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Abstract. In this paper we compare two lightweight stream ciphers,
MICKEY 2.0 and WG-8, which can be used for data encryption in the
Internet of Things. At first we provide a brief overview of both algorithms.
This includes their basic functional principle, their different specifications,
possible hardware implementations and their complexity. We conclude
the overview with a short security evaluation. Finally, we provide a
comparison of both algorithms pointing out differences, similarities and
their applicability in the Internet of Things.
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1 Introduction

The Internet of Things (IoT) describes a paradigm of networked interconnection,
consisting of objects in our everyday life. Mostly, the devices also have an
integrated intelligence, which enables the communication with other IoT devices
or even with humans. The main building blocks of the IoT, besides of the backend
web services, are sensors and actuators. Sensors are used to collect data, for
example of the environment (temperature, humidity, traffic etc.) or the personal
fitness and health (i.e. pedometer, sleep quality tracker). On the other side there
are actuators, which perform an action if they are triggered. Common examples
for actuators are (wireless) lights and thermostats. Moreover, there exist devices
which act as both, sensor and actuator. For example, wall sockets which sense the
energy consumption of the connected device and can also be remotely controlled.

Sensors can collect massive amount of information while they are powered-on.
Because the storage space and computing power of sensors are limited, they
sent the data to servers for capturing and further processing. As the collected
information may contain sensitive data, it is essential to protect the confidentiality
with appropriate measures.

1.1 Stream Ciphers

Encryption is used to meet the requirements on confidentiality and privacy of data
transmission. The wide-ranging field of cryptographic algorithms for encryption
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can be divided into symmetric key-based methods, where sender and receiver use
the same cryptographic key, and asymmetric key-based methods, where sender
and receiver require distinct keys. Moreover, algorithms can be differentiated in
block ciphers and stream ciphers, whereas the former operates on a fixed-length
of bits, the latter encrypts bits individually.

Although the need of stream ciphers has been questioned, because block
ciphers can easily be turned into stream ciphers by using different operation
modes (OFB, CFB, CTR and OCB) [55], they have their right to exist. Major
advantages are their high throughput and their low complexity, leading to low
hardware implementation costs. Besides of that, they do not need much memory
and are often used if the buffer size is limited. Therefore, they are ideally suited
for the use in IoT devices.

There are two types of stream ciphers, distinguishable by the manner of their
key stream derivation. The so-called synchronous stream ciphers generate a key
stream only depending on the input key, thus being independent of the plain
text and the cipher text. While self-synchronizing stream ciphers, also termed as
asynchronous stream ciphers, generate the key stream based on the input key
and a fixed number of previously produced cipher text digits. [56]

Design and Functional Principle As mentioned before, stream ciphers act
on a per bit basis, similar to a one-time pad (OTP). A crucial drawback of an
OTP is the need of a random key with length as long as the given plain text. So
for example a 500 MByte file needs a key with length at least of 4 GBit. Therefore
this requirement is in a practical point of view hard to fulfill and rises issues in
key distribution and management. These drawbacks have been considered by the
design of stream ciphers, though the basic design principle is similar. [56]

Stream ciphers basically use two input data streams: An input data stream
which contains the text to be encrypted and a key data stream for encryp-
tion/decryption of the input data. The key data stream is generated by a function
taking a seed as input. This seed is referred to as encryption key. Instead of pro-
viding an encryption key with length at least as the plain text, as done by OTP, a
smaller secret key is sufficient. This key is then used to produce a pseudorandom
key stream. Considerable, the key stream must be deterministic, in the sense of
the same encryption key always produces the same key stream. [56,65]

Encryption and Decryption The encryption and decryption function of
stream ciphers are based on simple addition and modulo 2, which is basically the
XOR operation. In [65] the operations are described as follows:

Let xi be the i-th bit of the plain text and si be the i-th bit of the key stream.
Then the encrypted output bit yi is defined as:

yi = (xi + si mod 2) ≡ xi ⊕ si
The decryption works similar. Let yi be the i-th bit of the cipher text and si be
the i-th bit of the key stream. Then the i-th bit of plain text xi is given by:

xi = (yi + si mod 2) ≡ yi ⊕ si
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Attacks Stream ciphers can be exploited by different type of attacks, all targeting
to discover the key used for encryption and decryption. In the following we present
a brief overview of the most common attacks against stream ciphers, based on
the survey [10] by Banegas.

Exhaustive Search Attack This attacks searches exhaustively through all possible
states, seeking a match between the resulting and the observed key stream. In
literature it is often referred to as brute force attack. Babbage [4] suggested in
1995 two attacks improving the exhaustive search on stream ciphers.

Algebraic Attack The algebraic attack can be applied to stream ciphers based
on linear feedback shift registers (LFSR). The goal of this attack is to exploit
the linearity to find the secret key. The attack consists of two phases, in the
first phase a system of equations is build of the secret key bits and the output
bits. This system can be solved in step two, if it consists of enough low degree
equations and enough known key stream bits. As an result of the attack, the
secret key is recovered.

Correlation Attack The correlation attack was first proposed in 1985 by Siegen-
thaler [72]. It uses the existence of statistical dependencies between the key
stream and the output of a single constituent LFSR to reveal the secret key. This
is possible if the encryption output is statistically biased by specific internal state
bits which are used as input [74].

Fault Attack The fault attack can be used for exploiting systems not being
directly vulnerable. It assumes that the attacker has physical access to the device
and can perform bit flipping faults on the memory or on internal registers. The
goal of the technique is to stress the device with external means and produce an
error leading to a security failure. This method has first been applied on stream
ciphers by Hoch and Shamir [45].

Distinguishing Attack The distinguishing attack relates to the distinction between
the output of a specific cipher and truly random data. This distinguishing attack
reveals information to be used to draw conclusions of the secret key. If an
adversary cannot make this distinction, the cipher is considered as secure. Rose
and Hawkes [70] analyzed the applicability of distinguishing attacks against
stream ciphers. They demonstrated that even if a distinguishing attack can
be performed successful, the resulting security impact for practice may not be
relevant if the requirements of the attack are too high.

Chosen-IV Attack One common example for the chosen-IV attack was shown on
the stream cipher Turing by Joux and Muller [49]. In general, the attack exploits
weaknesses in the key scheduling algorithm of the cipher by using statistical
techniques. This is achieved by generating different initialization vectors without
changing the secret key. The goal of the attack is to extract information from
memory about the LFSR’s initial state. The extracted information can be used
to create a system of equations which can then be solved to recover the key.
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Slide Attack The slide attack was first proposed in [20] for block ciphers and
later adapted to stream ciphers, like Trivium [68]. It exploits the key scheduling
of the cipher. A slide attack generally requires two instances of an encryption
process and a single function F describing the operation of the cipher for each
round. According to [20], the main idea is to slide one copy of the encryption
process against the other one, such that the processes are one round out of
phase. For this, 2n/2 pairs of (P,C) are collected, where P denotes the plain text
and C the related cipher text. If a so-called slid pair (P0, C0), (P1, C1) with the
property P0 = F (P1) and C0 = F (C1) is found, the cipher is vulnerable to a
known-plaintext attack and therefore broken.

Cube Attack The cube attack counts to the newer attacks, first introduced
by Dinur and Shamir [27] in 2009, using the example of Trivium. Later, the
authors adressed the applicability on stream ciphers [28]. Generally, a cube attack
can be applied to any block cipher, stream cipher, or MAC, without requiring
details of the internal structure. For the attack the cryptosystem scheme is
considered as tweakable polynomials over GF (2), consisting of a secret part (e.g,
secret key bits) and a public part (e.g., plain text bits, IV bits). Therefore each
output bit must be representable by an unknown polynomial of relatively low
degree with these two parts. The authors identified relations of the polynomial
equations of the cryptographic schemes, which are typically derived from a single
master polynomial. The idea is to exploit the relation between the polynomial
equations by modifying the values of the tweakable public bits, resulting in
derived polynomial equations. These can be used to eliminate the nonlinear
terms. The remaining linear equations can then easily be solved to reveal the
secret key.

Time-Memory Trade-off Attack The Time-Memory Trade-off (TMD) Attack is a
cryptanalytic technique proposed by Hellmann [43] in 1980. Initially, the attack
was introduced for block ciphers. Later, the applicability of the TMD attack
on stream ciphers was shown by Biryukov and Adi [18]. Considered aspects
within the attack are the possible keys N , the time T and the memory M .
These are related by the tradeoff curve TM2 = N2 for 1 ≤ T ≤ N . The attack
consists of two phases [18]: The first phase, the preprocessing phase, explores the
cryptosystem and summarizes the findings in large tables. This phase collects
information not related to any specific key and can take, depending on the
complexity, very long time. In the realtime phase the attacker uses the previously
computed tables to find the key to given data produced from an unknown key.

Guess and Determine Attack This attack was first used by Pasalic [66] on LFSR-
based stream ciphers. During the attack the adversary first guesses a set of state
elements, then the remaining state elements and the running key sequence must
be determined. The comparison of the resulting key sequence and the observed
key sequence reveals if the guess was correct. If it was correct, the system is
broken, otherwise the procedure must be repeated with other values. The attack
was improved in [2] by using a heuristic instead of random guessing.
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1.2 Established Stream Ciphers

In this section we provide a concise overview of well established stream ciphers
used in practical applications.

As one of the first widely used stream ciphers RC44 can be considered. It
was invented in 1987 by Ronald L. Rivest and is based on a secret internal state
to generate the key stream. It basically consists of a substitution box combined
with random permutations [53]. The cipher was used in many protocols, like
SSL, SSHv1, RDP and WEP. Initially the algorithm was kept secret, but an
anonymous user released its source code in 1994. As as consequence, different
weaknesses of the algorithm were found, for that reason the cipher can be seen
as broken [3]. Moreover, since February 2015 the use of RC4 within TLS is
prohibited by RFC 7465 [67].

Another stream cipher whose code was initially kept secret is A5/1. It was
developed in 1987 for data encryption between mobile device and base station
within GSM5. It uses three linear feedback shift registers (LFSR) with irregular
clocking. The algorithm became public through leaks and reverse engineering.
An attack proposed 2000 by Biryukov et al. [19] uses a time-memory tradeoff to
achieve real time cryptanalysis.

The stream cipher E0 was introduced in 1999 within the specification of the
Bluetooth system v1.0 B [21] and is based on four linear feedback shift registers
of differing lengths. Improved attacks from 2005 require only 238 computations
by using the first 24-bits of 223.8 frames [44].

Crypto1 is a proprietary stream cipher created by NXP Semiconductors
specially for RFID tags, such as the Mifare RFID tag used by different electronic
ticketing systems for public transport. It is based on a 48-bit LFSR. In 2008 an
attack [54] was proposed using a weakness in the pseudo-random generator, thus
allowing to recover the generated key stream.

As mentioned in Section 1.1, block ciphers can easily be turned into stream
ciphers, therefore stream ciphers were not of large interest in the past. However,
as stream ciphers also have advantages compared to block ciphers, like the high
throughput and low complexity, a project called eSTREAM was initiated to
promote the design of new stream ciphers for widespread adoption.

1.3 The eSTREAM Project

In 2004, the ECRYPT stream cipher project (eSTREAM) was initiated by a
consortium of European research organizations. This project is funded by the
European Union and targets the identification of “new stream ciphers suitable
for widespread adoption” with focus on efficiency and compactness [29].

The project differentiated between two types of ciphers, software-oriented
ciphers (profile 1) and hardware-oriented ciphers (profile 2). The requirements
for each type were described in [5] as follows:

4 Ron’s Code 4
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• Software-oriented ciphers should be optimized for implementation in soft-
ware and significantly outperform AES in a suitable stream cipher mode.
Moreover, they should have a security level of at least 128-bit and support
IVs of 64-bit and 128-bit. The main focus of this profile is on a high raw
encryption speed for large amounts of data after a single initialization.

• Hardware-oriented ciphers should be optimized for implementation in
highly constrained hardware environments. Concretely, they should signif-
icantly outperform AES in a restricted environment in at least one major
regard. Besides of that, they should have a security level of 80-bit and support
IVs of 32-bit and 64-bit.

The eSTREAM project was organized in 3 phases, each one resulting in a
list of ciphers (portfolio) which passed the performance and security evaluations.
The first phase, initiated in November 2014, started with a call for submissions
and attracted about 34 stream ciphers from cryptographers all around the world,
and hundreds of security and performance evaluations [14].

eSTREAM Finalists The final portfolio consists of four ciphers for profile 1
and four ciphers for profile 2. Finalists of profile 1 of the eSTREAM project are
HC-128 [76], Rabbit [22], Salsa20/12 [17] and SOSEMANUK [13].

HC-128 uses a secret state, built of two tables, which are updated using
a non-linear feedback function. Each step generates a 32-bit output word and
updates one register of one of the tables. Rabbit is a synchronous stream ci-
pher built of eight 32-bit registers and eight 32-bit counters. Due to the simple
arithmetics and operations used, this cipher is among the most efficient ones eval-
uated within eSTREAM. The Salsa20/12 cipher is, like Rabbit, built of simple
operations: XOR, addition and bit rotation on 32-bit words. There exist variants
with less or more rounds, like Salsa20/8 with 8 rounds. As evaluated within
eSTREAM, Salsa20/12 has the best trade-off between security and performance.
SOSEMANUK follows similar design principles as SNOW 2.0 and SERPENT.
Its key length is variable between 128 and 256 bits. The cipher consists of a
LFSR and a finite state machine, both operating on 32-bit words.

Our considered algorithms were both proposals of eSTREAM profile 2:
MICKEY, an earlier specification of the current MICKEY 2.0, was one of
the finalist of phase 3. Whereas the predecessor of WG-8 was archived in phase
2 because of its vulnerability on the initialization which allowed a chosen IV
attack, as demonstrated by Wu and Preneel [77,57].

We chose these algorithms as they have passed the eSTREAM project suc-
cessfully and further, they showed promising properties. The authors of MICKEY
2.0 remark its low required area and low energy consumption, making it an ideal
candidate for IoT applications. Whereas WG-8 is especially interesting due to
its security properties, it is considered as secure against common stream cipher
attacks. Moreover, measurements showed a high throughput while preserving a
low energy consumption.
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1.4 Related Work

The area of stream ciphers is heavily researched, with the result that there is
a lot of theoretical knowledge on stream ciphers and many designs have been
proposed and analyzed. In the past, many algorithms were proprietary and thus
not fully-specified in open literature [56]. But in recent years more and more
“open” ciphers have been proposed, as seen for example within the eSTREAM
project. This fact has driven the research and allowed more extensive evaluations.

Within the eSTREAM project several papers with comparisons and evalua-
tions have been published. However, these publications primarily focus on only
one aspect, like performance or security. For example, the paper by Bernstein [16]
compares the software performance of several phase-3 eSTREAM ciphers on
different platforms. A comparison of Good and Benaissa [41] shows hardware
implementations of phase-3 ciphers and their performance. Notably are Trivium
and Grain, as they show a good ratio between power consumption, area con-
sumption, and performance.

The work by Feldhofer [36] focuses on low-power implementations of Trivium
and Grain. It compares both algorithms regarding its required chip area, the
power consumption, and the required number of clock cycles for encrypting a
fixed amount of data. The results show that Trivium with 3,090 gate equivalents
requires less area than Grain with 3,360 gate equivalents. On contrary, Grain
requires 104 clock cycles for encrypting 128 bits of data, whereas Trivium needs
176 cycles. Furthermore, Trivium requires a long initialization phase, about 1,603
cycles. The results show that the energy consumption of Grain (0.80 µA@100kHz)
and Trivium (0.68 µA@100kHz) is similar.

Although, for the best of our knowledge there are no extensive comparisons
of lightweight stream ciphers available, several surveys on lightweight block ci-
phers have been published. For example, Eisenbarth et al. [30] compares recent
evaluation results of block ciphers, including PRESENT, DES, DESXL, HIGHT,
CLEFIA, and mCrypton. The survey considers software and hardware implemen-
tations. The survey by Jana, Bhaumik and Maiti [48] compares DESL, DESXL,
HIGHT, PRESENT, KTANTAN, KATAN, KLEIN, LED, PRINCE, TWINE,
TEA and XTEA, regarding the structure of the ciphers, the area consumption
and the best known attack.

As one of the first widely used stream ciphers RC46 can be considered. It
was invented in 1987 by Ronald L. Rivest and is based on a secret internal state
to generate the key stream. It basically consists of a substitution box combined
with random permutations [53]. The cipher was used in many protocols, like
SSL, SSHv1, RDP and WEP. Initially the algorithm was kept secret, but an
anonymous user released its source code in 1994. As as consequence, different
weaknesses of the algorithm were found, for that reason the cipher can be seen
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as broken [3]. Moreover, since February 2015 the use of RC4 within TLS is
prohibited by RFC 7465 [67].

Another stream cipher whose code was initially kept secret is A5/1. It was
developed in 1987 for data encryption between mobile device and base station
within GSM 7. It uses three linear feedback shift registers (LFSR) with irregular
clocking. The algorithm became public through leaks and reverse engineering.
An attack proposed 2000 by Biryukov et al. [19] uses a time-memory tradeoff to
achieve real time cryptanalysis.

The stream cipher E0 was introduced in 1999 within the specification of the
Bluetooth system v1.0 B [21] and is based on four linear feedback shift registers
of differing lengths. Improved attacks from 2005 require only 238 computations
by using the first 24-bits of 223.8 frames [44].

Crypto1 is a proprietary stream cipher created by NXP Semiconductors
specially for RFID tags, such as the Mifare RFID tag used by different electronic
ticketing systems for public transport. It is based on a 48-bit LFSR. In 2008 an
attack [54] was proposed using a weakness in the pseudo-random generator, thus
allowing to recover the generated key stream.

Another stream cipher, proposed in 2001 by Johansson and Ekdahl, is called
SNOW [31]. It is word-oriented, consisting of a LFSR which feeds a finite state
machine. The cipher is significantly faster than AES and was used as reference
cipher for performance evaluation within the eSTREAM project. Because SNOW
has shown weaknesses an improved version called SNOW 2.0 [32] has been pro-
posed. Security evaluations show that SNOW 2.0 is susceptible to distinguishing
attacks [63].

An example for a stream cipher designed for efficient hardware implementation
is MUGI [75]. It was proposed in 2002 and is based on the key stream generator
PANAMA [25]. It uses a substitution S-box and linear transformations, both also
used in AES. Moreover it consists of a nonlinearly updated component and a
linearly updated component, called buffer. An analysis from 2004 showed design
weaknesses regarding the buffer, which allows to recover the 128-bit secret key
from the reconstructed internal state of MUGI [38].

2 MICKEY

In this section we provide a short overview about the structure and function
principle of the different MICKEY specifications.

The stream cipher family MICKEY [9] which is an abbreviation for Mutual
Irregular Clocking Keystream generator, has been developed by Babbage and
Dodd in 2005 as a candidate for the eSTREAM project. The ciphers are designed
with focus on resource-constrained hardware platforms. The implementation in
hardware has low complexity, while at the same time providing a high level of
security.

7 Global System for Communications
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All ciphers of the MICKEY family are based on two registers: A linear feedback
shift register (LFSR) and a non-linear feedback shift register (NLFSR). The main
difference between both is the update function. Whereas a LFSR has a linear
state update function, the NLFSR uses a non-linear update function. The main
idea was to combine the advantages of both, to achieve a higher security level.
Notable as well is the use of irregular clocking of the shift registers, which aims
to increase security while keeping the design simple.

Initially MICKEY 1.0 [7] was submitted to the eSTREAM project. A security
evaluation by Hong and Kim [46] showed several weaknesses in the design. For
that reason some changes were made, resulting in MICKEY 2.0 [8].

We present the cipher MICKEY 2.0 and the variant with longer key size,
MICKEY-128 2.0. Next, we point out differences to the original specification
MICKEY 1.0 respectively MICKEY-128 1.0 and show different hardware imple-
mentations and their complexity. Lastly, we provide an overview about known
attacks against MICKEY 2.0 and MICKEY-128 2.0.

2.1 MICKEY 2.0

The cipher MICKEY 2.0 takes as input an 80-bit secret key K = k0, ..., k79 and
an initialization variable IV with variable length from 0 to 80 bits. We denote
its bits as IV = iv0, ..., ivIV.length−1.

Registers We define n = 100, derived by 1.25 ∗ 80 = 100 for MICKEY 2.0 with
a 80-bit secret key. The basic components for the key stream generation are two
registers R and S. Each of them is n stages long, whereas each stage contains
exactly one bit. As for MICKEY 2.0 n = 100 holds, we denote R = r0, ..., r99
and S = s0, ..., s99 for the bits of the registers.

The linear register R is responsible for good local statistical properties,
hardening the cipher against statistical attacks. It does ensure that the state of
the generator does not repeat within a single key stream sequence [9]. The register
S is the non-linear register. The authors introduce non-linearity to protect against
attacks exploiting the linearity, like distinguishing attacks or algebraic attacks.
Summarized, the advantages of both types of registers are used complementary,
to harden the cipher against the different types of attacks.

Clocking Modes In this section we describe the clocking modes of the registers.
In order to avoid confusions, clocking refers following to the switching of the two
actions and not to the time when an action is performed.

Remarkable is the variable clocking used by the cipher. It does not only protect
against many types of attacks, it also ensures that the key stream generator
state does not repeat while producing a single key stream sequence. This implies
that also the key stream does not repeat within a single key stream sequence,
making it more difficult to reconstruct the internal state or draw conclusions of
the generated output. If this property would not be given, a class of weak keys
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could lead to a break of the cipher. Furthermore, it prevents S from becoming
stuck in a cycle of a few continuous repeating states because the feedback of S
depends on the output of register R.

The cipher is called mutual irregularly clocked, meaning the clocking of each
of the registers depends on the other. The action in each clock cycle is controlled
by so-called control bits, one for each register, named CR respectively CS . The
bit of each control bit is derived by bits of both register, which explains the
mutuality of the clocking. This way of irregular clocking protects the cipher
against attacks like “guess and determine”. This variable clocking architecture is
illustrated in Figure 1 and explained in the following.

Fig. 1. Dependancy between the two registers R and S (based on [8])

Clocking of Register R In the following we describe the clocking modes of
register R, controlled by the control bit CR. The feedback tap positions of R,
which affect the next state, are denoted with RTAPS. For a detailed definition
of these bit sequences we refer to [8].

The behavior of register R can be described as follow: If the control bit
CR = 0, then the clocking is according to a standard linear shift register (LFSR).
The feedback is based on the Galois-style feedback with characteristic polynomial
CPR(x) = xn +

∑
i∈RTAPS x

i. Otherwise, if CR = 1, then additionally to shifting
each bit in the register to the right, each bit ri is XORed with its predecessor bit
ri−1 and fed back into the current stage.

The clocking behavior of R is described following in Listing 1. The state of
the register R before the clocking operation is denoted by r0, ..., r99, and after
clocking by r′0, ..., r

′
99.
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Listing 1 Clocking of register R

1: procedure CLOCK R(R, IR, CR) . register R, input bit IR, control bit CR

2: FEEDBACK BIT = r99 ⊕ IR
3: for 1 ≤ i ≤ 99 do . bits are shifted to the right (common LFSR operation)
4: r′i = ri−1

5: r′0 = 0

6: for 0 ≤ i ≤ 99 do
7: if i ∈ RTAPS then
8: r′i = r′i ⊕ FEEDBACK BIT . tap bits are XORed with the feedback bit

9: if CR = 1 then
10: for 0 ≤ i ≤ 99 do
11: r′i = r′i ⊕ ri . bits are XORed and fed back into current stage

Clocking of Register S Completing the description of the clocking modes,
we present the clocking behavior of the register S, which is controlled by the
control bit CS . It uses four sequences denoted by (COMP0i)

98
i=1, (COMP1i)

98
i=1,

(FB0i)
99
i=0 and (FB1i)

99
i=0. For details of their definition we refer to [8].

In Listing 2 we denote s0, ..., s99 as the state of register S before clocking
and s′0, ..., s

′
99 after clocking. The algorithm is simplified with aid of intermediate

variables ŝ0, ..., ŝ99.

Listing 2 Clocking of register S

1: procedure CLOCK S(S, IS , CS) . register S, input bit IS , control bit CS

2: FEEDBACK BIT = s99 ⊕ IS
3: for 1 ≤ i ≤ 98 do
4: ŝi = si−1 ⊕ ((si ⊕ COMP0i).(si+1 ⊕ COMP1i))
5: ŝ0 = 0
6: ŝ99 = s98
7: if CS = 0 then . CS = 0
8: for 0 ≤ i ≤ 99 do
9: s′i = ŝi ⊕ (FB0i.FEEDBACK BIT)

10: else . CS = 1
11: for 0 ≤ i ≤ 99 do
12: s′i = ŝi ⊕ (FB1i.FEEDBACK BIT)

Overall Clocking Finally, we present the clocking of the overall generator
in Listing 3. It has as input, besides of the registers R, S and the input bit I, a
mixing bit M , which indicates whether the input bit R is solely based on the
input bit I or generated by XORing with the bit s50 of register S. During the
key loading and initialization phase the mixing bit is enabled, while during the
key stream generation phase the mixing bit is disabled.

Key Loading and Initialization We have seen the clocking of the registers
and the overall clocking, next we consider the loading and initialization of the keys.
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Listing 3 Overall clocking

1: procedure CLOCK KG(R,S,M, I) . registers R, S, mixing bit M , input bit I
2: CR = s34 ⊕ r67 . define control bit for R
3: CS = s67 ⊕ r33 . define control bit for S
4: if M = True then . mixing bit is True
5: IR = I ⊕ s50
6: else . mixing bit is False
7: IR = I

8: IS = I
9: CLOCK R(R, IR, CR) . clock register R

10: CLOCK S(S, IS , CS) . clock register S

In this phase the key and the initialization variable is loaded into the registers.
The mechanism used to load the key uses register S, thus it is a non-linear key
loading mechanism. This non-linearity protects against resynchronization attacks.

At first, both registers are initialized with all zeros. Following the initialization
variable IV is loaded, then the key K and lastly the preclocking is initiiated.
This process is described in Listing 4.

Listing 4 Key loading and initialization

1: for 0 ≤ i ≤ 99 do . initialize R and S with all zeros
2: ri = 0
3: si = 0

4: for 0 ≤ i ≤ IV.LENGTH− 1 do . load in IV
5: CLOCK KG(R,S,MIXING = True, I = ivi)

6: for 0 ≤ i ≤ 79 do . load in K
7: CLOCK KG(R,S,MIXING = True, I = ki)

8: for 0 ≤ i ≤ 99 do . preclock
9: CLOCK KG(R,S,MIXING = True, I = 0)

Generation of the key stream As most stream ciphers, the cipher text
is produced by bitwise XOR with the generated key stream bits. We denote
the output as z0, , ..., zj . The process of key stream generation is illustrated in
Listing 5.

Listing 5 Key stream generation

1: for 0 ≤ i ≤ j do
2: zi = r0 ⊕ s0
3: CLOCK KG(R,S,MIXING = False, I = 0)
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Usage restrictions There are some usage restrictions of MICKEY, required to
ensure the intended security of the cipher. The maximum length of a key stream
sequence with a single pair (K, IV ) is restricted to 2|K|/2 bits, thus for MICKEY
2.0 it is 240 bits. It is allowed to generate 240 such sequences from the same K
with differing IV s. But it is not acceptable to use two IV s of different lengths
with the same K or to reuse any IV with the same key K.

2.2 MICKEY-128 2.0

This variant of MICKEY uses a 128-bit key instead of the 80-bit key used for
MICKEY 2.0. Thus, the register size for R and S is adapted to 128 ∗ 1.25 = 160
stages. As a consequence, as well the feedback tap positions and the four sequences
used for register S, are scaled accordingly. The definition of these parameters can
be found in the MICKEY-128 2.0 specification [6].

The cipher itself, including the clocking of the registers R and S, the clocking
of the overall generator, the key initialization and the generation of the key
stream, are basically the same as for MICKEY 2.0.

2.3 Earlier specifications: MICKEY 1.0 & MICKEY-128 1.0

The only difference to earlier specifications of MICKEY, named MICKEY 1.0 [7]
and MICKEY-128 1.0 [9], is the smaller register size of 80-bit respectively 128-
bit. This change in version 2.0 was performed due to the results of a security
evaluation by Hong and Kim [46]. It was shown that MICKEY 1.0 has weaknesses
regarding three aspects:

The cipher is susceptible to a Time-Memory-Data (TMD) tradeoff attack
with online time, data and memory complexity, all less than the key size of 280.
Although the one-off precomputation time complexity was always greater than
280 and this attack can therefore not definitely be counted as successful, the
authors acknowledged the found weakness.

Moreover, the analysis showed an entropy loss in the state update function
as it is iterated. This can result in state collisions, caused by the convergence
of distinct key stream sequences. The reduction of entropy is in general enabled
by the variable clocking used in MICKEY, which reduces the entropy when the
generator is clocked. For example, the production of a 240-bit sequence decreases
the entropy to nearly 2120 from initially 2160. If we consider the key length of
80-bit, then 120 is less than twice the key size. As a consequence, an amount of
data less than 80-bit (key size) will lead to collisions.

Lastly, a small class of weak keys have been found. In the specification of
MICKEY 1.0 the existence of such a class was stated, where the register R is in
an all zeroes state and remains permanently in it. But because the presence of
the state was estimated to be roughly 2−80, which is less than the probability
for any guessed secret to be correct, the authors did not try to prevent it. Hong
and Kim showed that also for register S exists a fixed S-state. In this state the
register S is all zero and the produced key stream is equal to the produced output
of register R. Hence it was proved that there are more weak key classes and the
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probability of encountering one strictly increases to 2−79, which is greater than
estimated before.

2.4 Hardware Implementations and Complexity

The stream cipher MICKEY is optimized for hardware-constrained environments,
this includes, for example, the aspects area, power consumption and memory. The
latter depends on the considered MICKEY variant, i.e. MICKEY 2.0 requires
200 bits (100 bit for each register) and MICKEY-128 2.0 requires 320 bits (160
bit for each register) of memory in total. Within the eSTREAM project several
proposals for hardware implementations were analyzed. Following we present a
short overview.

In [52] the performance of an FPGA-based MICKEY 2.0 implementation was
analyzed and compared to five other representative stream ciphers. The results
in Table 1 confirm the low requirement regarding area consumption, which is the
best of all competitors on this specific FPGA platform. Although the throughput
of 250 Mbps is lower than of ZUC (7111), Trivium (326) and Snow3g (3328), it
has a very good ratio of 2.551 Mbps/slice. This is besides of ZUC with 12.367
Mbps/slice the best value among all other candidates. Concluded, MICKEY 2.0
has low complexity in hardware while still providing a good throughput.

Cipher Device Area Frequency Throughput T/A
[#slices] [MHz] [Mbps] [Mbps/Slice]

ZUC XC5VLX110T 575 222.4 7111 12.367

MICKEY 2.0 XC3S700A-4FG484 98 250 250 2.551

Trivium XC3S700A-4FG484 149 326 326 2.188

E0 XC3S700A-4FG484 140 187 187 1.335

Snow3g XC3S700A-4FG484 3,559 104 3328 0.935

Grain V1 XC3S700A-4FG484 318 177 177 0.557

Table 1. Performance comparison of six representative stream ciphers (source: [52]).

For MICKEY-128 2.0 an FPGA-based hardware implementation was evaluated
in [47]. The implementation on a Xilinx Spartan 3, optimized for minimum area,
required 176 slices. This is remarkably more than for other eSTREAM finalists
Trivium (50), Grain 128 (50) and Grain v1 (44). Considering the throughput to
area ratio of 1.27 Mbps/slice, the implementation has the lowest value compared
to the others, Trivium (4.80 Mbps/slice), Grain 128 (3.92 Mbps/slice) and Grain
v1 (4.45 Mbps/slice).

Summarized, the variant MICKEY-128 2.0 provides more security than
MICKEY 2.0, but in return needs more area and provides a lower throughput.
These drawbacks from MICKEY-128 2.0 can be reduced by using parallelization.
Although not explicitly designed for, the authors of MICKEY propose that
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instead of producing one bit per cycle, several bits per cycle can be generated.
In [73] a two-folded parallelization was realized based on a FPGA. Instead of
the suggested lookup tables, they used a novel mathematical interpretation of
the algorithm which enabled the calculation of critical look-ahead bits. This
technique was proved to be more efficient than the use of lookup tables. The
results visualized in Table 2, show a throughput of 560 Mbps for an area of 392
slices, resulting in 1.43 Mbps/slice. The authors noted that further improvements,
like pipelining and 4- or 8-bit key stream generation, may be realized in future
work.

Cipher Frequency Area Throughput T/A
[MHz] [#slices] [Mbps] [Mbps/#slice]

Trivium (x64) 211 344 13504 39.26

Grain 128 (x32) 133 534 4256 7.97

Grain v1 (x16) 130 348 2080 5.98

Trivium 240 50 240 4.80

Grain v1 196 44 196 4.45

Grain 128 196 50 196 3.92

MICKEY-128 2.0 (x2) (280) 392 560 1.43

MICKEY-128 2.0 223 176 223 1.27

Table 2. Performance comparison of MICKEY-128 2.0 (source: [47,73]).

All ciphers presented in Table 2 were implemented on a Xilinx Spartan-3
FPGA XC3S50-5PQ208, except Trivium (x64) which was implemented on a
Xilinx Spartan-3 FPGA XC3S400-5FG320 and MICKEY-128 2.0 (x2) which was
implemented on a Xilinx Virtex-II Pro FPGA XC2VP30.

2.5 Security Evaluation

During the eSTREAM project the security of the cipher MICKEY has been
evaluated extensively. The results of various analysis showed weaknesses which
can be remediated by increasing the register size, see Section 2.3 for more details.

In the following we present some known attacks targeting MICKEY 2.0 and
MICKEY-128 2.0 with focus on side-channels, like differential fault attacks and
template attacks. As described in the specification of MICKEY 2.0, the authors
have taken some measures to make the cipher secure against resynchronization
attacks, algebraic attacks and attacks like “guess and determine” or “divide
and conquer”. The last review of the eSTREAM finalists portfolio was in 2012,
stating that there are no known cryptanalytic advances for MICKEY 2.0 or
MICKEY-128 2.0 so far [24]. To the best of the authors knowledge, since then no
new attacks - besides side-channels attacks - have been successfully accomplished.

Correlation Power Analysis Attack (CPA) An attack proposed by Liu et al. [50]
is based on power traces gathered from the output gates and the internal nodes
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(of the gates) of a MICKEY 2.0 implementation with cascaded CMOS inverters.
It uses a Hamming-Distance model to map the transitions of the cells’ outputs
(CMOS circuit) to the values of power consumption. This allows to determine a
relation between power consumption and data handled by the cipher. With aid
of the model, Liu et al. showed an attack against MICKEY 2.0, that just requires
a few (about ten) power traces during initialization. As an result it was possible
to reveal the secret key. This attack is enabled by the high correlation between
power consumption and bit change during initialization. As a countermeasure
an exchange of the steps “loading in K” and “loading in IV”, see Listing 4, was
proposed.

Template Attack In general, CPA attacks require a high number of different power
traces gathered during the key loading of the cipher. Therefore it is difficult for
adversaries to perform these attacks under real circumstances. As an alternative,
Chakraborty and Mukhopadhyay [23] proposed a template attack which uses
IVs generated by a particle swarm optimization computational method. This
drastically reduces the number of required power traces to break the cipher.
Observation showed that about 500 traces were sufficient compared to about
3000 traces if the IVs were randomly chosen. As an result, this method not only
requires less power traces, but also a much lesser number of IVs.

Differential Fault Attack Another attack based on side-channels uses random
injections of faults, mostly introduced by laser shots or clock glitches, which
causes a change of bits in the internal state. Using the output of the device, an
adversary can deduce information of the internal state or even the secret key.

Banik and Maitra [11] proposed an attack, which needs about 216.7 fault
injections and 232.5 computations on average, to completely recover the internal
state. Important is, that the faults must be injected before entering the pseudo
random bitstream generation (PRGA) phase, this is right after loading the IV/key
and execution of pre-clocking. As an assumption of the attack, the adversary
needs to know the length of the IV, because it is variable. Banik and Maitra
suggest a straightforward way to determine the length by injecting faults during
the PRGA clock round.

Later, an improvement of the attack was presented by Banik et al. [12]. In
this attack it is assumed that injected faults affect two or three neighboring bits
which reduces the required faults to ≈ 218.4 on average. Moreover, the use of a
SAT solver to further reduce the required faults was analyzed. Assuming the
attacker has derived a bits of the state R0 (register R) by applying faults, it is
possible to find the remaining bits of R0 and S0 by using equations over the
fault-free key-stream bits. The use of a SAT solver to find solutions to these
non-linear equations reduced the required number of faults to ≈ 216.06.

MICKEY-128 2.0 also was shown to be susceptible to the same type of attack.
The attack by Karmakar and Chowdhury [51] on MICKEY-128 2.0 requires 480
faults and about 480 faulty/faulty-free key stream pairs to break the cipher. The
used methodology at first determines the position of the fault by using single bit
and related single bit faults. After that, linear equations are obtained involving
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internal state bits of different iterations. By determining the state bits for a
specific base point, Karmakar and Chowdhury were able to predict the key stream
of any later iteration. As a result, the linear equations could be solved and the
internal state could be reconstructed.

Conclusion The presented attacks show that side-channels of MICKEY 2.0 and
MICKEY-128 2.0 can be used to successfully break the cipher. Karmakar and
Chuowdhury state “the attack is mountable in few hours [...]” [51], highlighting the
practical feasibility of the shown attacks. As well all other presented attacks have
been practically proven. For that reason, the use of MICKEY 2.0 or MICKEY-
128 2.0 in environment where physical protection of side-channels can not be
guaranteed, should be weighted up carefully.

3 WG-8

This section provides an overview of the stream cipher WG-8. We introduce its
structure, implementation and performance as well as security aspects.

WG-8 [35] was presented in 2013 by Fan, Mandal and Gong. It is a lightweight
variant of the WG stream cipher family [61], specifically designed for resource
constrained devices. Like all WG ciphers, it makes use of Welch-Gong transfor-
mations [62] which generate bit sequences with provable randomness properties.
These properties are very interesting in cryptographic contexts [39], [40]. They
can be used to prove the security of WG ciphers against many common attacks
on stream ciphers.

The initial WG cipher was submitted to the eSTREAM project but was
eliminated at the end of phase 2, partly due to security concerns but mostly
because it was too complex to be efficiently implemented in hardware. However,
the latter issue was addressed in the design of WG-8 which has a hardware
complexity similar to the hardware-oriented eSTREAM finalists.

In this section, we at first explain the structure of WG-8 in detail. Then we
give a brief overview of the WG cipher family and its history. Next we have a
look at how WG-8 can be implemented in software and hardware as well as the
performance of such implementations. Finally, we address security aspects of
WG-8.

3.1 Structure

The main component of the WG-8 cipher is a 160-bit LFSR. It operates byte wise
and generates one byte per cycle. Its initial state is denoted as S0, ..., S19 ∈ F28

with Si = (Si,7, ...Si,0) for 0 ≤ i ≤ 19. F28 is the finite field defined by the
primitive polynomial p(x) = x8 +x4 +x3 +x2 +x+ 1. In the following, ⊕ denotes
addition in F28 (which is the same as XOR) and ⊗ denotes multiplication in F28 .

The cipher uses an 80-bit key (K79, ...K0) and an 80-bit initialization vector
IV (IV79, ..., IV0) which are loaded into the LFSR according to these equations
(for 0 ≤ i ≤ 9):
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S2i = (K8i+3, ...,K8i, IV8i+3, ..., IV8i)

S2i+1 = (K8i+7, ...,K8i+4, IV8i+7, ..., IV8i+4)

S19 S18 S17 S16 S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0 

ω 

WGP-8(x19) 
WGP-8(x19): Welch-Gong Permutation (𝔽28 → 𝔽28) 

Fig. 2. Initialization Phase of WG-8 (based on [35])

Initialization Phase Before the keystream is generated, the LFSR spends 40
cycles in the Initialization Phase which is shown in Figure 2.

In this phase, a Welch-Gong permutation (WGP-8) of the most recent byte
(initially S19) is added to the regular feedback of the LFSR (which makes
the feedback non-linear during the Initialization Phase). The WG permutation
(F28 7→ F28) is defined as:

WGP-8(xd) = q(xd + 1) + 1

where q is a permutation polynomial defined as:

q(x) = x+ x2
3+1 + x2

6+23+1 + x2
6−23+1 + x2

6+23−1

d is called decimation and must be coprime to 28 − 1. Unfortunately the purpose
of the decimation is not made clear in [35]. However, in [1], the cipher WG-5 is
discussed and it is said that the decimation value influences linear complexity as
well as non-linearity. If carefully chosen, it can increase the resistance of a WG
cipher against algebraic attacks. For the WG-8 cipher, d is set to 19.

The linear part of the feedback is calculated by first multiplying the oldest
byte (initially S0) with a constant ω, which must be a primitive element (also
known as generator) of F28 with p(ω) = 0. Unfortunately [35] does not offer any
example values for ω. More bytes from the LFSR are then added to the product.
The entire feedback is calculated as:

Sk+20 = (ω ⊗ Sk)⊕ Sk+1 ⊕ Sk+2 ⊕ Sk+3 ⊕ Sk+4 ⊕ Sk+7

⊕Sk+8 ⊕ Sk+9 ⊕WGP-8(S19
k+19), 0 ≤ k ≤ 39
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S19 S18 S17 S16 S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0 

ω 

WGP-8(x19) 

Tr(x) 
WGT-8(x19) 

keystream bit 

WGP-8(x19): Welch-Gong Permutation (𝔽28 → 𝔽28) 

WGT-8(x19): Welch-Gong Transformation (𝔽28 → 𝔽2) 

Tr(x): Trace function (𝔽28 → 𝔽2) 

Fig. 3. Running Phase of WG-8 (based on [35])

Running Phase After the Initialization Phase the Running Phase, as shown in
Figure 3, is entered. In this phase one keystream bit is generated per cycle.

The result of the WG permutation is no longer added to the feedback, which
is thus defined as:

Sk+20 = (ω ⊗ Sk)⊕ Sk+1 ⊕ Sk+2 ⊕ Sk+3 ⊕ Sk+4 ⊕ Sk+7 ⊕ Sk+8 ⊕ Sk+9, k ≥ 40

Instead, the trace function is applied to the permutation output. The trace
function is defined as Tr(x) = x + x2 + x2

2

+ ... + x2
7

and maps from F28

to F2. The combination of WG permutation and trace function is called WG
transformation and is defined as:

WGT-8(xd) = Tr(WGP-8(xd))

where d = 19 is used once again for WG-8. The result of the WG transformation
is the next keystream bit.

3.2 The WG stream cipher family

There are several versions of WG ciphers for use in different settings. They all
have very similar structure and mainly vary in the number and size of elements
in the LFSR.

WG version 1 The first version of the WG cipher was published by Nawaz and
Gong in 2005 [60]. It was submitted to the eSTREAM project as a hardware-
oriented stream cipher. It uses an LFSR with 11 elements from F229 . The structure
is similar to later versions, except that the WG transformation is applied to the
element at the other end of the register (initially S0). Even though the size of
the LFSR is fixed, the specification allows different key sizes (80, 69, 112 and
128 bits). The IVs can have the same size as the keys, but shorter IVs of 64 or
32 bits are also possible. The only operational difference between these sizes is
how keys and IVs are loaded into the LFSR initially.

This version of the cipher was broken. After only two months, Wu and Preneel
presented a chosen IV attack on the cipher that could recover the key for most
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key/IV sizes [77]. Their attack was formally published in [78]. As an initial
reaction to this attack, the creators of the WG cipher suggested doubling or even
quadrupling the number of cycles spent in the Initialization Phase [59].

Final version and WG-128 The final version of the WG cipher (now officially
called a family of stream ciphers) was published in 2008 [61]. It moved the WG
transformation to the other end of the LFSR, just like in WG-8. This makes the
cipher secure against the aforementioned chosen IV attack without introducing
the overhead of additional initialization cycles.

The final specification is also more generic. It uses variables instead of fixed
values for the number of elements in the LFSR as well as for their size. WG-128
was introduced as a concrete example. It is basically the original WG cipher,
with key and IV sizes of 128 bits.

The WG ciphers were eventually eliminated from the eSTREAM selection
process at the end of phase 2. According to [15] the reasons were twofold: Firstly,
there were security concerns. In 2007 an attack on a general filter generator over
F2m was presented by Rønjom and Helleseth [69]. It can be used to recover the
internal state of the WG cipher. However, the cipher specification allows for
no more than 245 keystream bits to be generated with the same key/IV pair
which is less than the 245.0415 keystream bits that are required for the attack.
While this technically makes the WG ciphers secure against this attack, it left
the eSTREAM committee with a bad feeling as the cipher could be broken after
only a slight relaxation of the its restrictions.

Secondly, the committee had doubts that the cipher could be implemented in
hardware as efficiently as the other candidates. This is mainly because WG-128,
as well as the original version of WG, contain many calculations in F229 which
require a lot of area when implemented in hardware. All newer members of the
WG family use much smaller finite fields to address this concern.

WG-16 In 2013 Fan and Gong presented the stream cipher WG-16 [34]. It is
designed for the use in 4G-LTE networks. The authors also specify confidentiality
and integrity algorithms that make use of their new cipher. To motivate their
work, they claim that the ciphers in the current 4G-LTE standard are difficult to
analyze and that the current integrity algorithms are vulnerable. WG-16 uses
128-bit keys and IVs as well as an LFSR that contains 32 elements from F216 .

WG-7 The cipher WG-7 is the predecessor to WG-8, also targeting resource
constrained devices. It was published by Luo et al. in 2010. It uses 80-bit keys
and 81-bit IVs. The LFSR contains 23 elements from F27 . In 2012 the cipher was
broken by Orumiehchiha et al. [64]. We will look into the details of their attack
in section 3.4 as it is related to the security of WG-8.

WG-5 In [1] Aasgaard, Gong and Mota discuss Hardware implementations and
security issues of the stream cipher WG-5 which was originally proposed by
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Mota in 2012 in his master thesis [58]. The cipher is aimed at passive RFID tags
and offers only a low security level. It is resistant against attacks only if the
data encrypted with one key/IV pair does not exceed 256 kilobytes, which is an
acceptable constraint for passive RFID tags.

3.3 Implementation

Software In the original work about WG-8 [35] the authors only address software
implementations. They explore different implementations of the WG transfor-
mation, which is the most calculation intensive part of the cipher. They come
to the conclusion that lookup tables are the best alternative in terms of speed,
memory usage and power consumption. To implement the WG transformation, a
lookup table with 256 bits is required. For the WG permutation, which is used
in the initialization phase, an additional lookup table with 256 bytes is needed.

WG-8 was implemented on two microcontrollers, namely the 8-bit AT-
mega128L from Atmel and the 16-bit MSP430F1611 from Texas Instruments,
both clocked at 8 MHz. For each controller, the authors compare the performance
of WG-8 with implementations of other stream and block ciphers that exist for
that controller. Since this paper is about hardware-oriented stream ciphers, we
don’t want to focus too much on software implementations. We only show some
results for the ATmega, for which (in our opinion) more interesting ciphers were
used for the comparison. Table 3 shows the performance of the ciphers. WG-8
is faster than most ciphers, has low energy consumption and average memory
requirements. Notably, the block cipher AES clearly outperforms WG-8 on this
device.

cipher optimization goal memory usage [byte] throughput Energy/bit
/ method Flash SRAM [Kbits/sec] [nJ]

AES
RAM 1,912 176 475.6 179
Speed 1,912 256 513.8 165

PRESENT-80
Size 1,474 32 0.99 85,819

Speed 2,398 528 66.7 1,274

Hummingbird-2
RAM 3,600 114 171.8 495
Speed 3,200 1,500 258.6 329

Grain Speed 778 20 12.9 6,556

Trivium Speed 424 36 12.0 7,066

Salsa20 Speed 3,842 258 83.7 101,564

WG-8 lookup table 1,984 20 185.5 458

Table 3. Performance of WG-8 and other ciphers on ATmega128L microcontroller.

Hardware In [79] Yang et al. explore possible hardware implementations of WG-
8. Their work focuses mainly on different implementations of the WG permutation
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and transformation. After trying three different types of tower field arithmetic,
they come to the conclusion that, just as in software, lookup tables are the
best solution. They require less space and energy and are faster than any other
approach. They note however, that for ciphers like WG-16, lookup tables become
very large and tower field arithmetic provides a smaller alternative.

Their paper also looks at potential parallelization of WG-8. They were able
to implement a rather efficient version that generates 11 bits per clock cycle
but only requires about three times the area compared to the non-parallelized
version. The number 11 comes from the elements inside the LFSR that are used
to calculate the feedback. The next 11 bytes can be calculated with the current
values in the LFSR. However, the 12th byte can only be calculated after the
first new byte has already been generated. After calculating the next 11 bytes,
the corresponding keystream bits can be calculated by using 11 copies of the
same 256-bit lookup table. As these lookup tables are very small, the overhead is
minimal. In the initialization phase, a 256 byte lookup table is required as the
WG permutation generates a byte and not a single bit. As this lookup table is
much larger, the authors recommend not parallelizing the initialization phase.

The authors implemented WG-8 on a Spartan-3 XC3S1000 FPGA and as an
application specific integrated circuit (ASIC) with 65nm CMOS technology. They
also compare their results to the stream ciphers Grain (v1) and Trivium which
have highly efficient hardware implementations. For the FPGA, they use [47]
as source for Grain’s and Trivium’s performance data. For the ASIC however,
they wrote their own implementations of Grain and Trivium, including versions
that generate 11 keystream bits per cycle. It is not known if and how those
implementations were optimized which should be kept in mind when comparing
the results. Table 4 shows the performance on the FPGA and table 5 shows the
ASIC performance. The tables contain only the lookup table implementation of
WG-8 as it has the best performance in every way. For the ASIC implementations,
the area is given in GE, i.e. gate equivalence, which is the number of NAND gates
that would take the same area. The estimated area of a NAND gate is 2.08um2.

cipher data rate area throughput throughput
[bits / cycle] [slices] [Mbps] / area

WG-8
1 137 190 1.39
11 398 2112 5.31

Grain
1 44 196 4.45
16 348 2080 5.98

Trivium
1 50 240 4.80
64 344 13504 39.26

Table 4. Performance of WG-8 and other ciphers on Spartan-3 XC3S1000 FPGA.

Grain and Trivium outperform WG-8 on the FPGA. Their single-bit imple-
mentations are much smaller, while offering even slightly more throughput than
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cipher data rate area power throughput throughput throughput
[bits / cycle] [GE] [mW] [Mbps] / area / power

WG-8
1 1786 0.983 500 0.28 508.6
11 3942 1.344 6710 1.70 4992.6

Grain
1 1126 2.04 1020 0.91 500
11 1126 2.25 12078 10.73 5368

Trivium
1 1986 3.88 962 0.48 247.9
11 2028 4 10890 5.37 2722.5

Table 5. Performance of WG-8 and other ciphers as 65nm CMOS ASIC.

WG-8. For the paralleled case, WG-8 actually offers more throughput than Grain
(though much less than Trivium) but it also requires more space, which leads to
slightly less throughput per area.

For the ASIC implementations however, there is no clear winner. The single-
bit version of WG-8 needs more area than Grain, but less than Trivium. WG-8
needs about 2 times less power than Grain and about 3 to 4 times less power
than Trivium. However its throughput is only about half the throughput of the
other ciphers. Overall WG-8 can compete with established hardware oriented
ciphers which the original WG cipher or WG-128 cannot. [33] explores hardware
implementations of WG-128 using the same ASIC technology. For single-bit
WG-128 the implementation requires more than 10 times the area and more than
4 times the power of the single-bit WG-8 implementation while only achieving
slightly less than half of its throughput.

3.4 Security

Due to the WG transformation, the keystream generated by WG-8 possesses
a number of randomness properties that the creators of WG-8 consider to be
desirable.

• The keystream has a well-known period of 2160 − 1.
• The keystream is balanced, i.e. over one period the number of 0’s is only one

less than the number of 1’s.
• The keystream possesses ideal two-level autocorrelation. This means that the

correlation between one full keystream period and a rotated version of that
period is always -1. The correlation between two bit sequences is defined as
the difference of the number of equal bits and the number of unequal bits.

• The keystream has ideal t-tuple distribution (1 ≤ t ≤ 20). This means that
all possible t-tuples appear equally often in one period.

• The keystream has a linear span, also known as linear complexity, of exactly
233.32. The linear span is the minimum size of any LFSR that generates a bit
sequence identical to the keystream.

The creators of WG-8 use these properties to argue about common attacks
on stream ciphers and their effectiveness against WG-8. They show that most
attacks either require an unrealistic amount of time or keystream bits. It is
claimed that WG-8 is secure against the following attacks:
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• Algebraic Attack

• Correlation Attack

• Cube Attack

• Distinguishing Attack

• Time-Memory Trade-off Attack

Key Recovery Attack in the related key setting In [26] Ding et al. present
a key recovery attack on WG-8 which can fully restore the key within minutes
on an average PC. However, the attack uses some powerful assumptions which
we consider to be unrealistic. Nevertheless, the mere fact that the attack exists,
shows that WG-8 is by no means perfectly secure and should be further analyzed.

The attack assumes that the cipher is used with several keys, which are all
bit-wise rotated versions of each other. The rotations must be done by multiple
of 4 bits. In this case, if the IVs used with those keys are also rotated versions
of each other, there is a chance that the generated keystreams will be shifted
versions of each other. The authors describe equations that depend on some key
and IV bits and are fulfilled if and only if shifted keystreams occur. The attack
consists of trying different IVs until shifted keystreams are detected, which means
the equations are satisfied. Then the equations can be solved for the key bits.
The more rotated versions of a key are used, the more key bits can be restored
this way. To be able to detect shifted keystreams the attacker must have access
to sufficiently many keystream bits.

Attacks on WG-7 and their implications for security of WG-8 In [64]
two attacks on the stream cipher WG-7 are presented. First is a distinguishing
attack that can almost certainly distinguish a keystream from a random bit
sequence when 213.5 keystream bits are known. Second is an algebraic attack
which can restore the key as well as the internal state of the LFSR with 219.38

keystream bits and a time complexity of 226.73. The creators of WG-8 reason, that
these attacks were possible because the LFSR feedback in WG-7 is calculated
from only two LFSR elements. Since WG-8 uses eight elements to calculate the
feedback, it is secure against these attacks.

Nevertheless, these attacks reveal two potential problems of WG ciphers in
general. First of all, the randomness properties of the keystream might not be
as advantageous as assumed. Such a keystream might be distinguishable from a
truly random bit sequence because it is, in a way, too perfect. A truly random
sequence will probably not possess all these properties.

More importantly, the algebraic attack was more efficient than the cipher
creators expected. Their claim, that WG-7 was secure against such attacks, was
simply invalid. This puts all other security claims of the WG ciphers in question
as well. While there is no realistic attack on WG-8 yet, the cipher definitely
should be analyzed more thoroughly before it is used in productive environments.
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4 Comparison

Table 6 contains the performance results for ASIC implementations of MICKEY
2.0, WG-8 and other ciphers. The WG-8 results are from [79]. The other results
are from [42] which is linked on the official eSTREAM website. While we took
the AES results also from [42], they are originally from [71] and [37]. Most
results are for a 130nm CMOS process but the WG-8 implementation uses 65nm
while the AES implementations use 110nm and 350nm. The different processes
make reliable comparisons in power consumption impossible and may also affect
the maximum frequency and thus the throughput. The area however, can be
compared relatively well as it is given in GE (gate equivalence).

cipher data rate area power throughput throughput throughput CMOS
[bits / cycle] [GE] [mW] [Mbps] / area / power process

MICKEY 2.0 1 3188 8.701 454.5 0.14 52.2 130nm

MICKEY-128 1 5039 12.512 413.2 0.08 33.0 130nm

WG-8
1 1786 0.983 500 0.28 508.6 65nm
11 3942 1.344 6710 1.70 4992.6 65nm

Grain v1
1 1294 7.772 724.6 0.56 93.2 130nm
16 3239 11.929 9876.5 3.05 827.9 130nm

Trivium
1 2580 5.618 327.9 0.13 58.4 130nm
64 4921 12.677 22299.6 4.53 1759.1 130nm

AES[71] 2.37 5398 - 311 0.06 - 110nm

AES[37] 0.124 3400 - 10 0.003 - 350nm

Table 6. Performance of ASIC implementations of different ciphers. ([42], [79])

Area, Power and Throughput of single-bit versions The results show
that WG-8 is clearly smaller and slightly faster than MICKEY 2.0. However it
should be noted that Grain v1 is smaller and faster than both ciphers. The power
consumption of MICKEY is relatively high. While the power consumption of
WG-8 and MICKEY 2.0 cannot be compared directly, it is claimed in [79] that
WG-8 requires significantly less power than Grain or Trivium. If that is true, it
would also be more power efficient than MICKEY 2.0.

All ciphers are faster and smaller than AES, which was a requirement for
hardware-oriented eSTREAM finalists.

Parallelization WG-8 can be parallelized up to 11 bits/cycle. The gain in the
throughput/area performance metric is close to that of Grain v1 but much smaller
than that of Trivium. MICKEY 2.0 on the other hand, cannot be parallelized
efficiently. [73] shows an implementation that generates 2 bits per cycle but it
requires much more space and even has lower throughput/area than the single-bit
implementation.
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In contrast to real stream ciphers, AES produces bursts of keystream bits
every few cycles. The implementation from [71] shows an average of 2.37 bits
per cycle, which is significantly less than what most stream ciphers can achieve.
However, it is unknown to us, by how much this rate can be increased and at
what cost.

Simplicity In [42] the numbers of code lines for each cipher are given. These
numbers are used to rank the ciphers by simplicity. A cipher is considered to
be simpler (i.e. easier to implement) if its implementation requires less lines of
code. The fewest lines of code are needed for MICKEY-128 (127), followed by
Grain128 (138), MICKEY 2.0 (149), Grain v1 (158) and Trivium (159). For a
given key size, the MICKEY ciphers need less code than their competitors. In
other words, the MICKEY ciphers are the easiest to implement. We have no
information about the number of code lines required to implement WG-8 or AES.

Security The security of MICKEY 2.0 has been analyzed thoroughly during and
after the eSTREAM election process. It is vulnerable to different side-channel
attacks but remains otherwise unbroken.

For WG-8 the only existing attack can recover the entire key but only works
in a highly unlikely scenario. However, the mere existence of this attack as well as
attacks on its predecessor WG-7 cast doubts on WG-8’ security. While the cipher
is interesting for its provable cryptographic properties, more research is required
before the cipher can be recommended for use in productive environments.

It should be noted that AES is older and used in more scenarios than any
of the ciphers presented in this paper. As a consequence its security has been
analyzed more thoroughly. This should be considered in applications where
security is much more important than other aspects.

Summary WG-8 can compete with the hardware-oriented eSTREAM finalists
and is superior to MICKEY 2.0 in most aspects, including area, power, and
throughput. Also WG-8 is efficiently parallelizable, which MICKEY 2.0 is not.
However WG-8’s security is not analyzed thoroughly enough yet. For now, when
having to choose between both ciphers, MICKEY 2.0 should be used.

Both ciphers outperform AES in area and speed, as required by the eSTREAM
project. However, their security is not as thoroughly analyzed as that of AES.

5 Conclusion

In this paper we introduced two hardware-oriented stream ciphers, namely the
eSTREAM finalist MICKEY 2.0 as well as WG-8, a recent member of the
WG stream cipher family. We discussed their specifications, different versions,
hardware implementations and security aspects. After comparing the two ciphers
with each other, we came to the conclusion that MICKEY 2.0 is a solid choice
for resource constrained devices especially as it offers a high security level
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with the exception of side-channel attacks. It’s greatest weakness is that it
cannot be efficiently parallelized, which makes it unsuitable for high throughput
requirements.

WG-8 on the other hand has a number of potential security weaknesses. Even
though it is the surperior cipher performance wise, it still requires more thorough
security analyses before it should be used in practice. Nevertheless, WG-8 has
interesting cryptographic properties and shows that the development of fast, small
and secure hardware-oriented stream ciphers is not finished with eSTREAM.
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