, then the security is increased by encrypting

the same data block more than once. In other words, a more complex relation between plaintexts, ci-

phertexts, and a key is constructed by performing a simple transformation used to plaintexts iteratively.

This model is called multiple encryption, a.k.a. iterated block ciphers. Meanwhile, the relationship be-

tween the encryption and decryption functions stays unchanged — D = E−1. Two common examples

of multiple encryption are double and triple encryption which are illustrated in the Figure 1 and Figure

2. In addition, double encryption is defined to be c = E(p) = EK2
(EK1
(p)) and triple encryption to be

c = E(p) = EK3
(EK2
(EK1
(p))) [26]. Except for these two cases, certainly there are some other cases with

different number of rounds, such as AES, PRESENT, etc.

Figure 1: The scheme of double encrypton

Figure 2: The scheme of triple encrypton

2.1.4 AES Algorithm

The Advanced Encryption Standard (AES) algorithm, which was first introduced in 1998, is a symmetric

block cipher and can use different cipher keys which are the sequences of 128, 192 or 256 bits to encipher

and decipher data blocks of a fixed length (128 bits) [29].

In order to describe the AES algorithm clearly, some definitions and notations are declared here. In

AES algorithm, both the input and output blocks have the same fixed length — 128 bits. This length is

12

denoted through N b = 4, which means the data blocks consist of four 32-bit words. Analogously, the

length of cipher keys is represented as Nk = 4,6 or 8, which indicates Nk 32-bit words comprise the

secret key. Furthermore, the number of rounds which is expressed as N r has a mapping relationship with

the key size or with the version of AES. According to the different values of Nk, N r can be determined to

be 10, 12 or 14. The detailed mapping relationship is shown in the Table 1. Besides, there still is a very

important notion which is state. State describes the intermediate values during the course of encryption

or decryption and can be signified as a rectangular byte-array with four rows and N b columns [29].

key length (Nk) block size (Nb) rounds (Nr)

AES-128 4 4 10

AES-192 6 4 12

AES-256 8 4 14

Table 1: Key-Block-Round Comibinations

For both encryption and decryption, the AES algorithm applies a round function which is comprised of

four distinct byte-oriented transformations which are shown as follows:

• substitution through a substitution table which is S-Box

• shifting rows of state

• mixing columns of state

• addition of a round key to state

The first transformation is a non-linear operation of the AES algorithm. It is performed independently

on each byte of the state. Once an initial addition of round key is finished, the four transformations are

performed in sequence for the first N r − 1 rounds, while it is slightly different for the last round to not

execute the transformation of mixing columns. These four transformations are accordingly denoted as

SubBytes(), ShiftRows(), MixColumns(), and AddRoundKey(). In this way, the corresponding four reverse

transformations are signified as InvSubBytes(), InvShiftRows(), InvMixColumns(), and AddRoundKey().

Then, the description of encryption is shown in the Algorithm 1 and the description of decryption in the

Algorithm 2 [29].

Thanks to the requirements of high speed and low RAM, AES works well on various hardware. There-

fore, AES is widely used in many different fields and organizations.

2.1.5 PRESENT Algorithm

Although AES is a prominent block cipher which is applied on a wide variety of areas and reduce the

requirement of new block ciphers, it is still not applicable for some conditions. One of today’s trends

of IT landscape is to extensively develop tiny computer devices. Such developments may result in some

particular security risks. However, not only AES but also the some other cryptographic primitives at hand

13

Algorithm 1 The encryption process of AES
1: procedure ENCIPHER(input[4 ∗ N b], output[4 ∗ N b], word[N b ∗ (N r + 1)])

2: begin

3: byte state[4 ∗ N b]

4: state← input

5: AddRoundKe y(state, word[0, N b− 1])

6: for round = 1 to (N r − 1) do

7: SubB y tes(state)

8: Shi f tRows(state)

9: MixColumns(state)

10: AddRoundKe y(state, word[round ∗ N b, (round + 1) ∗ N b− 1])

11: SubB y tes(state)

12: Shi f tRows(state)

13: AddRoundKe y(state, word[N r ∗ N b, (N r + 1) ∗ N b− 1])

14: output← state

15: end

Algorithm 2 The decryption process of AES
1: procedure DECIPHER(input[4 ∗ N b], output[4 ∗ N b], word[N b ∗ (N r + 1)])

2: begin

3: byte state[4 ∗ N b]

4: state← input

5: AddRoundKe y(state, word[N r ∗ N b, (N r + 1) ∗ N b− 1])

6: for round = (N r − 1) step − 1 downto 1 do

7: Inv Shi f tRows(state)

8: Inv SubB y tes(state)

9: AddRoundKe y(state, word[round ∗ N b, (round + 1) ∗ N b− 1])

10: Inv MixColumns(state)

11: Inv Shi f tRows(state)

12: Inv SubB y tes(state)

13: AddRoundKe y(state, word[0, N b− 1])

14: output← state

15: end

14

are not suitable for extremely resource-limited environments, for example, sensor networks, RFID tags,

etc. In this context, PRESENT, an ultra-lightweight block cipher, is proposed in [5]. PRESENT takes both

security and hardware efficiency into consideration so that it can avoid a compromise in security and

realize a good performance in hardware at the same time.

PRESENT is an instance of SP-network (substitution-permutation network) and a hardware-optimized

block cipher which may take keys (K) of length of either 80 or 128 bits. In this way, two versions of

PRESENT with individual keys of different lengths are derived and they are expressed as PRESENT-80

and PRESENT-128. Besides, both versions of PRESENT takes data blocks of 64 bits as input (P) and

generate new data blocks which are also 64 bits as output (C). The whole algorithm of PRESENT is

composed of 31 rounds. In contrast to AES, the number of rounds of PRESENT is independent with the

key size, which means for both versions with secret key of either 80 or 128 bits, the number of rounds is

fixed to be 31. For each round of the 31 rounds, a round function is employed. The function is comprised

of three transformations which are displayed as follows:

• addition of round key

• substitution through a substitution table (S-Box)

• permutation

These transformations are carried out in sequence and denoted as addRoundKey(), sBoxLayer(), and

pLayer(), respectively [5]. For the first transformation, the key schedule, generating a round key for each

round, is denoted as a function generateRoundKeys() Furthermore, MASCA is applied to PRESENT-80 in

this master project. Let K be the key register storing the user-provided key and K is represented to be a

sequence k79k78 . . . k0. In addition, let Ki describes the round key at the i-th round. Ki is expressed as a

64-bit sequence k63k62 . . .k0 where 1 ≤ i ≤ 32. In this way, that the round key Ki is comprised of the 64

leftmost bits of the updated key register K at i-th round may lead to the following equation:

Ki = k63k62 . . .k0 = k79k78 . . . k16.

When it is finished to generate the round key Ki, the current key register K = k79k78 . . . k0 is updated

through three steps:

• the key register shifts 61 bits to the left

• S-Box is employed to the four leftmost bits

• the five bits k19k18k17k16k15 of the current key register K is exclusive-ored with the round_counter

whose value is the round number i

15

These three steps are signified as follows:

[k79k78 . . . k1k0] = [k18k17 . . . k20k19]

[k79k78k77k76] = SBox[k79k78k77k76]

[k19k18k17k16k15] = [k19k18k17k16k15]⊕ round_counter

An illustration of the PRESENT algorithm is shown in the Figure 3 and the corresponding description in

the Algorithm 3 [5].

Figure 3: An illustration of PRESENT algorithm

The goal of PRESENT is to meet some specific needs, especially in the extremely resource-constrained

environments. Such requirements are usually not able to indulged by AES and some other cryptographic

primitives. However, PRESENT can achieve tradeoff between the security level and hardware efficiency

in the constrained environments instead of compromising in any one aspect.

16

Algorithm 3 The encryption process of PRESENT
1: procedure ENCIPHER(input[64], output[64], K[80])

2: begin

3: state← input

4: generateRoundKeys(K)

5: for i = 1 to 31 do

6: addRoundKe y(state, Ki)

7: sBox La yer(state)

8: pLa yer(state)

9: addRoundKe y(state, K32)

10: output← state

11: end

17

2.2 Algebraic Cryptanalysis

A new cryptanalytic method against block ciphers which is called algebraic cryptanalysis has been pro-

posed for years. In contrast to the two most common cryptanalytic methods — linear cryptanalysis and

differential cryptanalysis [25, 22, 21], algebraic cryptanalysis attempts to explore the algebraic structure

of block cipehrs. The most common form of algebraic cryptanalysis is that the adversaries utilizes a large

set of low-degree (usually quadratic) multivariate polynomial equations to describe the encryption trans-

formation [4]. After building the system of algebraic equations, solving the system [6, 12] to recover the

secret key is the next step. In order to solve such systems, several algorithms have been proposed and

widely employed.

2.2.1 Specification

The essential idea of algebraic cryptanalysis is presented through two moves. By exploiting the algebraic

structure of block ciphers, the first move is to build a model for a targeting cryptographic primitive

by constructing a system of algebraic equations over a finite field, usually over GF(2) where only two

elements, 0 and 1, exist. Of course, the other finite fields can also be adoptable, e.g. GF(23), GF(27),

etc., but not proper in this work. Furthermore, it is assumed that the S-Box of a block cipher is able to be

expressed through an overdefined system of algebraic equations [14].

The second move is to solve this system in order that the secret key of the cryptographic primitive can

be retrieved. Because the algebraic equations are so constructed that the solutions have a corresponding

relationship with the secret key of this cryptographic primitive [8]. However, finding solutions for such a

system is not trivial because the system contains a great number of variables and multivariate equations.

To effectively tackle the problem, Gröbner base is a great option earlier and several techniques were

developed for it, such as Buchberger algorithm, the F4 and F5 algorithm, XL, etc. [28, 14, 11, 10, 18].

Besides, an alternative way to solve the system has been developed afterwards. This later proposed way

is to translate the algebraic system into a satisfiability(SAT) instance which is equivalent to the system

and in conjunctive normal form (CNF) and then feed the instance to SAT-solvers, e.g. CryptoMinisat,

[36, 17].

Note that the performance of algebraic cryptanalysis relies on encryption algorithms to a considerable

extent when SAT solvers are utilized. In this work, we focus on two versions of the selected block ciphers

— PRESENT-80 [5] and AES-128 [29].

2.2.2 SAT Problems

To solve a SAT problem is to verify whether a given logical formula (a set of Boolean clauses) is satisfiable

or not which is achieved by finding out an assignment for the variables in order to evaluate the given

logical formula to be true or proving such an assignment does not exist [19, 20]. Assuming the logical

formula is in conjunctive normal form (CNF), it consists of a set of clauses. Any two of these clauses are

associated through a conjunction (AND) and each clause is composed of literals which are variables (x)

18

or variable negations (¬x). These literals are combined by disjunctions (OR) [34]. An example is given

to illustrate a formula in conjunctive normal form (CNF)

(¬x1 ∨ x2)∧ (x1 ∨ x2)∧ (x1 ∨¬x2 ∨ x3).

The above formula is evaluated to be true, when x1 =false, x2 = true, and x3 =true. However, the

following formula

(¬x1)∧ (x1 ∨ x3)∧ (¬x2 ∨¬x3)

may not be satisfied, which means this formula cannot be evaluated to be true for all possible assignments

of variables.

The boolean expressions in CNF are usually encoded into another most general format — DIMACS —

before they are fed to SAT solvers. For example, the corresponding DIMACS expressions of the above

examples are displayed as follows:

p cnf 3 3 p cnf 3 3

−1 2 0 −1 0

1 2 0 1 3 0

1 − 2 3 0 −2 − 3 0

The first line indicates the form of the two logical formulas which is CNF. Besides, the last two integers

of the first line demonstrate the number of variables and clauses, respectively. The variables x1, x2, x3 are

encoded into numbers 1, 2,3. Meanwhile, negations (e.g. ¬x1) are encoded into negative numbers (e.g.

−1). The following three lines are the clauses which put 0 at the end to declare a clause is finished.

In addition, the boolean expressions in CNF of the dimacs format for the example explained in ?? are

presented in the Appendix A.

2.2.3 SAT Solvers

In this master project, SAT solving is mainly concentrated which is one of the most efficient ways for

algebraic cryptanalysis and this technique has already drawn much attention in the past decades. The

inputs of most SAT solvers, e.g. CryptoMiniSat [36], are in conjunctive normal form (CNF) [34]. In this

condition, it is necessary to translate the algebraic system into a set of CNF clauses which are the equiv-

alent forms of the corresponding algebraic equations. This translating course is exactly the conversion

from an algebraic system to a SAT problem which was proved to be NP-complete [16, 15]. Then, these

CNF clauses are fed to SAT solvers. In addition, the results obtained from SAT solvers can be directly

translated to recover the secret key due to the mapping relationship between the results of SAT solving

and the secret key.

The SAT solver employed in this work, CryptoMiniSat, aims to combine the advantages of several

other SAT solvers in order to generate a formula which may be able to solve diverse types of problems

19

in a reasonable time [36]. It is developed from MiniSat [17] and based on the Davis-Putnam-Logemann-

Loveland (DPLL) algorithm [16, 15]. This algorithm is a complete depth-first search algorithm which is

backtracking-based. The idea behind the basic backtracking is to assign a truth value to one literal of

a given formula which simplifies the given formula and to check repeatedly whether the given formula

is satisfied. If the formula is satisfied, the assigned truth value is the expected solution. Otherwise, the

opposite truth value is assigned and the same procedure as just described is repeated. The DPLL algorithm

is improved over the basic backtracking algorithm through two steps. The first step is unit propagation

in which a unit clause, a clause containing only one single unassigned literal, can be satisfied only if

the necessary value is assigned to the single literal to make it true. The second step is pure literal

elimination. If a variable in a formula only can exclusively be positive or negative literal, it’s pure. This

kind of variables can always be assigned in a way to make all clauses including them satisfied. Therefore,

such clauses are not that helpful in solving the algebraic system and thus should be eliminated.

Another technique to solve a system of algebraic equations is Gröbner basis which is specified in [13].

However, this technique has been left behind by SAT solving in the aspect of efficiency.

2.3 Side-Channel Attacks

For the last decades, side-channel attacks have been proven to be a very effective and practical method

to break cryptographic primitives. Such attacks are one kind of physical attacks which make use of the

leaked physical information [37, 9, 1] to recover the secret parameters used in cryptographic operations.

2.3.1 Specification

Side-channel analyses are the attacks on cryptographic devices which exploit some characteristics specific

to the implementation of cryptographic algorithms and try to take advantage of these characteristics

(a.k.a. information leaked by devices) to recover the secret key of cryptographic primitives. An important

point for such attacks is that they are more powerful and less general than the classical cryptanalysis

because they are implementation-specific [37]. Besides, the leaked information is the so-called side-

channel information and it could be electromagnetic radiation [2], timing information [23], and power

consumption [21], etc. A definition which is important to understand and evolve the power consumption

attacks is trace. A trace is the measured power consumption which is taken in the middle of cryptographic

operations [37, 9, 1]. In addition, there are several common types for the power consumption attacks,

such as simple power analysis (SPA) and differential power analysis (DPA) [24, 22, 21], template attacks

[9, 1], etc.

In general, side-channel attacks associate all information gained from one single or multiple traces to

recover the secret key of cryptographic primitives.

20

2.3.2 Power Analysis

The simple power analysis (SPA) is a method to make use of the leaked substantial side-channel informa-

tion about noise and one power trace obtained in the course of encryption to generate the information

which is about the secrets. If the leaked information with respect to noise is very less, the differential

power analysis (DPA) is more suitable than the simple power analysis (SPA). In order to realize DPA, ad-

versaries first need to carry out multiple encryptions which means a great deal of different plaintexts are

enciphered into ciphertexts taking advantage of the same secret key and statistical analysis. Moreover,

DPA intercepts many power traces and employs them to decide the correctness of a key block. Besides, it

also needs to note that ciphertexts are known for DPA while the knowledge of plaintexts is not necessary.

Although DPA is able to attack almost any symmetric or asymmetric cryptographic algorithms, yet it is

still not optimal [24, 22, 21]. Because DPA cannot extract all information existing in each side-channel

sample, while the template attacks may realize this [9, 1].

2.3.3 Template Attacks

In contrast to SPA and DPA, the template attacks as the most powerful side-channel attack dedicate

themselves to model noise precisely rather than attempting to remove it. Basically, the template attacks

are divided into two phases, a training phase and an attack phase. The first phase serves for collecting the

power traces in the middle of encrypting random plaintexts with random keys. The second phase serves

for attaining power traces during very few encryptions with the sceret key and matching the acquired

power traces with one subkey of the secret key. Moreover, since the template attacks only take the key

schedule as the target rather than S-Boxes, a new attack model is introduced, e.g. template attacks with

a Hamming Weight (HW) model. Through this model, the acquired hamming weights of intermediate

values (e.g. the hamming weights of inputs/outputs of S-Boxes) are utilized to retrieve the secret key

[27, 9, 1].

2.4 Algebraic Side-Channel Attacks

The main idea of algebraic cryptanalysis is to build a system of algebraic equations for the targeted

cryptographic algorithm. However, it is hard to find solutions for this algebraic system because of its

great size — a large number of variables and equations. In this way, such attacks are not suitable for

the block ciphers which may result in an algebraic system with great size [34, 8]. While side-channel

attacks tries to exploit and make use of the leaked physical information to break block ciphers. Usually,

block ciphers and their implementations are secure when only a limited number of side-channel traces

(e.g. one trace) are acquired and the required effort to capture enough traces is great. In addition, such

attacks cannot dig some weaknesses of block ciphers [34, 8, 9, 37]. In this context, an idea of integrating

algebraic cryptanalysis with side-channel attacks and attempting to make the most of their advantages is

come up with. This integration brings a more powerful cryptanalysis against block ciphers which is the

algebraic side-channel attacks (ASCA).

21

ASCA builds a system of algebraic equations consisting of two parts. One part represents the algorithm

of a block cipher itself and the other part describes the information leaked in the course of implementing

the algorithm. In this way, though the number of traces is greatly limited (e.g. one trace), attackers may

still be able to provide adquate information to solve the algebraic system. The reason for this is that

attackers in such circumstances exploit as many leakages from all the cipher rounds as possible rather

than only capturing side-channel information from one round [8, 34, 33].

22

3 MASCA: Mutant Algebraic Side-Channel Attacks

3.1 Motivation

The feasibility of algebraic side-channel attacks (ASCA) has already been proven by Renauld et al. How-

ever, their advantages and potentials might not be exploited to the greatest extent. In this section, we

make some changes to the algebraic representation of cryptographic algorithms to achieve better perfor-

mance, such as the improvement in solving time of SAT solvers, the reduction of the required side-channel

information, etc. Such changes lead to short and simple clauses which are the so-called mutants. Taking

advantage of mutants can decrease the large size of an algebraic system constructed by ASCA, simplify

the structure of the system, etc., which results in that SAT solvers are capable of finding solutions for the

system with a great speed. Eventually, the proposed MASCA can recover the secret key more efficiently.

3.2 Main Ideas

In order to make the work in [34] better in the aspect of the speed of solving SAT problems, the algebraic

representation of SAT problems is tweaked. While at the very beginning, it is not very clear, what kind of

algebraic representation might be considered as "good". Empirically, the size of the problem seems to be

an meaningful characteristic of SAT instances. The size mentioned here indicates the number of not only

variables but also equations of an algebraic system which more precisely refers to the quantity of literals

and clauses of a SAT instance. In addition, thinking of the way how SAT solvers work - constructing a

tree, searching it by depth-first backtracking, and attempting to prune branches efficiently when conflict

clauses are discovered [3], short clauses may lead to a solution sooner than those long clauses. Therefore,

the average length of clauses is a proper heuristic measure as well. Thus, MASCA imposes a constraint

on the length of clauses which is determined to be 4 in this work and obtaining these short clauses is

the first optimization step. So far, not all the obtained clauses are mutants. Some of them are redundant

and not helpful to solve an algebraic system. Hence, distinguishing mutants and redundant clauses is the

second optimization step which is realized through two filters explained later.

For PRESENT-80, the recovered Hamming weights of each round consist of 8 HW from addition of

round key and 8 HW from substitution. In this way, there are at most 496 correct Hamming weights for

31 rounds. While for AES-128, there are 16 HW from addition of round key, 16 HW from substitution,

and 4×13 HW from mixing columns for each round. These figures of 10 rounds are summed up and the

corresponding total can reach a maximum of 788 correct Hamming weights [33]. In order to effectively

represent the S-box of AES-128, Renauld et al. utilize a set of clauses listing all possible values of input

and output of S-box, which generates 2048 clauses and their length is 9. The same method is applied to

PRESENT-80, leading to 64 clauses of length 5.

Moreover, we attempted to find out the limitations that the S-Box owns on the Hamming weights of

the S-Box input/output pairs. Particularly, when the input and output of a S-Box are known, the short

clauses for this case are going to be included.

23

3.3 Specification

In this work, the unit of leakages is one byte (8 bits). Therefore, the range of both inputs/outputs of

S-Box is from 0 to 255 and it is denoted as a set IO = {io ∈ N|io ≤ 255}. The scope of the corresponding

Hamming weights is from 0 to 8 and it is expressed as W = {ω ∈ N|ω ≤ 8}. Let x , y describe the input

and output of S-Box and ωx ,ωy the Hamming weights of the input and output. Meanwhile, x , y ∈ IO
and ωx ,ωy ∈W. In this way, Hamming weight pairs are in the form (ωx ,ωy).

In order to calculate the Hamming weight of an input/output, an important function HW (·) is intro-

duced. For a given byte x , HW (x) = ωx holds, if and only if every subset of the bits of x = (x1, . . . , x8),

with size of (ωx + 1), includes at least one 0 and every subset with size of (8−ωx + 1) includes at least

one 1. In addition, the Hamming weight of a byte x can be expressed as a set of equations over GF(2)

with the variables indicating the bits of x , where x = (x1, . . . , x8).

3.3.1 The Weights of Hamming Weight Pairs

The weight of a Hamming weight pair is the count of input/output pairs of S-Box mapping to this certain

Hamming weight pair and it is denoted as WHW P in this work. Such weights of all possible Hamming

weight pairs of PRESENT-80 and AES-128 are computed and presented in the Table 2 and 3.

As shown in the Table 2, there exist 37 Hamming weight pairs of PRESENT-80 whose weights are not 0.

While the Table 3 demonstrates that AES-128 has 47 Hamming weight pairs with non-zero weights. For

example, an input/output pair of PRESENT-80 S-Box, x = (0,0, 0,0, 1,1, 1,1) and y = (1, 0,1,0, 0,0, 1,0),

is mapped to the Hamming weight pair (4,3). Accordingly, one of the input/output pairs of AES-128

corresponding to the Hamming weight pair (4, 3) is x = (0,0, 0,1, 1,1, 0,1) and y = (1, 0,1, 0,0, 1,0, 0).

H
HHH

HHin
out

0 1 2 3 4 5 6 7 8

0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 8 0 0 0 0

2 0 0 2 2 18 4 2 0 0

3 0 0 8 12 8 20 8 0 0

4 1 2 3 24 7 22 6 4 1

5 0 4 4 16 12 8 8 4 0

6 0 2 6 2 12 2 4 0 0

7 0 0 4 0 4 0 0 0 0

8 0 0 1 0 0 0 0 0 0

Table 2: Weights of Hamming weight pairs of PRESENT

3.3.2 Generating Clauses

As specified above, HW (·) denotes the function calculating the Hamming weight of the parameter and z

denotes an eight-bit vector where z ∈ N. Besides, let W = {ω ∈ N|ω ≤ 8} express the set of all possible

24

HH
HHHHin

out
0 1 2 3 4 5 6 7 8

0 0 0 0 0 1 0 0 0 0

1 0 0 2 0 1 3 2 0 0

2 0 2 3 8 5 4 4 2 0

3 1 1 4 17 16 10 5 2 0

4 0 3 9 11 21 16 9 1 0

5 0 1 7 10 19 14 3 2 0

6 0 0 3 7 5 8 4 0 1

7 0 1 0 2 2 1 1 1 0

8 0 0 0 1 0 0 0 0 0

Table 3: Weights of Hamming weight pairs of AES

values of Hamming weights of eight-bit vectors. Then, there exists the equation HW (z) =ω with ω ∈W.

This equation is in fact comprised of two inequalities — HW (z) ≤ω and HW (z) ≥ω— each of which is

able to be expressed equivalently through a set of clauses. These clauses are the classical HW clauses.

Besides, the clauses are also generated for possible Hamming weight pairs of cryptographic algorihtms.

As presented in the table 2 and 3, the weights of some Hamming weigh t pairs are not 0, which means

there indeed exist input/output pairs of S-Box for these Hamming weight pairs, individually. For each

of these Hamming weight pairs, a set of equations are built to describe the Hamming weight pair and

define the S-Box itself. In [27], a set of short equations were extracted from this set makeing use of

Gröbner bases and they were converted to CNF clauses through the PolyBoRi’s CNF converter. However,

this method works well only for those Hamming weight pairs with very small weights. For the Hamming

weight pairs with high weights, i.e. the weight is greater than 7 which is expressed as WHW P ≥ 7 (e.g.

WHW P(4,3)
= 24 for PRESENT-80), long clauses come out as a result. Finding solutions for a set of long

clauses is hard and time-consuming. Therefore, it should spare no efforts to avoid long clauses. In order

to bypass the long clauses, another approach rather than Gröbner bases was employed. The reasonably

short clauses of length ` (1 ≤ ` ≤ 4) satisfied by all input/output pairs mapping to one certain high

count Hamming weight pair were added to the algebraic system, which was indeed helpful for solving

the system. As demonstrated in [27], it can be concluded that the reasonably short clauses are generated

through three steps. The first step is to find all possible clauses of length ` (1≤ `≤ 4) taking advantage of

the exhaustive search. Since both input and output of S-Box are 8 bits, there exist C16
`

possible clauses for

each length ` (1 ≤ ` ≤ 4). The second step is to compute all possible input/output pairs corresponding

to the individual Hamming weight pairs with non-zero weights. The last step is to check the created

clauses for each Hamming weight pair, see if they are satisfied by the corresponding input/output pairs,

and keep the satisfied clauses as the results of the individual Hamming weight pairs. So far, searching for

all possible clauses for the Hamming weight pairs with non-zero weights has been finished. The Table 4

and 5 report the number of resulting clauses after performing exhaustive search for the Hamming weight

pairs with high weights (WHW P ≥ 7) of PRESENT-80 and AES-128, respectively.

25

Pair 1 2 3 4

(1,4) 0 112 2162 19749

(2,4) 0 34 1096 13312

(3,2) 0 106 2098 19482

(3,3) 0 40 1294 15205

(3,4) 0 106 2098 19482

(3,5) 0 13 678 10430

(3,6) 0 106 2098 19482

(4,3) 0 2 252 6862

(4,4) 0 53 1710 18486

(4,5) 0 1 374 8326

(5,3) 0 19 806 11760

(5,4) 0 23 1084 14417

(5,5) 0 55 1618 17651

(5,6) 2 117 2088 19280

(6,4) 0 43 1274 14988

Table 4: Number of unfiltered clauses for Ham-
ming weight pairs of PRESENT-80

Pair 1 2 3 4

(2,3) 2 98 1877 18374

(3,3) 0 20 788 11349

(3,4) 0 7 604 10695

(3,5) 0 36 1270 15422

(4,2) 0 57 1550 16923

(4,3) 0 24 1114 14613

(4,4) 0 0 212 7184

(4,5) 0 12 673 11027

(4,6) 2 100 1886 18178

(5,2) 1 99 2011 19271

(5,3) 0 23 1157 15252

(5,4) 0 4 499 9536

(5,5) 0 12 838 12427

(6,3) 1 107 2077 19516

(6,5) 1 100 1997 19028

Table 5: Number of unfiltered clauses for Ham-
ming weight pairs of AES-128

Pair 1 2 3 4

(1,4) 0 112 8 9

(2,4) 0 34 52 4

(3,2) 0 106 0 0

(3,3) 0 40 378 0

(3,4) 0 106 8 9

(3,5) 0 13 326 0

(3,6) 0 106 0 0

(4,3) 0 2 10 117

(4,4) 0 53 464 90

(4,5) 0 1 18 71

(5,3) 0 19 324 0

(5,4) 0 23 52 61

(5,5) 0 55 408 0

(5,6) 2 58 0 0

(6,4) 0 43 52 61

Table 6: Number of filtered clauses for Ham-
ming weight pairs of PRESENT-80

Pair 1 2 3 4

(2,3) 2 39 39 0

(3,3) 0 20 297 0

(3,4) 0 7 55 33

(3,5) 0 36 427 0

(4,2) 0 57 53 32

(4,3) 0 24 50 17

(4,4) 0 0 212 2754

(4,5) 0 12 26 47

(4,6) 2 41 24 15

(5,2) 1 69 28 0

(5,3) 0 23 565 0

(5,4) 0 4 38 53

(5,5) 0 12 516 0

(6,3) 1 77 16 0

(6,5) 1 70 36 0

Table 7: Number of filtered clauses for Ham-
ming weight pairs of AES-128

26

3.3.3 Optimizing Clauses

The generation of clauses has been accomplished as specified in 3.3.2. However, not all of these clauses

are useful and only mutants can help. These unnecessary (a.k.a. redundant) clauses raise the size of

algebraic systems and thus make it more difficult for SAT solvers to find solutions for SAT instances.

Accordingly, the solving time is getting longer. Therefore, extracting mutants (or eliminating redundant

clauses) from the resulting clauses obtained in 3.3.2 is a very significant action. For this purpose, some

measures should be taken to further process the clauses before they are fed to SAT solvers. Considering

the way SAT solvers work, two filters in this master project are proposed to minimize the algebraic system,

reduce redundancy, and choose clauses more carefully so that the clauses can be optimized to a as great

extent as MASCA can. Thus, the optimized clauses (a.k.a. mutants) are able to improve the efficiency of

solving systems and better assist the attackers to recover the secret key of cryptographic primitives.

The function of the first filter, expressed as FilterOne here, is to select the clauses of a certain length `

(1≤ `≤ 4) which only contain the variables of inputs or outputs — we signify the bits of an input/output

pair as x = (x1, x2, . . . , x8) and y = (y1, y2, . . . , y8) — and totally discard the other clauses of the same

length `. This operation has a close relationship with the power of each Hamming weight pair. Assuming

we have the following notations:

• a Hamming weight pair (ωx ,ωy) and

• all the clauses of a fixed length ` (1 ≤ ` ≤ 4) comprise a corresponding set which is denoted as

CLAUSE`. Then, the conjunction of all such clause sets is expressed as CLAUSE=
4
⋃

`=1
CLAUSE`.

In this way, the core algorithm of FilterOne is demonstrated in the Algorithm 4 and the java implemen-

tation is shown in the Appendix C.

As shown in the Algorithm 4, FilterOne is not applied to the clauses of length ` where ` ≤ ωmin and

the clauses of length ` where ` > ωmax are directly removed from the corresponding set CLAUSE`. Only

the clauses of length ` where ωmin < ` ≤ ωmax are the target to which the FilterOne is employed. To

keep the clauses only including either the input variables or the output variables is dependent upon the

power of their corresponding Hamming weight pair. In this master project, the variables relating to the

bigger Hamming weight are taken. After the usage of FilterOne, a great deal of unnecessary clauses are

eliminated, which means the redundancy of clauses is reduced greatly.

The second filter which is denoted as FilterTwo is aiming at removing the inclusion relation between

any two clause sets of different lengths ` where 1≤ `≤ 4. The inclusion relation is defined to be that each

literal existing in a clause of length < ` (from the set CLAUSE1 ∪ CLAUSE2 ∪ · · · ∪ CLAUSE`−1
1) is also

included by a clause of length `. Such a clause of length ` should be removed from the relating clause

1 The same notations as specified for the first filter are also used for the second filter. CLAUSE` is on behalf of a set
consisting of the clauses of length ` where 1≤ `≤ 4.

27

Algorithm 4 The algorithm of the FilterOne
1: procedure FILTERONE(CLAUSE)

2: begin

3: ωmin = min(ωx ,ωy)

4: ωmax = max(ωx ,ωy)

5: for `= 1 to 4 do

6: if `≤ωmin then

7: leave CLAUSE`as it is

8: else if ` > ωmax then

9: discard CLAUSE`
10: else if ωmin < `≤ωmax then

11: if ωx >ωy then

12: remove each clause including any yi, where 1≤ i ≤ 8

13: else if ωx <ωy then

14: remove each clause including any x i, where 1≤ i ≤ 8

15: end

set CLAUSE`. An example is given here to specify this filter. We have the clause sets of certain lengths as

follows:

CLAUSE1 = {{x1}, {x3}, {x5}}

CLAUSE2 = {{x1, x2}, {x2, x4}, {x5, x6}}

CLAUSE3 = {{x1, x2, x7}, {x2, x4, x8}, {x2, x6, x7}}

CLAUSE4 = {{x2, x6, x7, x8}}.

The clause set of length 1 CLAUSE1 is kept as it is. The second filter FilterTwo firstly deals with the

clause set of length 2, i.e. CLAUSE2, and eliminates the clauses {x1, x2} and {x5, x6} from CLAUSE2

because both clauses contain the shorter clauses {x1} and {x5} which are belonging to CLAUSE1. The

same operation is performed to CLAUSE3 and CLAUSE4, too. Then, the first round of FilterTwo is

finished. For the second round, FilterTwo starts working on the clause set of length 3 and repeats the

same elimination operation as carried out in the previous round — remove any clause of length 3 and 4

containing any clause of length 2. This course is repeated until the removal of the clauses of the maximum

28

length `max (`max = 4 here) including any clause of length `max−1 is accomplished. The resulting clause

sets of the above example are

CLAUSE1 = {{x1}, {x3}, {x5}}

CLAUSE2 = {{x2, x4}}

CLAUSE3 = {{x2, x6, x7}}

CLAUSE4 = {}.

It is obvious that the resulting sets are much simpler compared with the previous clause sets. Since

the filter is designed on a basis of the working scheme of SAT solvers and the amount of clauses does

matter for SAT solvers in the course of solving SAT problems, the further simplification can ease the

burden of SAT solvers. In general, the algorithm of FilterTwo is demonstrated in the Algorithm 5 and the

corresponding java implementation is specified in the Appendix C.

Algorithm 5 The algorithm of the FilterTwo
1: procedure FILTERTWO(CLAUSE)

2: begin

3: ωmax = max(ωx ,ωy)

4: for `= 1 to ωmax do

5: di f f =ωmax − `
6: for j = 1 di f f do

7: ∀clause`+ j ∈ CLAUSE`+ j

8: ∀clause` ∈ CLAUSE`
9: if clause`+ j contains clause` then

10: remove clause`+ j

11: end

After applying the two filters to the originally generated clauses, the mutants are acquired and inserted

into the algebraic system to better assist SAT solvers to find a solution. The Table 6 and 7 present the

number of resulting clauses (mutants) for the Hamming weight pairs with high weights (WHW P ≥ 7) of

PRESENT-80 and AES-128, respectively.

29

4 Experiments

Through the optimization for CNF representation of Hamming weight leakages, the mutants are obtained

and injected into the algebraic system, which makes the inputs of SAT solvers being of more simple and

optimized structure. Therefore, the SAT solving by MASCA is able to be accelerated. Furthermore, some

equations of the algebraic system may become superfluous and should be eliminated to further improve

the inputs, leading to the reduction of required Hamming weight leakages.

The conducted experiments mainly serves two purposes. One purpose is to give evidence of that

the solving time is greatly shortened by using MASCA compared to ASCA, based on the same "stan-

dard" amount of Hamming weight information required by ASCA. The so-called "standard" amount for

PRESENT are Hamming weights of four consecutive internal rounds (64 HW) and for AES of three con-

secutive internal rounds (252 HW) [34, 33, 27]. The other purpose is to report that MASCA improves

the quantity of Hamming weights demanded by ASCA. For this purpose, it is necessary to compare the

amount of known Hamming weight information needed by MASCA with that needed by ASCA (and

IASCA in [27] in the case of AES).

4.1 Experimental Settings

For the presented experiments in this section, an assumption that all given Hamming weights are correct

is made. To generate and optimize CNF clauses which are the input of SAT solvers, the Java implemen-

tation of two parts are utilized. One part is the ASCA introduced by Renauld [32] and the other is the

MASCA which generates the clauses corresponding to known Hamming weight information through ex-

haustive searach and optimizes these clauses. To solve the SAT instances generated by both ASCA and

MASCA, the SAT solver Cryptominisat [36] is employed. The version of the employed Cryptominisat is

2.9.0. In order to get the expected results by processing the outcomes of Cryptominisat, another Java

implementation is applied. In addition, two significant criteria are set to increase the reliability of the

experiments. First of all, a time threshold is set for all experiments because the solving process of some

SAT problems might take very long time which is impractical for actual attacks. In this work, the time

threshold is set to be 3,600 seconds. More precisely, no matter whether the SAT problems have solutions

or not, attacks are reckoned to be failed when no solution has been found in less than 3,600 seconds.

Secondly, the success rate of the experiments is set on a convincing level which is determined to be higher

than 90% within the time threshold. Because it would also be impractical if the success rate were too

low. Furthermore, all experiments in this work are performed on a Sun X4440 server which was equipped

with RAM of 128 GB and CPUs with Quad-Core AMD OpteronT M Processor 8356. Each CPU is running

at 2.3 GHz.

In order to make the experimental results persuasive, 100 experiments with 100 distinct plaintext/ci-

phertext pairs for each case in each attack scenario — consecutive and randomly distributed Hamming

weights in known and unknown plaintext/ciphertext attack scenarios — are performed and a correspond-

ing average of the solving time is calculated.

31

4.2 Experimental Steps

The steps of conducting the experiments are specified as follows:

a) generating CNF clauses and writting them to the files with the names in a certain form like

cn f _ωx_ωy .t x t where ωx and ωy are the Hamming weight pair to which the CNF clauses are

mapped.

b) reading clauses from the files created in the step a), adapting them according to the variables used

in the algebraic system, and inserting the adapted clauses into the system to yield the SAT instance.

c) feeding the SAT instance to SAT solvers.

d) Once a solution has been found, the second Java implementation is put to use to compare the result

after SAT solving and the original secret key and calculate the average solving time and the success

rate if they are equal.

Note that these four steps are divided into three phases:

• clause generation — a).

• SAT instance generation — b).

• SAT solving — c) and d).

The clause generation only needs to be executed once at the very beginning of experiments. Then,

experiments with different plaintext/ciphertext pairs are created during SAT instance generation. The

number of plaintext/ciphertext pairs is set as a parameter. At last, the SAT solving is performed. To carry

out the steps c) and d) for 100 experiments automatically, a shell script which is illustrated in the Listing

1 is executed.

Subsequently, the experiments conducted for PRESENT-80 and AES-128 and the results are individually

demonstrated in 4.3 and 4.4 to give the evidence of the improvement in the performance of mutant

algebraic side-channel attacks (MASCA) in this master project.

4.3 Experiments for PRESENT Algorithm

The experiments conducted for PRESENT-80 aims at proving the improvement not only in the solving

time but also in the required amount of Hamming weight information. Since no great enhancement to

the original PRESENT algorithm has been proposed, only the experimental results of ASCA and MASCA

are compared in this subsection.

4.3.1 Improving Solving Time

At first, the experimental results supporting the improvement in solving time of MASCA using the same

quantity of Hamming weight information required by ASCA are reported. As shown in the Figure 42

2 The conditions of the experiements: PRESENT-80, Hamming weights of 4 consecutive rounds (64 HW), known plaintex-
t/ciphertext attack scenario.

32

#!/bin/bash

for i in $(seq 0 99);

do

sat="sat_KL_" $i "_n0.txt"

result="result_KL_" $i "_n0.txt"

if [-f $sat]; then

./cryptominisat $sat > $result

fi

if [-f $result]; then

java Comparison $sat $result >> tmp.txt

echo $(date +"%T") " : sat "$i" done !"

else

echo $result "does not exist !"

fi

done

java Average tmp.txt > final.txt

echo "All finished !"

Listing 1: Shell script for automatic run of 100 experiments

and 53, the improvement has been realized in both known and unknown plaintext/ciphertext attack

scenarios.

In the Figure 4, it is easy to see that the solving time of MASCA and ASCA in the case of R2− R5 and

R26−R29 makes no big difference. In contrast to the cases of R2−R5 and R26−R29, MASCA cuts off the

solving time to a great extent in the case of the middle rounds. In fact, MASCA consumes roughly the

same time to find solutions for all cases in the known plaintext/ciphertext attack scenario.

The Figure 5 suggests that compared to ASCA, MASCA reduces the solving time for all cases in the

unknown plaintext/ciphertext attack scenario in the almost same level.

Moreover, to further prove the improved performance of MASCA, the results of 100 experiments with

100 different plaintext/ciphertext pairs of MASCA and ASCA using the Hamming weights of R10, R11,

R12, and R13 are individually compared and directly presented in the Figure 6 (the known plaintext/ci-

phertext attack scenario) and Figure 7 (the known plaintext/ciphertext attack scenario).

3 The conditions of the experiements: PRESENT-80, Hamming weights of 4 consecutive rounds (64 HW), unknown plain-
text/ciphertext attack scenario.

33

Figure 4: Solving time of MASCA and ASCA in a known plaintext/ciphertext attack scenario for PRESENT-
80

Figure 6: Solving time of MASCA and ASCA in a known plaintext/ciphertext attack scenario for PRESENT-
80 using Hamming weights of R10, R11, R12, and R13

34

Figure 5: Solving time of MASCA and ASCA in an unknown plaintext/ciphertext attack scenario for
PRESENT-80

Figure 7: Solving time of MASCA and ASCA in an unknown plaintext/ciphertext attack scenario for
PRESENT-80 using Hamming weights of R10, R11, R12, and R13

4.3.2 Reducing Hamming Weight Leakages

The following Table 8 and Table 9 illustrate the reduction of the required amount of Hamming weights

needed by MASCA in both known and unknown plaintext/ciphertext attack scenario.

From the Table 8, it is easy to tell that merely 48 Hamming weights (3 consecutive rounds) can already

supply adequate information to the system to recover the secret key in the known plaintext/ciphertext

attack scenario, whereas ASCA is in need of 64 Hamming weights (4 consecutive rounds). Besides, if

35

known Hamming weights are distributed at random in the same attack scenario, 190 Hamming weights

suffice for MASCA, while ASCA demands more than 240 Hamming weights.

Table 9 indicates that MASCA utilizes Hamming weights of less than four consecutive rounds to retrieve

the secret key in the unknown plaintext/ciphertext attack scenario. This quantity is not improved very

well. But the solving time in this condition is decreased as shown in Figure 5. In addition, ASCA demands

at least 400 Hamming weights when known Hamming weights are distributed randomly. However,

MASCA requires at most 280 Hamming weight in the same circumstances.

Attack ASCA MASCA

PRESENT 4 rounds 3 rounds
consecutive 64 HW 48 HW

PRESENT
random

>240 HW 190 HW

Table 8: Quantity of Hamming weighs required by MASCA and ASCA for PRESENT-80 in a known plain-
text/ciphertext attack scenario

Attack ASCA MASCA

PRESENT 4 rounds < 4 rounds
consecutive 64 HW 62 HW

PRESENT
random

>400 HW 280 HW

Table 9: Quantity of Hamming weighs required by MASCA and ASCA for PRESENT-80 in an unknown
plaintext/ciphertext attack scenario

4.4 Experimental Results for AES

The experiments for AES-128 are contributed to provide evidence for the better performance of MASCA

in this work. But some approaches of improving algebraic side-channel attacks have been developed in

the past years, therefore, the experimental results of MASCA are compared not only with ASCA but also

with IASCA in [27].

4.4.1 Improving Solving Time

The first part of experiments for AES-128 suggests that MASCA consumes less time to get the secret

key taking advantage of the same amount of Hamming weights as ASCA. As shown in the Figure 84

4 The conditions of the experiments: AES-128, Hamming weights of 3 consecutive rounds (252 HW), known plaintext/ci-
phertext attack scenario.

36

and 95, the improvement in solving time for AES-128 has been realized in both known and unknown

plaintext/ciphertext attack scenarios.

Figure 8 shows that MASCA indeed improves the solving time for AES-128 in the known plaintext/ci-

phertext attack scenarios for all cases — especially for the middle rounds. As a matter of fact, both Figure

4 and Figure 8 suggest that it takes more time for adversaries to attack the middle rounds than to attack

the rounds being closer to the head or the end. The reason for this may be that SAT solvers are in need

of more time to reach the Hamming weights from the intermediate rounds [27]. Figure 4 and Figure 8

also indicate that the solving time of ASCA has a big difference when attacking the intermediate rounds

and the rounds being closer to the head or the end. IASCA in [27] cuts the solving time of ASCA in half

and MASCA shortens this once cut solving time to a greater extent, in other words, reduces the solving

time of MASCA in [27] by half.

Figure 9 illustrates the reduction of the solving time of MASCA for AES-128 in the unknown plaintex-

t/ciphertext attack scenarios. Compared with ASCA, IASCA in [27] makes a slight improvement, while

MASCA cuts down the solving time obviously. Besides, there is no big difference of the solving time of

MASCA for any consecutive rounds, which is similar to PRESENT-80 shown in the Figure 5.

Figure 8: Solving time of MASCA, IASCA in [27], and ASCA in a known plaintext/ciphertext attack sce-
nario for AES-128

5 The conditions of the experiments: AES-128, Hamming weights of 3 consecutive rounds (252 HW), unknown plaintex-
t/ciphertext attack scenario.

37

Figure 9: Solving time of MASCA, IASCA in [27], and ASCA in an unknown plaintext/ciphertext attack
scenario for AES-128

To further demonstrate the performance of MASCA is better than ASCA and IASCA in [27], 100 exper-

iments with 100 different plaintext/ciphertext pairs utilizing the Hamming weights of R5, R6, and R7 are

carried out. The comparison of the experimental results are displayed in the Figure 10 and Figure 11.

Figure 10: Solving time of MASCA, IASCA in [27], and ASCA in a known plaintext/ciphertext attack sce-
nario for AES-128 using Hamming weights of R5, R6, and R7

38

Figure 11: Solving time of MASCA, IASCA in [27], and ASCA in an unknown plaintext/ciphertext attack
scenario for AES-128 using Hamming weights of R5, R6, and R7

4.4.2 Reducing Hamming Weight Leakages

The purpose of the second part of experiments for AES-128 is to support that MASCA requires less

Hamming weight information than ASCA and IASCA in [27] to break cryptographic primitives. The Table

10 and 11 present the amount of required Hamming weights of ASCA, IASCA in [27], and MASCA to

support the improvement in the quantity of Hamming weight information of MASCA.

It is obvious from Table 10 that MASCA demands only 152 Hamming weights (less than two consecutive

rounds) to break cryptographic primitives when known Hamming weights are consecutive in the known

plaintext/ciphertext attack scenario. This amount is over one round less than that needed by ASCA and

even less than the required quantity of IASCA in [27]. Meanwhile, merely 230 Hamming weights are

already sufficient for MASCA to better help solve the algebraic system when known Hamming weights are

distributed at random, while ASCA is in need of 551 Hamming weights and IASCA in [27] 394 Hamming

weights.

Table 11 shows the comparison of the quantity of Hamming weights needed by ASCA, IASCA in [27],

and MASCA in the unknown plaintext/ciphertext attack scenarios. In the case of consecutive Hamming

weights, MASCA demands Hamming weight information of only a little bit more than 2 rounds to get the

secret key. It means precisely that MASCA needs all the Hamming weights of two consecutive rounds Ri

and Ri+1 (168 HW) and one more leakage of the round Ri+2. Besides, in the case of randomly distributed

Hamming weights, 460 Hamming weights for MASCA are good enough to supply adequate information

to the system compared with 551 Hamming weights for ASCA and 472 Hamming weights for IASCA in

[27].

39

Attack ASCA IASCA in [27] MASCA

AES 3 rounds 2 rounds < 2 rounds
consecutive 252 HW 168 HW 152 HW

AES random 551 HW 394 HW 230 HW

Table 10: Quantity of Hamming weighs required by ASCA, IASCA in [27], and MASCA for AES-128 in a
known plaintext/ciphertext attack scenario

Attack ASCA IASCA in [27] MASCA

AES 3 rounds < 3 rounds < 3 rounds
consecutive 252 HW 184 HW 169 HW

AES random 551 HW 472 HW 460 HW

Table 11: Quantity of Hamming weighs required by ASCA, IASCA in [27], and MASCA for AES-128 in an
unknown plaintext/ciphertext attack scenario

40

5 Error Tolerance

The previous improvement in this work is based on an assumption that all known Hamming weights

are correct. However, there exist some physical effects in the real attacks which have influences on the

power values in the case of the power consumption side-channel and they are denoted as noise (such as

electronic noise, quantization noise, and switching noise). Because of the noise, the emitted side-channel

information may result in incorrect Hamming weights [30, 31, 35, 38]. If the equations built on these

erroneous Hamming weights are inserted into the algebraic system, it would lead to incorrect solutions

or even make SAT problems unsatisfiable. Therefore, the capability of MASCA is extended in this section

so that MASCA can deal with the errors occurring in the real attacks.

5.1 Specification

As specified in 3.3.2, the equation HW (z) = ω can be expressed taking advantage of two inequalities

HW (z) ≤ ω and HW (z) ≥ ω. In this way, the varying range of the Hamming weight is [ω,ω]. However,

if erroneous Hamming weights occur or to say that the values of correct Hamming weights are uncertain,

this range can be gradually enlarged so that the correct Hamming weights can be included in this range

with a high probability. For example, assuming that the correct Hamming weight is in the interval

[ω,ω+ 1] which leads to two inequalities HW (z) ≥ ω and HW (z) ≤ ω+ 1. The clauses which describe

these two inequalities are inserted into the algebraic system. Analogously, if the values of Hamming

weights are more uncertain, the interval containing the correct Hamming weight is extended to [ω,ω+2].

In this way, the clauses describing HW (z) ≥ ω and HW (z) ≤ ω+ 2 are combined and inserted into the

system. In general, assume there is an interval of Hamming weights [ω1,ω2], then let ECi (error classes

introduced in [27]) describe the corresponding set of all possible intervals of length i where i =ω2−ω1.

More precisely,

if ω2 −ω1 = 0, then error class EC0 = {[ω,ω]};

if ω2 −ω1 = 1, then error class EC1 = {[ω− 1,ω], [ω,ω+ 1]};

if ω2 −ω1 = 2, then error class EC2 = {[ω− 2,ω], [ω,ω+ 2], [ω− 1,ω+ 1]};

and so on. In this master project, five error classes (EC0, EC1, EC2, EC3, and EC4) are considered and for

each error class, only one interval is taken into account, which is presented in Table 12. But we only focus

on the error classes EC0, EC1, and EC2. Therefore, not only (EC0,EC0), (EC1,EC1), and (EC2,EC2) but

also (EC0,EC1), (EC1,EC0), (EC0,EC2), (EC2,EC0), (EC1,EC2) as well as (EC2,EC1) are taken into

consideration.

As specified in the subsection 3.3.2, the clauses mapping to Hamming weight pairs of PRESENT-80 and

AES-128 are generated by applying the exhaustive search. Table 4 and 5 show the corresponding number

of clauses for Hamming weight pairs with high count (WHW P ≥ 7) in the case that Hamming weights are

41

Error Class Interval

EC0 [ω,ω]
EC1 [ω,ω+ 1]
EC2 [ω− 1,ω+ 1]
EC3 [ω− 2,ω+ 1]
EC4 [ω− 2,ω+ 2]

Table 12: The targeted intervals for error classes

error-free which means the error class EC0. Using the same method — exhaustive search — to the error

classes EC1 and EC2 to generate clauses, a slight change is made.

Suppose there is a Hamming weight pair (2,3), the corresponding set of all possible Hamming weight

pairs based on (2,3) for the error class EC1 is

HWPEC1,(2,3) = {(2,3), (2,4), (3,3), (3,4)}.

Then, check the weight in the Table 2 (using PRESENT-80 as an example here) for each Hamming weight

pair of HWPEC1,(2,3). For example, the weight of (2,3) is 2 which is signified as WHW P(2,3)
= 2. Similarly,

WHW P(2,4)
= 18, WHW P(3,3)

= 12, and WHW P(3,4)
= 8. What should be noted here is that a Hamming weight

pair is not taken into consideration when the weight of the Hamming weight pair is equal to 0, which

means no valid input/output pair for this Hamming weight pair. Assuming WHW P(3,4)
= 0, then

HWPEC1,(2,3) = {(2,3), (2,4), (3,3)}.

The next step is to create all possible clauses of length ` where 1 ≤ ` ≤ 4 and compute all possible

input/output pairs for each Hamming weight pair (WHW P > 0) of HWPEC1,(2,3). Subsequently, the tasks

are to check whether the clauses satisfy all the input/output pairs and keep the valid clauses. For an

input/output pair (x , y), these valid clauses are describing the inequalities

2≤ HW (x)≤ 3

3≤ HW (y)≤ 4

at the same time. For the error class EC2, the corresponding set of all possible Hamming weight pairs

based on (2,3) is

HWPEC2,(2,3) = {(1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,2), (3,3), (3,4)}.

42

From the Table 2, it is easy to check the individual weights and find that WHW P(1,2)
= 0 and WHW P(1,3)

= 0

which lead to

HWPEC2,(2,3) = {(1,4), (2,2), (2,3), (2,4), (3,2), (3,3), (3,4)}.

In the following, the similar procedures are performed as specified for the error class EC1 and the result-

ing clauses describes the inequalities

1≤ HW (x)≤ 3

2≤ HW (y)≤ 4

at the same time. The number of clauses for high count Hamming weight pairs of PRESENT-80 and

AES-128 for the error classes EC1 and EC2 are displayed in the Table 13, 14, 15, and 16.

Pair 1 2 3 4

(1,4) 0 14 740 10491

(2,4) 0 4 296 5739

(3,2) 0 1 120 4208

(3,3) 0 0 42 2744

(3,4) 0 0 74 2858

(3,5) 0 0 122 3858

(3,6) 0 53 1366 14880

(4,3) 0 0 12 2073

(4,4) 0 0 28 2568

(4,5) 0 0 140 4586

(5,3) 0 0 140 4797

(5,4) 0 8 368 7033

(5,5) 0 16 756 10955

(5,6) 0 68 1566 16104

(6,4) 0 31 1076 13375

Table 13: Number of unfiltered clauses for
Hamming weight pairs of PRESENT-
80 in the case of EC1

Pair 1 2 3 4

(2,3) 0 0 94 3515

(3,3) 0 0 2 739

(3,4) 0 0 0 715

(3,5) 0 0 155 4577

(4,2) 0 0 164 4825

(4,3) 0 0 7 898

(4,4) 0 0 2 640

(4,5) 0 0 127 4031

(4,6) 0 43 1199 13987

(5,2) 0 6 464 8210

(5,3) 0 0 116 3932

(5,4) 0 0 98 3472

(5,5) 0 0 342 7154

(6,3) 0 36 1139 13656

(6,5) 0 51 1370 15146

Table 14: Number of unfiltered clauses for
Hamming weight pairs of AES-128 in
the case of EC1

43

Pair 1 2 3 4

(1,4) 0 6 618 9682

(2,4) 0 0 84 3390

(3,2) 0 1 118 4120

(3,3) 0 0 38 2054

(3,4) 0 0 4 727

(3,5) 0 0 64 2258

(3,6) 0 0 118 3728

(4,3) 0 0 4 1233

(4,4) 0 0 4 506

(4,5) 0 0 6 1285

(5,3) 0 0 12 1779

(5,4) 0 0 4 646

(5,5) 0 0 26 2026

(5,6) 0 0 128 4293

(6,4) 0 0 84 3665

Table 15: Number of unfiltered clauses for
Hamming weight pairs of PRESENT-
80 in the case of EC2

Pair 1 2 3 4

(2,3) 0 0 72 2907

(3,3) 0 0 2 507

(3,4) 0 0 0 129

(3,5) 0 0 0 437

(4,2) 0 0 35 2037

(4,3) 0 0 0 76

(4,4) 0 0 0 0

(4,5) 0 0 0 114

(4,6) 0 0 48 2260

(5,2) 0 0 107 3614

(5,3) 0 0 3 526

(5,4) 0 0 0 157

(5,5) 0 0 0 350

(6,3) 0 0 70 2921

(6,5) 0 0 69 2835

Table 16: Number of unfiltered clauses for
Hamming weight pairs of AES-128 in
the case of EC2

Pair 1 2 3 4

(1,4) 0 14 28 1

(2,4) 0 4 8 31

(3,2) 0 1 0 0

(3,3) 0 0 42 0

(3,4) 0 0 0 65

(3,5) 0 0 122 0

(3,6) 0 53 20 0

(4,3) 0 0 0 54

(4,4) 0 0 28 1876

(4,5) 0 0 4 79

(5,3) 0 0 140 0

(5,4) 0 8 0 118

(5,5) 0 16 332 0

(5,6) 0 68 8 0

(6,4) 0 31 38 49

Table 17: Number of filtered clauses for Ham-
ming weight pairs of PRESENT-80 in
the case of EC1

Pair 1 2 3 4

(2,3) 0 0 6 0

(3,3) 0 0 2 0

(3,4) 0 0 0 40

(3,5) 0 0 155 0

(4,2) 0 0 11 59

(4,3) 0 0 3 29

(4,4) 0 0 2 589

(4,5) 0 0 9 43

(4,6) 0 43 42 43

(5,2) 0 6 33 0

(5,3) 0 0 116 0

(5,4) 0 0 5 41

(5,5) 0 0 342 0

(6,3) 0 36 56 0

(6,5) 0 51 28 0

Table 18: Number of filtered clauses for Ham-
ming weight pairs of AES-128 in the
case of EC1

44

Pair 1 2 3 4

(1,4) 0 6 26 8

(2,4) 0 0 2 38

(3,2) 0 1 0 0

(3,3) 0 0 38 0

(3,4) 0 0 0 2

(3,5) 0 0 64 0

(3,6) 0 0 4 0

(4,3) 0 0 0 10

(4,4) 0 0 4 402

(4,5) 0 0 0 11

(5,3) 0 0 12 0

(5,4) 0 0 0 2

(5,5) 0 0 26 0

(5,6) 0 0 4 0

(6,4) 0 0 0 64

Table 19: Number of filtered clauses for Ham-
ming weight pairs of PRESENT-80 in
the case of EC2

Pair 1 2 3 4

(2,3) 0 0 6 0

(3,3) 0 0 2 0

(3,4) 0 0 0 1

(3,5) 0 0 0 0

(4,2) 0 0 0 28

(4,3) 0 0 0 0

(4,4) 0 0 0 0

(4,5) 0 0 0 4

(4,6) 0 0 0 26

(5,2) 0 0 5 0

(5,3) 0 0 3 0

(5,4) 0 0 0 3

(5,5) 0 0 0 0

(6,3) 0 0 6 0

(6,5) 0 0 4 0

Table 20: Number of filtered clauses for Ham-
ming weight pairs of AES-128 in the
case of EC2

Of course, there also exists redundancy in the clauses for the error classes EC1 and EC2. To remove the

redundancy and get the mutants, FilterOne and FilterTwo are adopted. The quantities of the resulting

clauses (mutants) of PRESENT-80 and AES-128 for EC1 and EC2 are presented in the Table 17, 18, 19,

and 20. In addition, the number of filtered clauses (mutants) for mix error classes of PRESENT-80 and

AES-128 are demonstrated in the Appendix B.

5.2 Experiments for Error Tolerance

In order to prove that MASCA is capable of dealing with erroneous Hamming weights, some experiments

have been conducted. To specify the experimental environment, some measures are introduced [27].

Correctness describes the probability that the selected interval contains the correct Hamming weight. As-

sume there is an interval in which the correct Hamming weight is contained, the correctness is increased

accordingly when the bounds of the interval are increased, . Descriptiveness indicates the quantity of

side-channel information which is supplied through the equations describing the interval of Hamming

weights.

In the experiments presented here, 496,000 Hamming weight predictions for PRESENT-80 and 788,000

for AES-128 are obtained through 1,000 measurements. For each Hamming weight prediction, a likeli-

hood vector L is acquired. The likelihood vectors for PRESENT-80 LP−80 and AES-128 LA−128 are shown

in the Table 21 and 22. The certainty that the interval includes the correct Hamming weight is measured

by summing up the likelihood of the Hamming weight predictions and the Hamming weight is included

45

in the interval. In order to specify a convincing level of certainty, a certainty threshold T is introduced,

cf. [27]. The summed-up likelihood of Hamming weight predictions must exceed the certainty threshold

T so that the interval can be expressed as a set of clauses which is inserted into the algebraic system as

the input of SAT solvers.

HW Likelihood LP−80

0 0.37%

1 3.13%

2 10.91%

3 21.93%

4 27.23%

5 21.97%

6 10.95%

7 3.12%

8 0.39%

Table 21: A certainty vector for PRESENT-80

HW Likelihood LA−128

0 0.41%

1 3.11%

2 10.90%

3 21.89%

4 27.37%

5 21.91%

6 10.92%

7 3.11%

8 0.38%

Table 22: A certainty vector for AES-128

In order to determine the error tolerance of MASCA, two facts are evaluated. First of all, the distribu-

tion of error classes using distinct certainty thresholds from Tall = {80%, 85%,90%, 94%,95%, 98%,99%}

needs to be determined to fix the minimum certainty threshold which may lead to the correctness 100%.

Under this consideration, the error classes EC3 and EC4 are also taken into account. The distribution of

the five error classes is presented in the Table 23 [27]. As specified above, the higher a certainty threshold

is, the higher correctness can be reached. However, the descriptiveness is decreased. When the certainty

threshold is equal to or greater than 95% (T ≥ 95%), the correctness reaches 100%. In addition, the

probability of EC0 is 0 for T = 99%.

T (%) EC0(%) EC1(%) EC2(%) EC3(%) EC4(%) Correctness (%)
80 35 47 18 0 0 82
85 23 64 13 1 0 94
90 14 45 36 5 0 99
94 11 38 38 13 0 99
95 9 29 44 18 0 100
98 4 18 31 43 4 100
99 0 10 23 47 20 100

Table 23: The distribution of error classes

Secondly, the minimum amount of Hamming weight information (of consecutive rounds) as well as

the corresponding solving time are analyzed when the clauses which express the identified intervals of

Hamming weights are inserted into the algebraic system. The experiments for PRESENT-80 and AES-128

are individually conducted 100 times with 100 distinct plaintext/ciphertext pairs and a time threshold

46

for the experiments in this section is set to be 100 seconds. The experimental results are depicted in the

Table 24 and 25.

T (%) HW Rounds solving time (s)

80 < R1− R3 (40 HW) 2.08
85 < R1− R3 (40 HW) 3.96
90 R1− R3 (48 HW) 5.81
94 < R1− R4 (56 HW) 10.37
95 R1− R5 (80 HW) 12.12
98 R1− R13 (208 HW) 47.29
99 R1− R31 (496 HW) 608.01 (13%)

80 R2− R10 (144 HW) 1.32
85 R2− R10 (144 HW) 6.14
90 R2− R15 (224 HW) 41.52
94 R2− R22 (336 HW) 83.8
95 R2− R29 (448 HW) 145.39 (79%)
98 R2− R30 (464 HW) 323.97 (23%)
99 R1− R31 (496 HW) 608.01 (13%)

Table 24: Experimental results of PRESENT-80 with error tolerance

T (%) HW Rounds solving time (s)

80 R1 (84 HW) 3.73
85 R1 (84 HW) 3.95
90 < R1− R2 (116 HW) 5.39
94 < R1− R2 (116 HW) 6.94
95 R1− R2 (168 HW) 10.61
98 R1− R6 (504 HW) 23.50 (79%)
99 R1− R10 (788 HW) 992.87 (17%)

80 R3− R7 (420 HW) 5.46
85 R3− R7 (420 HW) 6.38
90 R3− R7 (420 HW) 7.83
94 R3− R7 (420 HW) 43.49
95 R3− R7 (420 HW) 51.35(83%)
98 R3− R9 (588 HW) 867.46 (41%)
99 R1− R10 (788 HW) 992.87 (17%)

Table 25: Experimental results of AES-128 with error tolerance

As shown in the Table 24, the Hamming weight rounds of PRESENT-80 are selected from two positions.

First of all, the Hamming weight rounds containing the first round R1 are chosen. When the certainty

threshold T = 80% and 85%, the required information are 40 Hamming weights of more than two rounds

(the first two rounds and the input of S-Box of the third round). For T = 90%, 48 Hamming weights of

three rounds are sufficient and 56 Hamming weights of more than three rounds (the first three rounds

and the input of S-Box of the fourth round) for T = 94%. In addition, the correctness can be 100% when

T reaches 95%, 98%, or 99%. For T = 95% and 98%, the first 5 rounds and the first 13 rounds are

demanded to make the experiments 100% solved. However, although all Hamming weights of 31 rounds

47

of PRESENT-80 are put to use when T = 99%, still only 13% of the experiments can be successfully solved.

Meanwhile, it also means it is impossible to choose the Hamming weights of the intermediate rounds of

PRESENT-80 to get more experiments solved when T = 99%. The intermediate rounds are just the second

selected position. When T = 95%, 98%, and 99%, solutions cannot be found for all experiments. For

T = 95%, R2− R29 are selected to get 79% of experiments solved with the average solving time 145.39

seconds and R2−R30 for T = 98% to get 23% of experiments solved with the average solving time 323.97

seconds.

The Table 25 presents two groups of experimental results for AES-128. For the first group, the Ham-

ming weights are selected from the first round R1. In this situation, the first round R1 is good enough

for T = 80% and 85% while Hamming weights of more than one round (the first round R1 and the

input/output of S-Box of the second round R2) are needed when T = 90% and 94%. Furthermore, the

correctness reaches 100% when T = 95% and only the first two rounds are already sufficient. Besides,

the correctness can also be 100% when T = 98% and 99% for which not all experiments are able to be

solved, even though all Hamming weights of 10 rounds are used for T = 99%. For the second group,

the Hamming weights of the intermediate rounds are selected. Five internal rounds R3− R7 suffice for

T = 80%, 85%, 90%, and 94%. When T = 95%, still R3−R7 are chosen and they get 83% of experiments

solved, meanwhile, the correctness is 100%.

48

6 Conclusion

In this master project, an improved algebraic side-channel attack which is named as Mutant algebraic side-

channel attack (MASCA) is proposed. MASCA has two main features, improvement in the performance

and error-tolerance. The first feature is realized by employing mutants which are attained by optimiz-

ing the representation of algebraic systems through exhaustive search and two filters. The proposed

filters bring a significant decrease in the solving time based on the same amount of Hamming weights

required by ASCA as well as the reduction of the Hamming weight information needed to solve algebraic

systems. In order to support the good performance of MASCA, some experiments have been conducted

and the experimental results have been compared and analyzed. Since there already exist some algo-

rithms of improving algebraic side-channel attacks applied to AES and almost none for PRESENT, the

experimental results of ASCA, IASCA in [27], and MASCA are compared for AES-128 to demonstrate the

further enhancement of MASCA, while for PRESENT-80, only the comparison of the results of ASCA and

MASCA is carried out. When the known Hamming weights are consecutive in known plaintext/cipher-

text attack scenarios, the Hamming weight amount required by MASCA for PRESENT-80 is one round

less than ASCA. Even though the demanded quantity for PRESENT-80 in unknown plaintext/ciphertext

attack scenarios has not been reduced greatly, the corresponding solving time has indeed been shortened.

Furthermore, in the case of randomly distributed Hamming weights, MASCA makes a good progress in

both attack scenarios for PRESENT-80. For AES-128, MASCA makes an obvious improvement not only in

the solving time but also in the needed number of Hamming weight leakages in both attack scenarios no

matter the known Hamming weights are consecutive or distributed at random.

The so-called error tolerance is the second feature of MASCA. The reason why this feature is necessary

and some basics have already been explained. Besides, also some experiments, for which the distribution

of error classes and the minimum required amount of Hamming weight information are two important

aspects, have been performed to demonstrate that MASCA is capable of dealing with incorrect Hamming

weights.

In future work, we will endeavor to fit more features in MASCA and make further improvement. First of

all, redundant clauses could be further diminished. Although the proposed algorithms have attempted to

eliminate the unnecessary clauses, there still exists redundancy in the clauses. Secondly, the distribution

of error classes could be analyzed more precisely so that MASCA would be more practical. Last but not

least, we try to develop a new technique to increase the success rate which might be more than 95% or

even 100% in some certain conditions more effectively so that the persuasiveness of experiments would

be increased accordingly. In this way, the practicability of MASCA can be further enhanced.

49

References

[1] M.A.E. Aabid, S. Guilley, and P. Hoogvorst. Template attacks with a power model. 2007.

[2] D. Agrawal, B. Archambeault, J.R. Rao, and P. Rohatgi. The em side-channel(s). In Secure Integrated
Circuits and Systems, volume 2523, pages 29–45. Springer Berlin Heidelberg, 2003.

[3] G.V. Bard. Algebraic Cryptanalysis. Springer, 2009.

[4] A. Biryukov and C. D. Cannière. Block ciphers and systems of quadratic equations. In Fast Software
Encryption, volume 2887, pages 274–289. Springer Berlin Heidelberg, 2003.

[5] A. Bogdanov, L.R.Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw, Y. Seurin, and
C. Vikkelsoe. Present: An ultra-lightweight block cipher. In Cryptographic Hardware and Embedded
Systems - CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages 450–466. Springer,
2007.

[6] S. Bulygin and M. Brickenstein. Obtaining and solving systems of equations in key variables only
for the samll variants of aes. Mathematics in Computer Science, 3:185–200, 2010.

[7] S. Bulygin and J. Buchmann. Algebraic cryptanalysis of the round-reduced and side channel anal-
ysis of the full printcipher-48. In Cryptology and Network Security, volume 7092, pages 54–75,
2011.

[8] C. Carlet, J.C. Faugère, C. Goyet, and G. Renault. Analysis of the algebraic side channel attack.
Journal of Cryptographic Engineering, 2(1):45–62, 2012.

[9] S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In CHES, pages 13–28, 2002.

[10] Jean charles Faugère. A new efficient algorithm for computing gröbner bases (f4). In IN: ISSAC
’02: PROCEEDINGS OF THE 2002 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC
COMPUTATION, pages 75–83, 2002.

[11] C. Cid, S. Murphy, and M. Robshaw. Algebraic Aspects of the Advanced Encryption Standard. Springer
US, 2006.

[12] C. Cid, S. Murphy, and M.J.B. Robshaw. Computational and algebraic aspects of the advanced
encryption standard. In Proceedings of the Seventh International Workshop on Computer Algebra in
Scientific Computing, CASC 2004, pages 93–103, 2004.

[13] C. Cid and R.P. Weinmann. Block cipher: Algebraic cryptanalysis and gröbner bases. In Gröbner
Bases, Coding, and Cryptography, pages 307–327. Springer, 2009.

[14] N.T. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overdefined systems of equations.
In Advances in Cryptology - CRYPTO 2002, volume 2501, pages 267–287, 2002.

[15] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Communica-
tions of the ACM, 5(7):394–397, 1962.

[16] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the ACM,
7(3):201–215, 1960.

[17] N. Eén and N. Sörensson. An extensible sat-solver. In Theory and Applications of Satisfiability
Testing, volume 2919 of Lecture Notes in Computer Science, pages 502–518. Springer, 2004.

[18] Jean-Charles Faugère. A new efficient algorithm for computing gröbner bases without reduction to
zero (f5), 2004.

50

[19] O. Fourdrinoy, É. Grégoire, B. Mazure, and L. Saïs. Eliminating redundant clauses in sat instances.
In Proceedings of the 4th International Conference on Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems, CPAIOR ’07, pages 71–83, Berlin,
Heidelberg, 2007. Springer-Verlag.

[20] M. Heule, M. Järvisalo, F. Lonsing, M. Seidl, and A. Biere. Clause elimination for sat and qsat.
Journal of Artificial Intelligence Research, pages 127–168, 2015.

[21] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. pages 388–397. Springer-Verlag, 1999.

[22] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi. Introduction to differential power analysis. Journal of
Cryptographic Engineering, 1:5–27, 2011.

[23] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems.
pages 104–113. Springer-Verlag, 1996.

[24] S. Mangard. A simple power-analysis (spa) attack on implementation of the aes key expansion. In
Information Security and Cryptology - ICISC 2002, volume 2587, pages 343–358, 2003.

[25] M. Matsui. Linear cryptanalysis method for des cipher. In Advances in Cryptology — EUROCRYPT
’93, pages 386–397. Springer Berlin Heidelberg, 2001.

[26] Alfred J. Menezes, Paul C. van Oorschot, and Scoot A. Vanstone. Handbook of Applied Cryptography.
Springer, 1996.

[27] M.S.E. Mohamed, S. Bulygin, M. Zohner, A. Heuser, M. Walter, and J. Buchmann. Improved alge-
braic side-channel attack on aes. Journal of Cryptographic Engineering, 3(3):139–156, 2013.

[28] S. Murphy and M.J.B. Robshaw. Essential algebraic structure within the aes. In Advances in Cryp-
tology - CRYPTO 2002, volume 2442, pages 1–16, 2002.

[29] NIST. Advanced Encryption Standard (AES) (FIPS PUB 197). National Institute of Standards and
Technology, November 2001.

[30] Y. Oren, M. Kirschbaum, T. Popp, and A. Wool. Algebraic side-channel analysis in the presence of
errors. In Stefan Mangard and François-Xavier Standaert, editors, CHES, volume 6225 of Lecture
Notes in Computer Science, pages 428–442. Springer, 2010.

[31] Yossef Oren and Avishai Wool. Tolerant algebraic side-channel analysis of AES. Cryptology ePrint
Archive, Report 2012/092, 2012.

[32] M. Renauld. Simulating algebraic side channel attacks ascatocnf converter.
http://www.ecrypt.eu.org/tools/ascatocnf.

[33] M. Renauld, F. X. Standaert, and N. V. Charvillon. Algebraic side-channel attacks on the AES: Why
time also matters in DPA. In CHES, pages 97–111, 2009.

[34] Mathieu Renauld and François-Xavier Standaert. Algebraic side-channel attacks. In Inscrypt, pages
393–410, 2009.

[35] L. Song, L. Hu, S.Sun, Z. Zhang, D. Shi, and R. Hao. Error-tolerant algebraic side-channel attacks
using bee. In Information and Communications Security, volume 8958, pages 1–15. Springer-Verlag,
2015.

[36] M. Soos. Cryptominisat 2.5.0. In SAT Race competitive event booklet, July 2010.

51

[37] F.-X. Standaert. Introduction to side-channel attacks. In Secure Integrated Circuits and Systems,
pages 27–42. Springer US, 2009.

[38] X. Zhao, F. Zhang, S. Guo, T. Wang, Z. Shi, H. Liu, and K. Ji. Mdasca: An enhanced algebraic
side-channel attack for error tolerance and new leakage model exploitation. In Constructive Side-
Channel Analysis and Secure Design, volume 7275, pages 231–248. Springer Berlin Heidelberg,
2012.

52

A An Example of Boolean Expressions in CNF

The following is an example of boolean expressions in conjunctive normal form (CNF) of the dimacs

format which describes the S-Box S= {3, 0,2, 5,7,1, 6,4} that is introduced in ??.

p cnf 6 24

1 2 3 -4 0

1 2 3 5 0

1 2 3 6 0

1 2 -3 -4 0

1 2 -3 -5 0

1 2 -3 -6 0

1 -2 3 -4 0

1 -2 3 5 0

1 -2 3 -6 0

1 -2 -3 4 0

1 -2 -3 -5 0

1 -2 -3 6 0

-1 2 3 4 0

-1 2 3 5 0

-1 2 3 6 0

-1 2 -3 -4 0

-1 2 -3 -5 0

-1 2 -3 6 0

-1 -2 3 4 0

-1 -2 3 5 0

-1 -2 3 -6 0

-1 -2 -3 4 0

-1 -2 -3 -5 0

-1 -2 -3 -6 0

53

B Number of Clauses for Mix Error Classes

Pair 1 2 3 4

(1,4) 0 112 8 9
(2,4) 0 14 36 16
(3,2) 0 19 42 0
(3,3) 0 8 366 0
(3,4) 0 5 26 37
(3,5) 0 10 256 0
(3,6) 0 106 0 0
(4,3) 0 0 2 104
(4,4) 0 1 160 1940
(4,5) 0 0 14 60
(5,3) 0 0 184 0
(5,4) 0 8 20 136
(5,5) 0 22 336 0
(5,6) 0 77 8 0
(6,4) 0 31 50 57

Table 26: Number of filtered clauses for Ham-
ming weight pairs of PRESENT-80 in
the case of (EC0, EC1)

Pair 1 2 3 4

(1,4) 0 34 32 4
(2,4) 0 34 32 4
(3,2) 0 75 8 0
(3,3) 0 1 120 0
(3,4) 0 11 26 39
(3,5) 0 0 168 0
(3,6) 0 53 24 0
(4,3) 0 1 8 72
(4,4) 0 2 428 1595
(4,5) 0 0 12 75
(5,3) 0 19 322 0
(5,4) 0 20 4 136
(5,5) 0 53 334 0
(5,6) 2 49 0 0
(6,4) 0 43 38 51

Table 27: Number of filtered clauses for Ham-
ming weight pairs of PRESENT-80 in
the case of (EC1, EC0)

Pair 1 2 3 4

(1,4) 0 112 8 9

(2,4) 0 6 26 44

(3,2) 0 19 42 0

(3,3) 0 3 300 0

(3,4) 0 0 2 80

(3,5) 0 3 230 0

(3,6) 0 10 26 0

(4,3) 0 0 0 98

(4,4) 0 0 4 1088

(4,5) 0 0 8 51

(5,3) 0 0 158 0

(5,4) 0 0 0 117

(5,5) 0 8 184 0

(5,6) 0 22 14 0

(6,4) 0 25 50 44

Table 28: Number of filtered clauses for Ham-
ming weight pairs of PRESENT-80 in
the case of (EC0, EC2)

Pair 1 2 3 4

(1,4) 0 34 32 0

(2,4) 0 34 16 8

(3,2) 0 71 8 0

(3,3) 0 1 118 0

(3,4) 0 2 6 71

(3,5) 0 0 164 0

(3,6) 0 51 24 0

(4,3) 0 0 4 61

(4,4) 0 0 122 3027

(4,5) 0 0 6 54

(5,3) 0 1 80 0

(5,4) 0 2 2 99

(5,5) 0 0 172 0

(5,6) 0 42 36 0

(6,4) 0 20 2 107

Table 29: Number of filtered clauses for Ham-
ming weight pairs of PRESENT-80 in
the case of (EC2, EC0)

54

Pair 1 2 3 4

(1,4) 0 6 26 8

(2,4) 0 0 2 38

(3,2) 0 1 0 0

(3,3) 0 0 38 0

(3,4) 0 0 0 2

(3,5) 0 0 64 0

(3,6) 0 0 4 0

(4,3) 0 0 0 45

(4,4) 0 0 4 552

(4,5) 0 0 0 48

(5,3) 0 0 128 0

(5,4) 0 0 0 64

(5,5) 0 8 114 0

(5,6) 0 16 14 0

(6,4) 0 25 38 38

Table 30: Number of filtered clauses for Ham-
ming weight pairs of PRESENT-80 in
the case of (EC1, EC2)

Pair 1 2 3 4

(1,4) 0 14 28 0

(2,4) 0 4 8 23

(3,2) 0 1 8 0

(3,3) 0 0 42 0

(3,4) 0 0 0 43

(3,5) 0 0 118 0

(3,6) 0 51 20 0

(4,3) 0 0 0 13

(4,4) 0 2 428 1595

(4,5) 0 0 6 1175

(5,3) 0 0 12 0

(5,4) 0 0 0 42

(5,5) 0 0 128 0

(5,6) 0 34 24 0

(6,4) 0 8 0 105

Table 31: Number of filtered clauses for Ham-
ming weight pairs of PRESENT-80 in
the case of (EC2, EC1)

Pair 1 2 3 4

(2,3) 0 38 71 0

(3,3) 0 0 136 0

(3,4) 0 0 21 73

(3,5) 0 24 352 0

(4,2) 0 5 30 76

(4,3) 0 0 11 59

(4,4) 0 0 26 1914

(4,5) 0 1 27 57

(4,6) 2 33 35 15

(5,2) 0 12 26 0

(5,3) 0 0 164 0

(5,4) 0 0 11 59

(5,5) 0 6 469 0

(6,3) 0 54 30 0

(6,5) 0 54 32 0

Table 32: Number of filtered clauses for Ham-
ming weight pairs of AES-128 in the
case of (EC0, EC1)

Pair 1 2 3 4

(2,3) 0 11 31 0

(3,3) 0 2 184 0

(3,4) 0 0 2 73

(3,5) 0 2 210 0

(4,2) 0 22 40 86

(4,3) 0 1 29 68

(4,4) 0 0 31 1773

(4,5) 0 0 19 53

(4,6) 1 34 39 33

(5,2) 0 54 30 0

(5,3) 0 13 406 0

(5,4) 0 2 25 55

(5,5) 0 3 397 0

(6,3) 1 58 42 0

(6,5) 0 81 27 0

Table 33: Number of filtered clauses for Ham-
ming weight pairs of AES-128 in the
case of (EC1, EC0)

55

Pair 1 2 3 4

(2,3) 0 25 52 0

(3,3) 0 0 107 0

(3,4) 0 0 2 64

(3,5) 0 0 162 0

(4,2) 0 4 18 97

(4,3) 0 0 7 45

(4,4) 0 0 3 1154

(4,5) 0 0 0 50

(4,6) 0 1 23 64

(5,2) 0 11 23 0

(5,3) 0 0 103 0

(5,4) 0 0 3 44

(5,5) 0 0 123 0

(6,3) 0 37 28 0

(6,5) 0 24 39 0

Table 34: Number of filtered clauses for Ham-
ming weight pairs of AES-128 in the
case of (EC0, EC2)

Pair 1 2 3 4

(2,3) 0 11 31 0

(3,3) 0 1 141 0

(3,4) 0 0 1 63

(3,5) 0 2 175 0

(4,2) 0 12 30 89

(4,3) 0 0 1 86

(4,4) 0 0 0 629

(4,5) 0 0 8 59

(4,6) 0 20 28 108

(5,2) 0 14 31 0

(5,3) 0 1 258 0

(5,4) 0 0 0 57

(5,5) 0 0 116 0

(6,3) 0 12 32 0

(6,5) 0 3 40 0

Table 35: Number of filtered clauses for Ham-
ming weight pairs of AES-128 in the
case of (EC2, EC0)

Pair 1 2 3 4

(2,3) 0 0 6 0

(3,3) 0 0 2 0

(3,4) 0 0 0 2

(3,5) 0 0 0 0

(4,2) 0 0 5 67

(4,3) 0 0 2 20

(4,4) 0 0 0 178

(4,5) 0 0 0 26

(4,6) 0 0 6 47

(5,2) 0 6 31 0

(5,3) 0 0 73 0

(5,4) 0 0 0 17

(5,5) 0 0 72 0

(6,3) 0 28 39 0

(6,5) 0 21 21 0

Table 36: Number of filtered clauses for Ham-
ming weight pairs of AES-128 in the
case of (EC1, EC2)

Pair 1 2 3 4

(2,3) 0 0 6 0

(3,3) 0 0 2 0

(3,4) 0 0 0 33

(3,5) 0 0 117 0

(4,2) 0 0 0 35

(4,3) 0 0 0 2

(4,4) 0 0 0 134

(4,5) 0 0 2 30

(4,6) 0 16 12 113

(5,2) 0 0 9 0

(5,3) 0 0 6 0

(5,4) 0 0 0 25

(5,5) 0 0 81 0

(6,3) 0 0 6 0

(6,5) 0 0 38 0

Table 37: Number of filtered clauses for Ham-
ming weight pairs of AES-128 in the
case of (EC2, EC1)

56

C Java Implementation of the Two Proposed Filter

1 private void filter1ClausesForSingleHWPair(String key, List<int[]> clauses, int err){

2 String[] tmp = key.split(" ");

3 int[] hwPair = new int[2];

4 hwPair[0] = Integer.valueOf(tmp[0]);

5 hwPair[1] = Integer.valueOf(tmp[1]);

6

7 // compare the power of the current HW pair in order to

8 // decide which group of variables should be contained in clauses

9 int p0 = hwPair[0];

10 int p1 = hwPair[1];

11 if(p0 > 4){

12 p0 = 8 - p0;

13 }

14 if(p1 > 4){

15 p1 = 8 - p1;

16 }

17 int pMax = Math.max(p0, p1);

18 int pMin = Math.min(p0, p1);

19

20 HWCC hwcc = hwInfo0.get(key);

21 if(err == 1){

22 hwcc = hwInfo1.get(key);

23 }

24 else if(err == 2){

25 hwcc = hwInfo2.get(key);

26 }

27

28 for(int[] c0 : clauses){

29 if(c0.length < pMin){

30 hwcc.getcLengthChosen().get(c0.length).add(this.deepcopy(c0));

31 }

32 else if(c0.length <= pMax && c0.length >= pMin){

33 if(c0.length == 2){

34 if((hwcc.getcLengthOriginal().get(1).size() == 0)

35 || (hwcc.getcLengthOriginal().get(1).size() > 0 && pMin > 1)){

36 hwcc.getcLengthChosen().get(c0.length).add(this.deepcopy(c0));

37 continue;

38 }

39 }

40 boolean mark = true;

41 if(p0 > p1){

42 // filter the clauses containing only input variables (because : p0 >= p1)

43 for(int i = 0; i < c0.length; i++){

44

45 if(Math.abs(c0[i]) >= 9){ // contains only input variable

46 mark = false;

47 break;

48 }

49 }

50

51 }

52 else if(p0 < p1){

53 // filter the clauses containing only output variables (because : p0 < p1)

54 for(int i = 0; i < c0.length; i++){

55

56 if(Math.abs(c0[i]) < 9){ // contains only output variable

57 mark = false;

58 break;

57

59 }

60 }

61 }

62

63 if(mark){

64 hwcc.getcLengthChosen().get(c0.length).add(this.deepcopy(c0));

65 }

66 }

67

68 } // end check all clauses

69 }

Listing 2: The java implementation of the first filter

1 // the clauses of length 1

2 List<int[]> cLen1 = hwcc0.getcLengthOriginal().get(1);

3

4 if(cLen1.size() == 16){

5

6 hwcc0.getCounter2AfterFilters()[1] = 16;

7 hwcc0.getcLengthChosen().put(1, this.deepcopy(cLen1));

8 hwcc0.setChosenClauses(this.deepcopy(cLen1));

9 for(int i = 2; i <= this.neededCnfLength; i++){

10 List<int[]> newC = new ArrayList <int[]>();

11 hwcc0.getcLengthChosen().put(i, newC);

12 }

13 }

14 else if(cLen1.size() < 16){

15 //*************** part 1 of filter 2 *******************

16

17 // keep the clauses of length 1 to be chosen clauses

18 hwcc0.getcLengthChosen().put(1, this.deepcopy(cLen1));

19 hwcc0.getChosenClauses().addAll(this.deepcopy(cLen1));

20 hwcc0.getCounter2AfterFilters()[1] = cLen1.size();

21

22 // set the variables in the clauses of length to be solutions

23 // and create a set for them

24 int[] solutions = new int[cLen1.size()];

25 for(int i = 0; i < solutions.length; i++){

26 solutions[i] = Math.abs(cLen1.get(i)[0]);

27 }

28 for(int i = 2; i <= hwMax; i++){

29 List<int[]> target = hwcc0.getcLengthChosen().get(i);

30 if(err == 3 || err == 4){

31 target = hwcc0.getcLengthOriginal().get(i);

32 }

33 List<int[]> cF2P1 = this.filter2Part1(solutions , target);

34 hwcc0.getcLengthChosen().put(i, this.deepcopy(cF2P1));

35 }

36 }

37

38 //*************** part 2 of filter 2 *******************

39 for(int i = 2; i <= hwMax; i++){

40 int diff = hwMax - i;

41 if(diff == 0){

42 break;

43 }

44 for(int j = 1; j <= diff; j++){

45 List<int[]> cF2P2 = this.filter2Part2(hwcc0.getcLengthChosen().get(i),

46 hwcc0.getcLengthChosen().get(i + j));

58

47 hwcc0.getcLengthChosen().put(i + j, cF2P2);

48 }

49 }

50 // sum up the results

51 List<int[]> chosenC = new ArrayList <int[]>();

52 int[] counter2 = new int[this.neededCnfLength+1];

53 for(Map.Entry<Integer, List<int[]>> entry1 : hwcc0.getcLengthChosen().entrySet()){

54 chosenC.addAll(entry1.getValue());

55 counter2[entry1.getKey()] = entry1.getValue().size();

56 }

57 hwcc0.setChosenClauses(this.deepcopy(chosenC));

58 hwcc0.setCounter2AfterFilters(counter2);

Listing 3: The java implementation of applying the second filter

1 private List<int[]> filter2Part1(int[] solutions , List<int[]> clauses){

2

3 // remove the clauses(length 2) containing

4 // the variables which are from the solution set

5 List<int[]> result = new ArrayList <int[]>();

6 for(int[] c : clauses){

7

8 boolean containFlag = false;

9 for(int i = 0; i < c.length; i++){

10 for(int j = 0; j < solutions.length; j++){

11 if(Math.abs(c[i]) == solutions[j]){

12 containFlag = true;

13 break;

14 }

15 }

16 }

17

18 if(!containFlag){

19 if(!result.contains(c)){

20 result.add(c);

21 }

22 }

23

24 }

25 return result;

26 }

Listing 4: The java implementation of the part 1 of the second filter

1 private List<int[]> filter2Part2(List<int[]> srcSet, List<int[]> targetSet){

2 List<int[]> tmpSet = this.deepcopy(targetSet);

3

4 for(int[] srcClause : srcSet){

5 Iterator <int[]> tmp = tmpSet.iterator();

6 while(tmp.hasNext()){

7 int[] targetClause = tmp.next();

8 boolean isSubset = this.isSubset(srcClause , targetClause);

9 if(isSubset){

10 tmp.remove();

11 }

12 }

13 }

14 return tmpSet;

15 }

Listing 5: The java implementation of the part 2 of the second filter

59

	Introduction
	Preliminaries
	Block Ciphers
	Specification
	Security and Attacks
	Iterated Block Ciphers
	AES Algorithm
	PRESENT Algorithm

	Algebraic Cryptanalysis
	Specification
	SAT Problems
	SAT Solvers

	Side-Channel Attacks
	Specification
	Power Analysis
	Template Attacks

	Algebraic Side-Channel Attacks

	MASCA: Mutant Algebraic Side-Channel Attacks
	Motivation
	Main Ideas
	Specification
	The Weights of Hamming Weight Pairs
	Generating Clauses
	Optimizing Clauses

	Experiments
	Experimental Settings
	Experimental Steps
	Experiments for PRESENT Algorithm
	Improving Solving Time
	Reducing Hamming Weight Leakages

	Experimental Results for AES
	Improving Solving Time
	Reducing Hamming Weight Leakages

	Error Tolerance
	Specification
	Experiments for Error Tolerance

	Conclusion
	Appendix An Example of Boolean Expressions in CNF
	Appendix Number of Clauses for Mix Error Classes
	Appendix Java Implementation of the Two Proposed Filter

