
Darmstadt University of TehnologyDepartment of Computer SieneCryptography and ComputeralgebraDiploma Thesis
Improved Authentiation PathComputation For Merkle Trees

Mihael ShneiderDarmstadt University of TehnologyDepartment of MathematisMarh 2008Supervisor: Prof. Dr. Johannes BuhmannErik Dahmen

Contents1 Introdution 111.1 Outline . 111.2 About This Thesis . 122 Bakground 142.1 Digital Signatures . 142.2 Hash Funtions . 162.3 One Time Signatures . 182.3.1 The Winternitz One Time Signature Sheme 192.4 Merkle Trees . 212.5 The Merkle Signature Sheme . 232.5.1 MSS - Merkle Signature Sheme 232.5.2 GMSS - Generalized Merkle Signature Sheme 273 Common Traversal Algorithms 343.1 Overview . 343.1.1 Notation . 353.2 Szydlo's Algorithm . 363.2.1 Motivation . 363.2.2 The Algorithm . 363.3 Drawbaks of Former Algorithms . 40

CONTENTS4 A New Authentiation Path Algorithm 414.1 Notation . 424.1.1 Treehash Staks . 424.2 Algorithm Desription . 434.2.1 Initialization . 434.2.2 Authentiation Path Computation 444.3 Corretness of the Algorithm . 474.4 Computational Bounds . 494.5 Storage E�ieny . 524.6 Computing Leaves using a PRNG . 554.7 Comparison of Theoretial Bounds 555 Java Implementation 575.1 Overview . 575.2 Distributed Node Computation . 595.3 Implementation of the Authentiation Path Algorithm 626 Results 636.1 Comparison: Authentiation Path Algorithm 636.2 Comparison: GMSS . 667 Conlusion and Further Work 71Referenes 733

A Pratial Results 77B Code Examples 79C ASN.1 Enoding 81D Objet Identi�ers 83

LIST OF ABBREVIATIONSList of AbbreviationsRSA Cypher and Signature Algorithm of Rivest,Shamir and AdlemanDSA Digital Signature AlgorithmECDSA Ellipti Curve Digital Signature AlgorithmPQC Post Quantum CryptographyMD5 Message Digest Algorithm 5SHA Seure Hash AlgorithmMAC Message Authentiation CodeDL problem Disrete Logarithm problemOTS One Time SignatureOTSS One Time Signature ShemePRNG Pseudo Random Number GeneratorMSS Merkle Signature ShemeCMSS Coronado Merkle Signature ShemeGMSS Generalized Merkle Signature ShemeJCA Java Cryptography ArhitetureJCE Java Cryptography ExtensionAPI Appliation Programming Interfae
5

LIST OF FIGURESList of Figures1 A omplete binary tree of height H = 2. The values 0 . . . 4 are theleaf indies, h denotes the nodes' height 222 A Merkle tree with leaf values A, B, C, D 223 Authentiation data of leaf ϕ. Hashing the onatenation of Auth0and Φ(ϕ) gives the upper node, ontinuing up the root �nally givesthe root value. The dashed nodes denote the authentiation path forleaf ϕ. The arrows indiate the path from leaf ϕ to the root. 234 Sample of the treehash algorithm: value 'D' is pushed on the stak.Then 'C' and 'D' are hashed to a height 1 node whih is then againhashed with the bottom node to a height 2 node. 255 Seed generation for a single Merkle tree. Eah array indiates oneall to the Prng. 266 Basi onstrution of GMSS. Only the leaves on the lowest layer areused for GMSS signatures. 287 Example of a GMSS signature . 298 Example GMSS keys. The private key onsists of the authentiationpath for the �rst leaf of the �rst two trees on eah layer, the Seedinfor the �rst and the third tree on eah layer, the root signatures Sigof the �rst trees and the root values Root of the seond trees. Thepubli key is the uppermost root value RootT1,0
. 319 While advaning a leaf in tree Ti,j, the values SigTi,j+1

and RootTi,j+2are updated, so that the omputation of those values is distributedover all 2hi steps of tree Ti,j. While doing one step in Ti+1,j the leafof tree Ti,j+2 is partly omputed. 32
6

LIST OF FIGURES10 Left node omputation: A Merkle tree of height 4 in rounds ϕ = 3 and
ϕ = 4. In the upper tree the height of the �rst parent of leaf ϕ that isa left node is τ = 2. The lower �gure shows the authentiation dataof leaf ϕ = 4. All lower authentiation nodes (Auth0 and Auth1)are pushed from the staks an reset in round ϕ = 3. 3711 Values of the initialization, H = 5, K = 3. The dashed nodes areauthentiation nodes, the blak ones are stored in treehash, the greynodes are kept in retain staks. 4312 In round ϕ the node Authτ is stored in Keepτ . This node is neededin round ϕ + 2τ for the omputation of its parent node, whih is partof the dashed authentiation path omputed in round ϕ + 2τ 4413 In round ϕ the node Auth2 is popped from Treehash2. This in-stane is then initialized anew with start index ϕ + 1 + 3 · 22 andomputes the delared right node on height 2. This node is neededin round ϕ + 23. 4514 While advaning a leaf in tree Ti+1,j , the next leaf of tree Ti,j is partlyomputed. 6015 Suppose (H − K)/2 = 4, so that the four dark leaves of the uppertree are required for treehash updates. They are omputed whileadvaning leaves in the lower tree. 6116 Number of hashes needed for right nodes per round while advaningone Merkle tree. On the x-axis the single rounds are assigned (treeheight H = 5 =⇒ 25 = 32 rounds), the y-axis shows the number ofneeded hash funtion evaluations. 6417 Number of hashes per round. The upper graph shows the result ofAlgorithm 3, the lower graph belongs to Szydlo's algorithm (H =

10 =⇒ 1024 rounds). 64
7

LIST OF FIGURES18 Time needed for signing with GMSS. The red line shows the timingsusing the new GMSS implementation, the blue line belongs to the oldimplementation. The used parameterset is P = (4, (4, 4, 4, 4), (8, 8, 8, 3)),
K is set 2 on eah layer. 67

8

LIST OF TABLESList of Tables1 Number of Leafal operations . 472 Total number of node stored in Retain (2K −K − 1) 543 Comparison of omplexity bounds. In onern of omputation time,Algorithm 3 distinguishes between hash funtion evaluations (�rstrow) and leaf alulations (seond row) 564 Statisti data of the number of hashes required per round 635 Comparison of the number of hashes required in the worst ase. . . . 656 Measured values for the new GMSS implementation 697 Measured values for the old GMSS implementation, from [17℄ 698 Results of the new GMSS implementation: time and memory require-ments of seleted parameter sets. For the average timings, in eah asethe mean value of the �rst 212 signatures were onsidered. 789 Objet Identi�ers for GMSS . 83

9

1 Introdution1.1 OutlineDigital signatures are one of the most popular appliations of ryptographial teh-nis, besides enryption. The onern is to allow identi�ation, authentiation,integrity, and liability in eletroni appliations. Digital signatures are used forseure interation over the internet by signing emails or proteting web browserommuniations by SSL/TLS. They are neessary for proedures like digital votingor bureaurati solutions over the internet.Today digital signatures are mostly implemented using asymmetri, also alled pub-li key ryptography. Famous examples are the RSA, ECDSA, or DSA signatureshemes. In the majority of ases the seurity of these methods is based on math-ematial, number theoretial assumptions, like the fatoring of big numbers or thedisrete logarithm problem. Today all of these algorithms and shemes an be on-sidered as su�iently seure. However, new algorithms already exist to solve thesenumber theoretial problems on quantum omputers [1, 2℄. The established sig-nature algorithms an be used without worries, as long as no pratially useablequantum omputers exist. But additionally, new tehniques must be found to beprepared for the ase of working quantum omputers. This �eld of work is alledpost quantum omputing (PQC). Another weakness of the established tehniques isthe inreasing key size. Beause today's omputers performane develops rapidly,the key size of the used publi key shemes must be raised to assure seurity [3℄. Thisproedure of rising key lengths ends, if algorithms independent of number theoretialassumptions are found.An alternative way is to use so alled one time signatures (OTS). These signatureshemes are onsidered to be seure also on quantum omputers. Their seurityrelies on the seurity of hash funtions. A hash funtion is a mathematial funtionwhih is easy to ompute but hard to invert. While the keys of a usual signaturealgorithm an be used more often, the keys of a one time signature must not be usedmore than one. Otherwise the seurity of the signature sheme would be redued,11

1.2 About This Thesisas an OTS signature reveals parts of the seurity of the sheme. The problem withone time signatures is that the number of keys that have to be stored and deliveredinreases enormously. This is a well known problem by symmetri ryptography.To solve this key management problem, Merkle proposed his idea of using binarytrees for authentiation of big amounts of OTS publi keys in 1989 [4℄. Using thisnew idea, it is possible to authentiate up to 220 (and even more) OTS private keyswith one single publi key. This leads to e�ieny in storage onerns, as onlyone key has to be permanently stored instead of many. Merkle's idea o�ered thepossibility to reate a multi-time signature sheme, alled Merkle signature sheme(MSS), based on any one time signature sheme. Extending this idea of MSS someextensions and andvanements were proposed: CMSS [5, 6℄ and GMSS [7℄, whih isa generalization of CMSS. The advantage of GMSS (Generalized Merkle signaturesheme) ompared to the original merkle sheme is the smaller size of the signaturesand a better sheduling of the signature generation. Furthermore the GMSS shemeis parameterized. This feature allows to ustomize the sheme for di�erent applia-tions, like usage on smartards or omparable low omputation devies where lowstorage spae plays an important role. One important part of the Merkle signaturesheme is the traversal of the authentiation tree. Whereas simple traversal algo-rithms arrest the signature generation, a fast traversal algorithm enhanes the wholesheme. Thus it is important to develop good authentiation path algorithms.1.2 About This ThesisThe subjet of this thesis is the introdution of a new traversal algorithm for Merkletrees and the integration of this algorithm in GMSS, inluding an implementationin Java for the FlexiProvider. Setion 2 gives the bakground information needed,while setion 3 desribes former known traversal algorithms. In setion 4 the newtraversal algorithm is introdued. Corretness and e�ieny proofs omplete thissetion. The Java implementation for the FlexiProvider is onsidered in setion 5. Insetion 6 the omparison of GMSS using the new authentiation path algorithm withother established signature algorithms is drawn. Setion 7 �nally gives a onlusionof the thesis. 12

1.2 About This ThesisThe reader of this thesis is supposed to be familiar with fundamental mathematialnotations of ryptographi onsiderations like signing or enryption funtions, aswell as simple mathematial priniples like geometri series. Understanding of basiomplexity theoretial ideas (like the O-notation) and algorithm notation might alsobe neessary to understand the main parts of this thesis.

13

2 BakgroundThis setion informs about the basi mathematial and ryptographial priniplesand tehniques needed for the onsidered appliations. First an introdution of digi-tal signatures is given. Then the priniples of hash funtions and one time signaturesare explained, followed by an example one time signature sheme, the WinternitzOTS sheme, whih will be used for the implementation of the new algorithm. Afterthat the idea of Merkle trees and the Merkle signatures are illustrated. Finally, ashort explanation of the GMSS extension is given.2.1 Digital SignaturesThe purpose of a digital signature is to o�er speial seurity purposes like identi�-ation, authentiation, integrity or liability. It an, in some parts, be ompared to ahandwritten signature: only one person an reate its own signature, every forgeryan be determined. One big di�erene is that the digital exponent is a mathematialfuntion of the message. If the doument hanges, the signature hanges as well.The digital signature ould otherwise be moved from one doument to another, asall digital data an be easily opied.Not only douments are signed digitally. Digital signatures are also used for pakagetransport seurity in transport protools. In priniple every kind of digital data anbe signed. In most appliations not the data or doument itself is signed but amessage digest of it. That is a kind of �ngerprint of the data. The priniples ofmessage digests are explained in setion 2.2.Digital signatures are always based on asymmetri ryptography. Suh a systemwas �rst introdued by Di�e and Hellman in 1976 [8℄, whih was one of the greatestadvanes in modern ryptology. For suh a digital signature, two di�erent typesof keys are needed: a private key for signature generation and a publi key forveri�ation. The private key in this purpose is also alled the signing key and thepubli key is also alled the veri�ation key. As one ould guess from the name,the private key has to be kept seret, whereas the publi key an be spread widely.14

2.1 Digital SignaturesEveryone knowing this publi key an verify the signature, but only the owner ofthe private key is able to reate one. For one time signature shemes, these keys aregenerated newly for every signature. In ontrast, for multi-time signature shemesboth keys are used for bigger amounts of signatures. Some of the ommonly usedsignature algorithms are also used for enryption (like RSA), whereas some of thesystems are only appliable to signatures (like DSA and ECDSA). Some attributesof a digital signature sheme are:Authentiity: Everyone should be able to ontrol that the signer really is theoriginator of a signature. This is possible beause everyone an use the publiveri�ation key. Nobody else shall be able to sign a doument in the signersname. For this purpose the private signing key must be kept seret.Non-Repudiation: This property means that the signer an not suessfully denythe fat of having signed a doument. Everyone possessing the signature andthe original doument an prove that the signature was really reated with thesigner's private key.Sine a signature is also a funtion of the private key and no one besides thesigner knows this signing key, then nobody is able to onstrut signatureswhih an be veri�ed by the orresponding publi key. The signer an neverdeny having signed a message if a veri�able signature exists.When the liability has to be proved, a third person (for example a ourt)has to ontrol if a signature really belongs to the person it should. The non-reusability property of a signature in this onern means that this ation anbe performed without revealing the private key, so that it an be used againby the user.Integrity: If a doument hanges or is manipulated, the signature of the origi-nal doument (a ontrat for example) will not math this forged doumentand will be refused. Therefore hanges in data an be proved using digitalsignatures.
15

2.2 Hash FuntionsMathematially, digital signatures are based on one-way funtions with trapdoor.A one-way funtion is a mathematial funtion whih is easy to ompute in onediretion. However to ompute the inversion of the funtion is hard. If y = f(x)(with a one-way funtion f) it is easy to ompute y given x and f , but it is hardto get x, if only y and f are known. A trapdoor means a seret (e.g. a seretnumber) whih allows to apply the inverse funtion easily by knowing the seret. Ina signature sheme the private key an be onsidered as the trapdoor. Creation ofthe signature is the inverse funtion, whih is hard or impossible to ompute whenthe signing key is unknown. When it is said that a funtion is hard to invert it ismeant in today's ontext: it is possible that in a few years (when the performaneof omputers has raised furthermore or even quantum omputers exist) today's one-way funtions will be invertible without problems.A digital signature sheme onsists of three parts: a key generation algorithm, thesignature onstrution, and the veri�ation phase. As the name implies, the �rst partserves for the reation of the private and the publi key. The seond part is the useof the private signing key for reating the signature of a message. Finally, using thepubli key and the original message the autentiity of the signature is revised. Theindividual phases will be desribed later in the introdution of partiular signatureshemes.2.2 Hash FuntionsMost of the known multi-signature shemes are based on mathematial assumptionslike fatoring of big numbers or the disrete logarithm problem. However, one timesignatures are mostly based on ryptographi hash funtions. For this reason, thosemessage digest priniples are illustrated in this setion.A hash funtion maps any kind of digital data to a shorter, random looking sequeneof numbers alled the hash value or message digest of the data, whih an be seenas kind of a '�ngerprint.' It is mostly represented by a hexadeimal depition. Asan example, the hexadeimal depition of the 160 bit long SHA1 hash value of the16

2.2 Hash Funtionsstring 'Improved Authentiation Path Computation' is
′fa072597154f81ba39b841f265acc8fa2d47d937′Changing only one letter in the original data will hange the whole message digest:the SHA1-hash of 'improved Authentiation Path Computation' is
′70e053246a5e9f591bcae5b47173295899e62cba′More mathematially, a hash funtion an be denoted as the following:Hash : X = {0, 1}∗ → Y = {0, 1}nwhere the domain X inludes all bitstrings with arbitrary length and the odomainY onsists of all n bit strings. An important attitude of a hash funtion is it's abilityto only go one way. This means that it is not possible to generate the original dataout of its hash value. A hash funtion an be onsidered seure if it assures thefollowing assumptions:

• pre-image resistaneGiven the hash funtion Hash and a value y, it is not possible to �nd an xwith Hash(x) = y.
• seond-pre-image resistaneGiven Hash and x, it is not possible to �nd an x′ (with x 6= x′) andHash(x) = Hash(x′).
• ollision resistaneGiven Hash, it is not possible to �nd x, x′ (with x 6= x′) and Hash(x) =Hash(x′). As the size of the o-domain Y is smaller than the domain size it islear that there are ollisions between di�erent messages out of X. Collisionresistane means the impossibility of �nding suh a ollision with non randompropability.In [6℄ Coronado shows that, for the seurity of the Merkle signature sheme, one-way-ness and ollision resistane of the integrated hash funtion are su�ient.17

2.3 One Time SignaturesHash funtions have di�erent appliations in ryptography. They are used for �n-gerprinting or message authentiation odes (MAC) to seurely identify data. Inmost signature algorithms, the message is hashed before it is signed, so that theseurity inreases. For example, without appliation of a hash funtion to the mes-sage the RSA sheme is not seure against hosen message attaks [9℄. Most famousrepresentatives of hash funtions are the SHA-family [10℄ and the Message DigestAlgorithm 5 (MD5) [11℄.In this thesis Hash : {0, 1}∗ → {0, 1}n is always an arbitrary hash funtion.The onseutive appliation of this funtion is denoted with supersript numbers:Hash2(m) stands for Hash(Hash(m)).2.3 One Time SignaturesAs mentioned in the introdution, one time signature (OTS) shemes are speialkinds of signature algorithms where the signing key must not be used more thanone, as every further use of these keys would reveal information whih ould weakenthe seurity of the signature. Most OTS shemes are based on hash funtions [12℄.The seurity does not rely on mathematial problems, but only on the seurity ofthe hash funtion. As mentioned above this is dependent on properties like ollisionresistane. The seurity of most algorithms used today for multi-time signaturesan only be inreased by raising the length of the used keys. In the last 20 years,the key lengths of algorithms like RSA or ECDSA have been onstantly inreasing[3℄. Furthermore if large sale quantum omputers exist, the searh for ollisions ofhash funtions is hard, whereas the underlying problems of ECDSA and RSA anbe omputed in linear time. These shemes an be broken on quantum omputers,while one time signature shemes based on hash funtions remain seure.As the omputation of hash funtions is fast, one time signatures are very e�ient.Their appliation is possible on low omputation omplexity devies like smart ards.
18

2.3 One Time Signatures2.3.1 The Winternitz One Time Signature ShemeIn this thesis, as in the atual GMSS, the Winternitz One Time Signature Shemeis used [4℄ [12℄. The usage of other one time signature shemes like the BiBa sheme[13℄ would be possible as well. The Winternitz sheme uses a parameter w, whih istypially hosen a small power of two. This parameter w allows a trade-o� betweengeneration ost and signature size. It de�nes the bit length of the single parts of theprivate key, whereas tw is the ount of omponents. With n as length of a hash, wede�ne
tw =

⌈

n/w
⌉

+
⌈(

⌊log2(⌈n/w⌉)⌋+ 1 + w
)

/w
⌉The private signature key is X = (x1, . . . , xtw), where x1 . . . xtw are random values.For the generation of random data, a pseudo random number generator (Prng) isused: Prng : {0, 1}n 7→ {0, 1}n × {0, 1}n : Seedin 7→ (Seedout,Rand)It uses a value Seedin to generate two random looking values Seedout and Rand.If Seedout is again used as input for the same Prng we get a hain of values Randiwhih an always be reprodued by knowledge of only the �rst Seedin. In thisthesis the used Prng is always the one desribed in the Digital Signature Standard(Appendix 3.1) [14℄ whih requires only one all to a hash funtion Hash:Rand← Hash(Seedin), Seedout ← (1 + Seedin +Rand) mod 2nKey Generation. For the publi key we apply the hash funtion 2w − 1 times toeah xi, i.e. we alulate yi = Hash2w−1(xi) for i = 1 . . . tw. The veri�ation key isthen reated out of the onatenation of the yi-values:

Y = Hash(y1‖ . . . ‖ytw)Signature Generation. For generation of the signature of a message �rst of allthe n-bit message digest of this message is reated. The digest md is then split19

2.3 One Time Signaturesinto ⌈n/w⌉ parts md1 . . .md⌈n/w⌉, eah with a length of w (if neessary zeros arepadded �rst). Then the heksum C =
∑⌈n/w⌉

i=1 2w −mdi is built. This heksum isalso divided into bloks of length w, namely md⌈n/w⌉+1 . . .mdtw . The �nal signatureis reated by onatenating the hash-values si = Hashmdi(xi) for i = 1 . . . tw. Thesignature is then Sig = (s1‖ . . . ‖stw)Veri�ation. For verifying the message digest, the signature and the veri�ationkey are needed. First the values mdi are omputed in the same manner as inthe signing proess. Then vi = Hash2w−mdi−1(si) is generated. Now the vetor
V = Hash(v1‖ . . .‖vtw) an be ompared to the veri�ation key. Eah of the xivalues should now have been hashed 2w − 1 times. The signature is delared tobe veri�ed if and only if V = Y . Example 1 explains a Winternitz OTS sampleinstane.Without using the heksum an attaker ould hash again some of the si values. Theresult would be a valid signature whih ould not be veri�ed by the original publikey. Therefore the sheme would not be seure against known signature attaksleading to existential forgery. For this, the heksum is appended to the signature,so that every additional hash to one of the si an be deteted.Example 1. Consider a 15 bit message digest to be signed: md = 101100000010010.Choose w = 4.Key GenerationPrng⇒ X = (0101

︸︷︷︸

x1

1100
︸︷︷︸

x2

1010
︸︷︷︸

x3

1110
︸︷︷︸

x4

0011
︸︷︷︸

x5

1111
︸︷︷︸

x6

) (Private key)
tw =

⌈

15/4
⌉

+
⌈(

⌊log2(⌈15/4⌉)⌋+ 1 + 4
)

/ 4
⌉

= 4 +
⌈

(2 + 1 + 4) / 4
⌉

= 6

⇒ Publi key: Y = (Hash15(x1), . . . ,Hash15(x6))20

2.4 Merkle TreesSignature Generation
md = 0101

︸︷︷︸

b1

1000
︸︷︷︸

b2

0001
︸︷︷︸

b3

0010
︸︷︷︸

b4

C = (10000− 0101) + (10000− 1000) + (10000− 0001) + (10000− 0010)

= 1011 + 1000 + 1111 + 1110 = 110000

⇒ b5 = 0011 and b6 = 0000Sig =
(Hash5(x1) ‖Hash8(x2) ‖Hash(x3) ‖Hash2(x4) ‖Hash3(x5) ‖ x6

)

= (s1‖ . . . ‖s6)Veri�ation (bi the same as above)
V =

(Hash10(s1) ‖Hash7(s2) ‖Hash14(s3) ‖Hash13(s4) ‖Hash12(s5) ‖Hash15(s6)
)

=
(Hash15(x1) ‖ . . . ‖Hash15(x6)

)
!
= Y

�2.4 Merkle TreesA problem whih ours by usage of one time signatures is well known from sym-metri ryptography appliations: the spae needed to store all involved keys risestoo fast. For every message a user A wants to send to another user B, a privatekey must be reated for user A. Additionally, user B has to store one publi key forevery message.Merkle's idea was to use a omplete binary tree for veri�ation of one time signatures.With this approah many signatures an be veri�ed by one single publi key. Thestorage needed for the veri�ation key is extremely small (only one key has to bestored). Every one time signature sheme an be extended to a multi-time one byusing suh an authentiation tree. 21

2.4 Merkle TreesA omplete binary tree of height H onsists of 2H leaves and 2H − 1 inner nodes.The height of a leaf is de�ned to be 0, whereas the height of inner nodes denotesthe length of a path down to a leaf. Thus, the root node has height H . The leavesare numbered onseutively from left to right, starting with 0. An example tree anbe seen in Figure 1.
��
��

���
HHH

��
��

��
��

�� @@ �� @@

��
��

��
��

��
��

��
��

root
0 1 2 3

h = 2

h = 1

h = 0Figure 1: A omplete binary tree of height H = 2. The values 0 . . . 4 are the leaf indies,
h denotes the nodes' heightMerkle trees were �rst introdued by Merkle in 1989 [4℄. A Merkle tree is a ompletebinary tree equipped with a hash funtion Hash. The values Φ(n) of a leaf an behosen arbitrarily, whereas the values of inner nodes are alulated by the following:for eah inner node nparent the value Φ(nparent) is de�ned to be the hash of theonatenation of the left and right hild nodes nleft and nright:

Φ(nparent) = Hash(nleft ‖nright)By this onstrution the Merkle tree is ompletely determined by the leaf values. Asample tree is shown in Figure 2.
���

HHH

�� @@ �� @@

Hash(Hash(AB)
∥
∥Hash(CD)

)Hash(AB) Hash(CD)

A B C DFigure 2: A Merkle tree with leaf values A,B,C,D22

2.5 The Merkle Signature ShemeMerkle trees are used for authentiating the leaf data using the root value. For thispurpose additional data is required, alled the authentiation data. For authenti-ating leaf i, on eah height h (h = 0 . . .H − 1) one node value Authh is stored,namely the sibling of the nodes on the path from leaf i up to the root. An examplefor the authentiation path is illustrated in Figure 3. For authentiating leaf i, onestarts at the bottom of the tree. Using the leaf value and the authentiation data oneah height by onatenating and hashing the root value an be omputed. If theoriginal stored root value is idential to the newly alulated one, the leaf value istruely authentiated.PSfrag replaements
Auth0

ϕ

Auth1

Auth2

Figure 3: Authentiation data of leaf ϕ. Hashing the onatenation of Auth0 and Φ(ϕ)gives the upper node, ontinuing up the root �nally gives the root value. The dashed nodesdenote the authentiation path for leaf ϕ. The arrows indiate the path from leaf ϕ to theroot.Besides digital signatures Merkle trees have been implemented for other useful ap-pliations like wireless seurity [15℄. As authentiation is the real purpose of theMerkle tree and not signature veri�ation, lots of other appliations are imaginable.However, this thesis will only fous on the appliation of digital signatures.2.5 The Merkle Signature Sheme2.5.1 MSS - Merkle Signature ShemeThe Merkle Signature Sheme (MSS) proposed in [4℄ onsists of a one time signaturesheme like the Winternitz OTSS and a Merkle tree. A Merkle tree of height H anbe used to authentiate 2H OTS keys (one for eah leaf of the tree). The leaf values23

2.5 The Merkle Signature Shemeof the tree are formed by the OTS publi keys Yi. More preisely the three signaturesteps are:MSS Key Generation. The MSS private key is the set of OTS private keys
(Y1, . . . , Y2H) whih are omputed as usual, depending on the used sheme (for theWinternitz sheme e.g. see setion 2.3.1). The OTS publi keys are hashed andstored as the tree's leaf values. By onatenating and hashing eah two hild nodes,the node labels of the tree an be omputed from bottom up to the root. The rootvalue of the tree forms the MSS publi key for veri�ation.The key pair generation uses an algorithm alled treehash (Algorithm 1) [16℄. Thisalgorithm is used to ompute the root of a Merkle tree using a stak strutureequipped with the usual push and pop operations 1. It onseutively omputesthe 2H leaf values onsisting of the OTS veri�ation keys Yj from left to right andpushs them on the stak. When two nodes of the same height lie on the stak,they are onatenated and hashed to the next upper node. After omplete 2H leafalulations and 2H − 1 hash evaluations, the root of the Merkle tree is the uppernode on the stak. Figure 4 illustrates an example.Algorithm 1 TreehashInput: Leaf l, stak StakOutput: updated stak Stak1. push l to Stak2. while top two nodes of Stak have same height do(a) pop n1 from Stak, pop n2 from Stak(b) push Hash(n1‖n2) to Stak3. return Stak.MSS Signature Generation. Complete 2H signatures an be reated using oneMerkle Tree. For eah new signature the next OTS key is used so that eah OTS1A stak is a data struture using a '�rst in - �rst out' strategy: push stores a node on top ofthe stak, pop delivers the top node of the stak.24

2.5 The Merkle Signature Sheme
D height 0
C height 0Hash(AB) height 1Stak before hashing Hash(Hash(AB‖Hash(CD))) height 2Stak after hashingFigure 4: Sample of the treehash algorithm: value 'D' is pushed on the stak. Then 'C'and 'D' are hashed to a height 1 node whih is then again hashed with the bottom nodeto a height 2 node.key is only used one. The MSS signature onsists of the index ϕ that appointswhih OTS key is used for the urrent signature. Furthermore the OTS signature,the OTS veri�ation key Yϕ and the authentiation data of leaf ϕ are omponentsof the MSS signature: SigMSS = (ϕ,SigOTS, Yϕ, {Authϕ}).MSS Veri�ation. The �rst step of veri�ation is the ontrol of the OTS sig-nature using the key Yϕ. If this phase fails, the whole MSS signature is rejetedas invalid. Otherwise the authentiation of this key is neessary. This happens byalulating the root value of the tree using the value Yϕ and the authentiation datastored in the MSS signature. First Yϕ is onatenated and hashed with Auth0 onthe lowest level, then the result is hashed again with Auth1 and so on up to theroot. If the thus omputed root is equal to the publi MSS key, the signature isonsidered to be valid.Seed alulation. Every leaf of the Merkle tree requires a random value SeedOTSfor the generation of the xk values needed for generation of the Winternitz OTS keys.This random data is alulated using the Prng as desribed in setion 2.3.1:

(Seedϕ+1,SeedOTS) ← Prng(Seedϕ)(1)
(SeedOTS, xk) ← Prng(SeedOTS), k = 1 . . . twi

(2)As input a random value Seed0 is required. Formula (1) generates the seeds neededfor the leaves. Formula (2) delivers the random data xk. This seed alulation an25

2.5 The Merkle Signature Shemebe seen as a lattie of seed values, as Figure 5 illustrates: the upper line shows theonseutive alulation of the SeedOTS values, whereas the downside lines show thegeneration of the xk values.Seed0
- Seed1

- Seed2 · · · - Seedϕ · · · - Seed2H

?SeedOTS

?

x1...
?

xk...
?

xtω

?SeedOTS

?

x1...
?

xk...
?

xtω

?SeedOTS

?

x1...
?

xk...
?

xtω

?SeedOTS

?

x1...
?

xk...
?

xtωFigure 5: Seed generation for a single Merkle tree. Eah array indiates one all tothe Prng.With this onstrution of the seed values we get a value Seed2H as output of theseed alulation. This output will be used in GMSS later on. Here we onludethat for the generation of all private and publi keys only one initial seed value isrequired.Seurity Of MSS. The seurity of MSS was regarded in [6℄. It an be provedthat the Merkle signature sheme resists any adaptive hosen message attak if1. a seure, that means ollision resistant hash funtion exists and2. the underlying one time signature sheme resists any forgery.A hosen message attak is an attak where the adversary has the possibility to get avalid signature to every hosen message. He an use this message/signature pairs ei-ther to forge a signature or to break the private key. Adaptive in this onern meansthat the attakers messages an be hosen dependent on further message/signature26

2.5 The Merkle Signature Shemepairs. As Coronado shows in [6℄, this attak will fail if the above mentioned assump-tions hold. The Merkle signature sheme an be onstruted using an arbitrary hashfuntion. So if a hash funtion should get inseure, it an be easily substituted bya seure one. The MSS remains seure.2.5.2 GMSS - Generalized Merkle Signature ShemeAs mentioned above GMSS is an expansion of the Merkle signature sheme. GMSSstands for generalized Merkle signature sheme and was proposed in 2007 [7℄. Oneinstane of GMSS is CMSS, whih was proposed in 2006 [5℄. When MSS and CMSShave relatively large sized signatures, GMSS is adressed to allow smaller signatures,and faster generation and veri�ation. Additionally with GMSS it is possible to signup to 280 and even more messages, while with MSS this number is only appliableup to 220. This attribute is helpful onsidering pratial applianes like web serverappliations, where big amounts of signatures are neessary. The parameterization ofGMSS allows the hoie of either fast runtime, small signatures or a trade-o� betweenboth depending on the appliation. This setion introdues the main harateristisand gives an overview about GMSS. A more detailed desription an be found in [7℄and [17℄.General Constrution. The general GMSS onstrution is made up of a treewith height T . The nodes of this tree are again Merkle trees. Eah of the Merkletrees on layer i of the basi tree has height hi and is parent of 2hi Merkle trees onthe layer i + 1. The Merkle trees are labeled Ti,j , where i is the level in the basitree and j is the number of the node on height i, onseutively numbered from leftto right with 0 . . . 2h1+h2+...+hi−1 − 1. The root tree is labeled T1,0.Again the Winternitz OTS sheme is used for the signatures in the Merkle trees. Foreah layer a di�erent parameter wi, i = 1 . . . T is allowed. GMSS is parameterized bythe height of the basi tree, the heights of the trees on eah layer and the Winternitzparameters. Altogether the parameter set P of GMSS is
P = (T, (h1, . . . , hT), (w1, . . . , wT))27

2.5 The Merkle Signature ShemeCMSS is the variant de�ned by the parameters P = (2, (h, h), (w, w)).The root of eah Merkle tree Ti,j is labeled RootTi,j
. It gets signed with the OTSkey of the orresponding parent leaf: the root of tree Ti,j is signed using the signaturekey of a leaf of the parent tree on height i − 1. The signature of tree T 's root isalled SigT . To sign a message digest the signature keys of the Merkle trees on thedeepest layer T are used. These signatures are denoted with Sigd. Following thisonstrution the number of message digests that an be signed is 2h1+h2...hT . Thegeneral onstrution of GMSS is illustrated in �gure 6.PSfrag replaements

TT,0 TT,1 TT,j

T2,0 T2,1

T1,0

T

SigT RootT
Figure 6: Basi onstrution of GMSS. Only the leaves on the lowest layer are used forGMSS signatures.As on upper layers the leaves advane less frequently, the preomputation of thesetrees an be distributed over many steps. This property allows an advane in sig-nature generation time. As well it allows the hoie of higher parameters wi for theOTS sheme, whih leads to a smaller signature size in total.A GMSS signature. As known from MSS for eah signature there is a uniquepath from the leaf ϕ up to the root. Here this path ontains one Merkle tree oneah layer. Additional to the one time signature of the message digest, the one timesignatures of the root values of these trees are stored in the GMSS signature. Alsothe authentiation data on the path existing of AuthT ,l for eah tree T is appendedto the GMSS signature. Hereby l is the index of the leaf of tree T used for signing28

2.5 The Merkle Signature Shemethe root of the tree on the layer below. On the deepest layer the authentiation dataof the leaf used to sign the message digest is appended. An example of this proessis depited in �gure 7.Totally the GMSS signature onsists of the following:
• the index ϕ of the leaf used
• the one time signature Sigd of the doument d signed with the key orrespond-ing to a leaf of the lowest layer
• the one time signatures SigTi,j

of the roots
• the authentiation paths AuthT i,j of eah tree on the path from the bottomleaf ϕ to the GMSS root

PSfrag replaements

ϕ,Sigd

SigTT,0

SigTi,j

AuthTT,0

AuthTi,j

AuthT1,0

TT,0

Ti,j

T1,0

Figure 7: Example of a GMSS signature29

2.5 The Merkle Signature ShemeSeed alulation in GMSS. For every single Merkle tree of the GMSS onstrutthe seed generation proedure desribed on page 25 is used. There an initial seedfor every tree is needed. For every tree of the GMSS struture this is an initial seedvalue SeedinTi,j
. The Seedin for the �rst tree in eah layer (SeedinTi,0

) is requiredas input. The following seedin values are omputed as the output of the last leaf ofthe previous tree:
(SeedinTi,j+1

,SeedOTS)← Prng(Seed2hi)Here Seed2hi is the seed of the last leaf of tree Ti,j . Hene using one initial seed foreah layer all required seed values an be onstuted.GMSS Key Generation. This phase uses the initial seed values for onstrutingthe publi and private keys needed for GMSS. The GMSS publi key is the root ofthe top Merkle tree: RootT1,0
. The private key is built by the following:SeedinTi,0

, i = 1 . . . T SeedinTi,2
, i = 2 . . . TSigTi,0

, i = 2 . . . T RootTi,1
, i = 2 . . . TAuthTi,0,0, i = 1 . . . T AuthTi,1,0, i = 2 . . . TUsing the treehash algorithm (Algorithm 1) the root values of the �rst Merkle treeon eah layer Ti,0 (inluding the GMSS publi key RootT1,0

) are built. For thisthe initial seed values SeedinTi,0
are needed. While alulating these roots theauthentiation data of the �rst tree AuthTi,0,0 of eah layer an be stored, so thatthe Auth values for these trees are obtained for free. The initial seeds for theseond trees are now available. The same as above the root values of the seondtrees RootTi,1

and the orresponding authentiation data AuthTi,1,0 are generatedwith Algorithm 1. After this the initial seed values for the third tree of eah layerSeedinTi,2
is ready and an be stored in the private key. The signatures SigTi,0

arethe one time signatures of the root values already known.
30

2.5 The Merkle Signature Sheme
PSfrag replaements Auth0

Auth0Auth0Auth0

Auth0

Seedin

Seedin

Seedin SeedoutSeedout

Sig
Sig

Root
Root
RootT1,0

= Publi key

Figure 8: Example GMSS keys. The private key onsists of the authentiation path forthe �rst leaf of the �rst two trees on eah layer, the Seedin for the �rst and the third treeon eah layer, the root signatures Sig of the �rst trees and the root values Root of theseond trees. The publi key is the uppermost root value RootT1,0
.This private GMSS key is the key for the �rst signature. Having reated this sig-nature the key is updated and so hanges for every new signature. Therefore theGMSS sheme is alled a key evolving signature sheme [18℄. As the private signingkey hanges (evolves) frequently, this leads to a speial seurity feature of GMSS,so alled forward seurity. Also if an adversary ompromises the atual signing key,it is impossible to forge signatures belonging to former signing keys. Using theintrodued seed sheduling, MSS does ontain this seurity feature as well [6℄.GMSS Signature Generation. The signature generation is distributed in anonline and an o�ine part. Suh a separated framework is desribed in [19℄. Theo�ine part an be seen as preparation of the next online part. This online part annot be done until the message is known. It is a fast proess, so that the signature anbe generated rapidly, when the o�ine part has already been done. The o�ine partbelonging to the �rst signature was done during the key generation phase. Laterduring the o�ine phase the private key has to be updated (as mentioned above, key31

2.5 The Merkle Signature Shemeevolving sheme). The online part only onsists of the generation of the signature.All parts needed for this signature were reated and provided by the previous o�inepart. A detailled desription of both phases an be found in [7, 17℄.The o�ine part distributes the omputation of the needed Root, leaf and Sigvalues, so that for eah signature the time to spend is not too di�erent. If a Root ora Sig value is omputed at one, the atual round lasts longer than previous roundswhere no suh time expensive operations were done. Therefore the omputation ofthose values is distributed over the alulation of the leaves of the underlying layer,i.e. over 2hi+1 steps. Figure 9 illustrates the preomputation of those values.
PSfrag replaements RootTi,j+2

SigTi,j+1

Ti−1,j

Ti,j Ti,j+1 Ti,j+2

Ti+1,jFigure 9: While advaning a leaf in tree Ti,j, the values SigTi,j+1
and RootTi,j+2

areupdated, so that the omputation of those values is distributed over all 2hi steps of tree Ti,j.While doing one step in Ti+1,j the leaf of tree Ti,j+2 is partly omputed.GMSS Veri�ation. The GMSS veri�ation is nearly the same as in the orig-inal Merkle sheme. The �rst part is the veri�ation of the one time signature ofthe original data. If this already fails, the veri�ation an be stopped. Next theauthentiation starts with the tree on the lowest layer. Using the orrespondingauthentiation data the root value of all trees an be alulated. The one time sig-32

2.5 The Merkle Signature Shemenature of the roots are ompared to the values Sig in the signature. Also if one ofthese signatures annot be veri�ed truly, the GMSS veri�ation fails with a nega-tive result. Ending up at the root RootT1,0
of the GMSS onstrution, this an beompared to the GMSS publi key. Only if this omparison is suessful the wholesignature is aepted.Needed Storage. Following [7℄ the size of the keys and the signature is:

mpubkey = n bits
mprivkey =

(T∑

i=1

(hi + 1) +
T∑

i=2

(hi + twi−1
+ 2)

)

· n bits
msignature =

T∑

i=1

(hi + twi
) · n bitsThe variable n again denotes the length of the output of the hash funtion Hash.The publi key is only one single hash value, that's why its bit length is n. The sizeof the private key and the signature an easily be derived from the listings above.In pratie these numbers will not hold. Some additional data has to be stored, forexample the parameters P must be added to the publi key as they are needed forthe veri�ation proess. So these numbers are more theoretial, but they give anidea of the overall sizes of signatures and keys. A omparison of the needed storageapaity an be found in setion 6.

33

3 Common Traversal Algorithms3.1 OverviewThe Merkle tree traversal problem is the hallenge of omputing the authentia-tion paths of onseutive leaves of one single Merkle tree. This is one of the mostruial steps in the Merkle signature sheme and its derivatives. Today MSS andits desendants are not often used in pratie, beause they are too slow or thesignature size is too big. Better traversal tehniques may speed up the signaturegeneration (as well as better implementations like GMSS shall make the systemmore useful for pratial onsiderations). As onseutive leaves mostly share a lotof authentiation nodes, only the hanges have to be omputed from one leaf to thefollowing. Good sheduling algorithms use this fat to speed up the omputation ofnew authentiation data.With digital signatures a tree traversal algorithm for authentiation data onsist ofthree phases: key generation, output and veri�ation.During the key generation phase the root of the Merkle tree is onstruted and the�rst authentiation path is stored. Some additional authentiation data anbe stored used as input for the traversal algorithm as well.The output phase onsists of 2H rounds. In eah round the leaf value Φ(ϕ) andthe authentiation data {Authh} of leaf ϕ is output and then updated for thenext round. This is the main part, requiring good sheduling ideas.The veri�ation phase is always the same as for the original Merkle tree.In his original paper Merkle introdued a simple traversal algorithm [4℄. Jakobssonet. al. proposed an algorithm using subtrees in [20℄. This algorithm allows a trade-o� between storage and omputation time. It needs a maximum of 2H / log(H)hash funtion evaluations and maximum storage of 1.5H2 / log(H) hash values perround. An implementation of the Merkle signature sheme using Jakobsson's ideasan be found in [21℄. 34

3.1 OverviewSzydlo presented a log-time and log-spae algorithm in [22℄ and a slightly di�er-ent version in a preprint in [16℄. An algorithm is alled logarithmi if its time perround respetively the maximum memory apaity needed is logarithmi in the to-tal number of signatures N . He also proves that these bounds are optimal for theauthentiation path omputation, i.e. that it is not possible to reate an algorithmthat in both time and spae omplexity is better than O(log N). Other work on-sidering authentiation path omputation an be found in [23℄. The new algorithmpresented in this thesis is an improvement of Szydlo's algorithms. For this reasonthe outline of this setion is the introdution of Szydlo's traversal algorithm (themore e�ient preprint version of [16℄, not the more simple, published version of [22℄).The desription of Merkle's lassial algorithm leads to Szydlo's improved algorithmversion (Algorithm 2). Finally some drawbaks of Szydlo's algorithm are presentedto motivate the improved algorithm presented in the main part of this thesis.3.1.1 NotationFor authentiation data the notation already known is used: Authh is the height
h sibling on the path from the urrent leaf ϕ to the root. Further on for eah level
h of the tree one instane of the treehash algorithm (Algorithm 1) alled Stakh isused. For pratial onsiderations two methods initialize() and update() existfor these instanes. The �rst method only sets the start node index and the desiredheight of the instane. The update() method either omputes a node and pushs iton the stak or it one hashes the stak's top nodes if possible (if top nodes havesame height). Temporarily stored nodes on a stak are alled tail nodes. If Stakhis ompleted, the top node is stored in an array Needh. There all upoming rightnodes are stored until they are needed for an authentiation path.Some omputed nodes are later on again helpful for speeding up the omputationof higher left nodes. For eah height h at most one suh additional node an bekept. For this the set Keeph is used. The height of the tree is denoted H , henethe number of nodes is N = 2H , numbered from 0 to N − 1 from left to right. Allpapers [4, 16, 20, 22, 23℄ do not onsider the omplexity of the alulation of oneleaf. They use an orale Leafal(ϕ) whih omputes the leaf value Φ(ϕ). The35

3.2 Szydlo's Algorithmall of this orale is ounted as one omputation unit for the omplexity analysis, aswell as hash funtion evaluations are ounted one unit eah.3.2 Szydlo's Algorithm3.2.1 MotivationThe lassial algorithm introdued by Merkle in his original paper distinguishesbetween omputation of left and right authentiation nodes. It uses one treehashinstane for eah height, as desribed above. Using these, new upoming rightauthentiation nodes are preomputed, for that they are ready when they are neededfor Auth values. In eah round ϕ ∈ [0 . . . 2H − 1] every treehash instane gets oneupdate, if it was not already ompleted. This leads to the following problem: in theworst ase all H treehash instanes are ative at the same time. So the maximumnumber of required spae units is 0.5(log(N))2. Szydlo's idea was to hange thesheduling strategy for the treehash instanes to save memory.The generation of left nodes is quite easy, beause their hild nodes have alreadybeen omputed. Saving those hild nodes only one hash operation is required foromputation of a left authentiation node.As Merkle did in his original algorithm, Szydlo distinguishes between the omputa-tion of left and right authentiation nodes. The omputation of left nodes is quitethe same as in Merkle's paper.3.2.2 The AlgorithmAs input Algorithm 2 needs the authentiation path of the �rst leaf of the Merkletree. These values {Authh, h = 0 . . .H} an be stored during the key generationphase when omputing the root of the tree. So the �rst authentiation path isobtained for free. Every round of the authentiation path algorithm of Szydlo thesame steps are exeuted: 36

3.2 Szydlo's AlgorithmGenerating an output. Every round starts with the output of the previous om-puted authentiation path. This will always be ompleted when it is needed. Ad-ditionally the urrent leaf value Φ(ϕ) is output. If the leaf index is even, this valuemust be omputed using one Leafal operation, otherwise it is always available.Left node omputation. For eah leaf ϕ exatly one new left authentiationnode L must be added. The height of this node is the height of the �rst parent nodeof leaf ϕ that is a left node. This height is denoted τ . If the urrent leaf is a leftnode itself, τ is set to 0. Figure 10 shows an example. The new node on height τ isstored as Authτ . If τ > 0, both hild nodes of the new authentiation node havealready been omputed and stored in Authτ−1 and Keepτ−1. Out of these twohild nodes the parent node L an be omputed (by onatenating and hashing), sothe new node requires only one hash alulation. All nodes Authi with index i < τare reset with values from ompleted treehash staks (Needi).
PSfrag replaementsAuthAuthAuth

Auth0 ϕ = 3

τ = 2Auth1

Auth2Keep1 Need0

Need1

⇓

PSfrag replaements
Auth2

ϕ = 4 Auth0

Auth1

AuthAuthAuthKeepNeedNeedFigure 10: Left node omputation: A Merkle tree of height 4 in rounds ϕ = 3 and ϕ = 4.In the upper tree the height of the �rst parent of leaf ϕ that is a left node is τ = 2. Thelower �gure shows the authentiation data of leaf ϕ = 4. All lower authentiation nodes(Auth0 and Auth1) are pushed from the staks an reset in round ϕ = 3.37

3.2 Szydlo's AlgorithmReleasing spae. Some previously stored nodes are no more needed after theomputation of the new left node. Therefore some memory spaes an be freed bydeleting the values Authi for i < τ and Keepτ−1. The former value Authτ isstored in Keepτ , for possibly this node is needed for a new left node reation onelayer above.Stak reation. Every round one stak is initialized anew: the stak belonging toheight τ . The new left node L has replaed Authτ in this round. Then 2τ roundslater again this authentiation node will hange to a right node. This right node isreated by Stakτ , the one whih is initialized anew. The starting index for thisstak is ϕ + 1 + 2τ+1.Building needed future nodes. In total, exatly H operations shall be per-formed in one round. One is already spent either in step 2 (if ϕ is even) or in step 4(if τ = 0 whih is equivalent to ϕ is odd) of Algorithm 2. So still H − 1 operationsare to perform in step 6. Here the main improvement to Merkle's lassial algorithmtakes plae: the sheduling for hoosing whih stak gets an update. Szydlo alwayshooses the stak with the lowest top node. One update (either Leafal or hashoperation) is performed to this stak. This happens H − 1 times, so that exatly Homputation units are spent in eah round.The whole algorithm desription is depited in Algorithm 2.

38

3.2 Szydlo's AlgorithmAlgorithm 2 Logarithmi Merkle Tree TraversalInput: First authentiation path {Authh}Output: Auththentiation paths for leaves ϕ + 11. Let ϕ = 02. Output If ϕ is even, ompute Φ(ϕ) = Leafal(ϕ). Output Φ(ϕ), for eah h ∈ [0, H − 1]output Authh3. Release nodes Let L be the urrent leaf if ϕ is even, or its �rst anestor whih is a leftnode. Let τ be the height of L (equal to the highest τ with 2τ |(ϕ + 1)). Remove ertainexpired nodes below L:
• Remove all node values Authi for i < (τ − 1)
• if τ = 0 reord Φ(ϕ + 1) = Auth0

• if L's parent is a right node, remove L's sibling, Authτ

• if L's parent is a left node, set Keepτ = Authτ4. Add left node
• if τ = 0 set Auth0 = Φ(ϕ)
• if τ > 0 ompute Authτ = Hash(Authτ−1‖Keepτ−1)
• Remove node values Authτ−1 and Keepτ−1.
• Copy new lower right nodes: for i < τ set Authi = Needi5. Add stak Create Stakτ at height τ , with starting value ϕ + 1 + 2τ+16. Building needed nodesRepeat H − 1 times
• set active to be the stak with the lowest node (hoose the lowest of suh index inase of a tie)
• if there is no suh ative stak, break and go to step 7
• Spend one unit building Stakactive, as in Treehash
• if Stakactive is omplete, put result in Needactive and destroy Stakactive7. Loop to next round
• Set ϕ = ϕ + 1
• if ϕ < 2H go to Step 2It is an important task to show that every right authentiation node is ompletedwhen it is needed by the traversal algorithm. The proof of orretness of the pre-sented authentiation path algorithm an be found in [16℄. Exatly H omputationunits are spent in eah round of the algorithm, so the omputing time is in O(H).Szydlo shows that the maximum spae needed with 3H − 2 is likewise algorithmiin the total number of signatures (sine H = log2(N)).As an interesting onern, Szydlo proves that the bounds of O(H) for both time andspae omplexity he found are optimal. It is impossible to �nd an authentiationpath algorithm that is in both better than O(log2(N)). It is lear that at least H−239

3.3 Drawbaks of Former Algorithmsnodes have to be stored. So it su�es to show that if an algorithm needs a storageapaity of O(log2(N)), then at least O(log2(N)) omputation units per round arerequired. A trade-o� between time and spae bounds an always be found, as noonstants are given. But the omplexity bounds of O(log2(N)) for both at the sametime are hard.3.3 Drawbaks of Former AlgorithmsAll known work on traversal algorithms onsider the leaf-alulation and the hash-funtion evaluation to require the same amount of omputation. Both operationsare ounted as one omputation unit eah. When applying a one time signaturesheme for the leaf alulation, many hash value omputations are needed to gen-erate a single leaf, i.e. up to thousands. One an expet that leaf-alulation ismuh more expensive onsidering the omputation time needed than a single hash-funtion evaluation. This leads to the problem that one annot predit the numberof hashes really needed during one step of the authentiation path algorithms. Sothe generation time of a signature varies enormously from round to round.Szydlo's algorithm is the one that provably allows the best time and memory prop-erties. Using H staks whih store at most H nodes eah, the maximum number ofnodes stored is in O(H2). He shows that the memory needed for the staks is atmost H , so that all other memory spaes are not needed at one. But implementingthis algorithm on a platform without dynami memory alloation would need theomplete spae of O(H2), as spae for all H2 nodes has to be reserved.These ideas were inluded onstruting the new traversal algorithm (Algorithm 3)whih is presented in the next setion. Counting the number of hashes and thenumber of leaf alulations separately leads to more balaned timings. Furthermorewe show that it is possible that all treehash instanes share one single stak, sothat the storage needed is bounded linearly in H even on system without dynamimemory alloation.
40

4 A New Authentiation Path AlgorithmThis setion introdues a new algorithm for Merkle tree authentiation path om-putation. It is an improvement of Szydlo's preprint algorithm [16℄ and addressesit's drawbaks mentioned in setion 3. The orretness of the new algorithm will beproved below. Further, some alulations on runtime and storage requirements aremade for omparison with former algorithms. This setion presents the theoretialresults, whereas pratial results are given later in setion 6.Our new algorithm will allow a time-memory trade-o�. In the key generation phasethe whole Merkle tree has to be omputed ompletely one. In this phase the�rst authentiation path was stored as input for Merkle's and Szydlo's shedulingalgorithms. Now we are going to store some more nodes: as the omputation ofright nodes near to the root is most expensive, the idea is to store those right nodesfrom the beginning, so that the time to ompute these nodes is saved later. Theparameter K denotes the number of top layers in the tree where all right nodes arestored. K is hosen so that H−K is even (we perform (H−K)/2 steps per round).As mentioned above, our new algorithm yields to a more balaned signature gener-ation time and also a moderate spae requirement. Clearly the logarithmi boundsin spae and time omplexity shall be maintained. We will show that an amount ofless than H/2 leaf alulations per round are su�ient to ompute authentiationpaths and that storage is also bounded logarithmially in the number of leaves.We use staks that are slightly di�erent from the ones used by Szydlo. For eahheight we apply a struture Treehash, whih omputes the upoming right nodesfor the authentiation path (again using Algorithm 1). All these instanes shareone single stak, whereas in former algorithms every instane had its own stak tostore nodes on. We ahieve a logarithmi total number of nodes stored at one, alsoon devies without dynami memory alloation. We will show that sharing a singlestak for all Treehashs works well. Further on we are using a slightly modi�edsheduling of the omputation of right nodes, so that the amount of (H − K)/2leaf alulations per round are su�ient. The omputation of right nodes hanges,whereas left nodes are omputed in the same manner as with Szydlo's algorithm.41

4.1 Notation4.1 NotationThe main part of the notation is already known from previous setions. H denotesagain the height of the Merkle tree. With yh[j] the jth node on height h (i =

0 . . .H, j = 0 . . . 2H−h − 1) is referred. The authentiation path of the urrent leaf
ϕ is again Auth0, . . . ,AuthH−1. The values Keep0, . . . ,KeepH−2 are the sameertain nodes to quikly ompute left hildren. With τ we denote the height of the�rst parent of the atual leaf ϕ whih is a left node. The staks to store the rightnodes near to the root (on the upper K levels, K ≥ 2) are alled Retainh(h =

H − 2 . . .H − K). They are �lled from left to right, so that the top node of aRetain stak is always the next one needed for the authentiation path.Again we use an orale Leafal whih omputes the leaf value of the leaf with theomitted index. Using the Merkle tree for digital signatures this method omputes theveri�ation key of the underlying one time signature sheme. In di�erene to formeralgorithms we do not just ount it as one omputation unit, we will distinguishbetween the omputation of leaves and single hash evaluations.4.1.1 Treehash StaksWith Treehash0 . . .TreehashH−K−1 we denote the strutures to ompute righthildren. Eah suh instane stores the �rst node itself, further nodes are pushedon the ommonly shared stak. A node stored on a Treehash stak is alleda tail node. Additionally to the push and pop operations eah treehash stak isequipped with three methods: initialize(), height() and update(). The methodTreehashh.initialize() sets the start node whih tells the Treehash with whihleaf the omputation of the stak has to begin. Treehashh.height() returns theheight of the lowest node stored in the instane, either on the stak or in Treehashhitself. This method is required for the sheduling of the (H − K)/2 Leafaloperations, whih are always assigned to the one instane with the lowest tail node. Ifthere is more than one instane with same lowest node height, the one with the lowestindex is hosen for the update. In order to skip instanes that are already �nished ornot yet initialized, Treehashh.height() is set to in�nity in these ases. When the42

4.2 Algorithm Desriptiontreehash stak was initialized, the �rst all of the last method Treehashh.update()alulates the leaf with the start index. It is stored in the instane itself. The nextupdates work in analogy to Algorithm 1: the next leaf is alulated and stored onthe stak. If the top two nodes have the same height they are hashed together andthe result is pushed on the stak. If the top node on the stak and the �rst node inthe treehash have same height, the result replaes the �rst node of the treehash.4.2 Algorithm Desription4.2.1 InitializationDuring the key generation, we store ertain nodes of the Merkle tree. First we storethe authentiation path for the �rst leaf ϕ = 0:Authh = yh[1], h = 0 . . .H − 1We also store the next right authentiation node for eah height h = 0 . . .H−K−1on the staks Treehashh.push(yh[3]), h = 0 . . .H −K − 1Depending on K, we store all right authentiation nodes on the retain staks:Retainh.push(yh[2j + 3]), h = H −K . . .H − 2, j = 2H−h−1 − 2 . . . 0Figure 11 illustrates the initialization proess.
Figure 11: Values of the initialization, H = 5,K = 3. The dashed nodes are authen-tiation nodes, the blak ones are stored in treehash, the grey nodes are kept in retainstaks. 43

4.2 Algorithm Desription4.2.2 Authentiation Path ComputationAs input, Algorithm 3 requires a node index ϕ between 0 and 2H − 2 and theatual algorithm state (whih means the Treehash instanes, the stak and theauthentiation path of the urrent leaf). As output, it returns the authentiationpath of the next leaf ϕ + 1.Left node omputation. The �rst steps are again handling the left node om-putation. The value τ is the height of the �rst parent node of leaf ϕ whih is aleft node, remember τ = 0 if the urrent leaf itself is a right node. In formulawe have τ = max{h : 2h | (ϕ + 1)}. For left node omputation the urrent Authnode on height τ is stored in Keepτ if ⌊ϕ/2τ+1⌋ is even (whih means that theparent of ϕ on height τ + 1 is a left node). This node is required in round ϕ + 2τfor the next authentiation node on height τ + 1, whih an then be omputed asHash(Authτ‖Keepτ). See �gure 12 of an example for the left node omputation.PSfrag replaements
ϕ ϕ + 2τ

τ = 2 → Keepτ

Figure 12: In round ϕ the node Authτ is stored in Keepτ . This node is needed inround ϕ + 2τ for the omputation of its parent node, whih is part of the dashed authen-tiation path omputed in round ϕ + 2τ .If τ = 0, whih ours in the rounds where leaf ϕ is a left node itself, we useLeafal(ϕ) to ompute the leaf value itself. This node is the lowest authentiationnode for the next round, i.e. Auth0 = Leafal(ϕ).Considering this, the omputation of the left authentiation node requires either onehash funtion all (if ϕ is a right node) or one Leafal operation (in ase that ϕis even). 44

4.2 Algorithm DesriptionRight node omputation. If the new left node for the authentiation path wasomputed, the values Authh for h = 0 . . . τ − 1 must hange as well (ompare�gure 10 on page 37). The required nodes were either stored on the Retain staks(for all h ≥ H − K) or they were preomputed in the Treehash instanes. Sothe all Retainh.pop respetive the all Treehashh.pop delivers the newly neededauthentiation nodes on heights lower than τ . In setion 4.3 we will show that everytreehash in fat is ompleted when its top node is needed.If an Auth node was taken from a Treehash instane, it must be reinitialized forthe preomputation of the next right nodes. The instane with height h must againbe ompleted in round ϕ+2h+1. For that the instane is initialized with start index
ϕ + 1 + 3 · 2h. An illustration of this proess an be seen in Figure 13.PSfrag replaements

ϕ ϕ + 1 + 3 · 22ϕ + 23

Auth2
Treehash2

Figure 13: In round ϕ the node Auth2 is popped from Treehash2. This instane isthen initialized anew with start index ϕ + 1 + 3 · 22 and omputes the delared right nodeon height 2. This node is needed in round ϕ + 23.The next step is the sheduled omputation of the remaining (H − K)/2 ompu-tations of Leafal operations. We use the same sheduling as Szydlo did: theTreehash instane with the lowest tail node on his top gets the urrent update. Ifmore than one instanes have tail nodes at the same minimal height we hoose theone whih has the lowest index.The last step of the algorithm is the output of the authentiation path {Authh :

h = 0 . . .H − 1}. Algorithm 3 shows the omplete algorithm listing.
45

4.2 Algorithm DesriptionAlgorithm 3 Improved Authentiation Path ComputationInput: ϕ ∈ {0, . . . , 2H − 2}, H , K and the algorithm state.Output: Auththentiation path for leaf ϕ + 11. Let τ = 0 if leaf ϕ is a left node or let τ be the height of the �rst parent of leaf ϕ whih isa left node:
τ ← max{h : 2h|(ϕ + 1)}2. If the parent of leaf ϕ on height τ + 1 is a left node, store the urrent authentiation nodeon height τ in Keepτ :if ⌊ϕ/2τ+1⌋ is even and τ < H − 1 then Keepτ ← Authτ3. If leaf ϕ is a left node, it is required for the authentiation path of leaf ϕ + 1:if τ = 0 then Auth0 ← Leafal(ϕ)4. Otherwise, if leaf ϕ is a right node, the authentiation path for leaf ϕ+1 hanges on heights
0, . . . , τ :if τ > 0 then(a) The authentiation path for leaf ϕ + 1 requires a new left node on height τ . It isomputed using the urrent authentiation node on height τ − 1 and the node onheight τ − 1 previously stored in Keepτ−1. The node stored in Keepτ−1 an then beremoved:Authτ ← f(Authτ−1||Keepτ−1), remove Keepτ−1(b) The authentiation path for leaf ϕ + 1 requires new right nodes on heights h =

0, . . . , τ − 1. For h ≤ H − K − 1 these nodes are stored in Treehashh and for
h ≥ H −K in Retainh:for h = 0 to τ − 1 doif h ≤ H −K − 1 then Authh ← Treehashh.pop()if h > H −K − 1 then Authh ← Retainh.pop()() For heights 0, . . . , min{τ−1, H−K−1} the treehash instanes must be initialized anew.The treehash instane on height h is initialized with the start index ϕ+1+3 ·2h < 2H :for h = 0 to min{τ − 1, H −K − 1} do Treehashh.initialize(ϕ + 1 + 3 · 2h)5. Next we spend the budget of (H − K)/2 updates on the treehash instanes to prepareupoming authentiation nodes:repeat (H −K)/2 times(a) We onsider only staks whih are initialized and not �nished. Let s be the index ofthe treehash instane whose top node has the lowest height. In ase there is more thanone treehash instane whose top node has the lowest height we hoose the instanewith the lowest index:
s← min

{

h : Treehashh.height() = min
j=0,...,H−K−1

{Treehashj .height()}}(b) The treehash instane with index s reeives one update:Treehashs.update()6. The last step is to output the authentiation path for leaf ϕ + 1:return Auth0, . . . ,AuthH − 1. 46

4.3 Corretness of the Algorithm4.3 Corretness of the AlgorithmThis subsetion proves that the new authentiation path algorithm works orretly.First we will show that the amount of (H −K)/2 Leafal operations per roundis su�ient for omputation of the right authentiation nodes, whih means thateah treehash instane is ready when needed.Lemma 1. In Algorithm 3 every right node is ompleted in time.Proof. In this proof we show that every Treehash instane is de�nitely ompletedwhen its top node is required for the authentiation path.On height h we need 2h Leafal-operations and 2h − 1 hash value operations toomplete Treehashh. When Treehashh is initialized in round ϕ, the authentia-tion node on height h omputed by this instane is needed in round ϕ+2h+1. So thereis an amount of 2h+1 rounds until Treehashh must be ompleted. In eah round weperform (H−K)/2 Leafal-operations. Our total is H−K
2
· (2h+1) = (H−K) ·2hoperations to spend before the treehashs top node is required. The hart of Table1 shows whih Treehash instanes an be omputed during the omputation ofTreehashh and what osts they need.Treehash Quantity Leafal-ops eahTreehashH−K−1 1 max 2h...Treehashh+1 1 max 2hTreehashh 1 2hTreehashh−1 2 2h−1...Treehashh−j 2j 2h−j...Treehash0 2h 1Table 1: Number of Leafal operations47

4.3 Corretness of the AlgorithmAs shown in the Table 1, ative Treehash instanes on higher levels than h anapply at most 2h Leafal operations eah (the total ost of ompleting a stakon height h). Before they were ontinued on higher levels, Treehashh must havebeen ompleted. There are H − K − 1 − h exemplars of higher instanes (indies
h+1 . . .H−K−1). The omputation of a lower instane Treehashh−j with index
j ∈ {1 . . . h} requires 2h−j Leafal operations. During the available 2h+1 roundsTreehashh−j is initialized 2j times.Summing up the number of the maximal ount of Leafal operations, we get lessthan (H −K − 1− h) · 2h for the staks with index higher than h and

(h + 1) · 2j · 2h−j = (h + 1) · 2hfor the staks with index less or equal h (down to 0). Totally we get at most
(H −K − 1− h) · 2h + (h + 1) · 2h = (H −K) · 2hThis is an upper bound for the maximum number of Leafal operations per-formed until Treehashh must be ompleted. As we have seen above we have atotal amount of (H − K) · 2h Leafal operations. So we determine that everystak is ompleted when its top node is needed in the algorithm. The upper boundis tight for h = H −K − 1.In his algorithm Szydlo uses one stak for eah height h = 0 . . .H − 1. In our newalgorithm all Treehash instanes share one single stak. For the orretness of thealgorithm we have to show that sharing one single stak really works.Lemma 2. In Algorithm 3 it is su�ient to share one single stak for all Treehashinstanes.Proof. We have to show that tail nodes belonging to di�erent Treehash instanesdo not interfere on the stak. If Treehashh gets an update and has previouslystored nodes on the stak, we have to show that these nodes lie on top of the stak.First we onsiderTreehash instanes with index greater than h. When Treehashhreeives its �rst update, the lowest tail node of higher Treehash instanes has a48

4.4 Computational Boundsheight of at least h. That implies that Treehashh is ompleted before those in-stanes get another update. So Treehashh and instanes on higher levels neverinterfere on the shared stak.Let us now examine lower Treehash instanes. It is possible that Treehashi withindex i < h gets updates and stores nodes on the stak while Treehashh is notompleted and stores tail nodes on the stak. This an happen only if the lowesttail node of Treehashh has height greater or eqal i. But in this ase Treehashi isompleted before Treehashh gets another update, and the top nodes on the stakare again the tail nodes of Treehashh. We have shown that lower Treehashinstanes do not interfere with the tail nodes of Treehashh, and so the proof isompleted.4.4 Computational BoundsLemma 3. Algorithm 3 needs (H − K)/2 + 1 many Leafal operations perround. The number of performed hash value evaluations per round is bounded by
3
2
(H − K − 1) + 1. Therefore the total omputation ost of Algorithm 3 lies in
O(log2 N).Proof. Leafal operations. In step 3 of our algorithm one Leafal opera-tion is performed, if ϕ is a left node. In step 5 at most (H −K)/2 alulations areexeuted. Totally we have at most (H −K)/2 + 1 Leafal operations.Hash operations. Now we give an upper bound for the number of hash alulationsperformed in one round. Let u = H−K

2
. We will show that the maximum number ofhash evaluations is performed in the following ase: the instane TreehashH−K−1reeives all u updates and is ompleted by the last one of these updates.We will now give an upper bound for the number of hashes required in this worstase. On height 0 every seond round a hash is required. Every fourth round oneadditional hash is required on height 1. Generally on height h every 2h+1th roundan additional hash is performed (h = 0 . . . ⌈u/2h⌉ − 1).Sine we have at all u updates to perform, on height 0 we get totally ⌈u/2⌉ hashes,49

4.4 Computational Boundson height 1 there are additional ⌈u/4⌉ hashes and generally for height h we have toadd ⌈u/2h+1⌉ hashes, whih makes totally
⌈log2 u⌉−1

∑

h=0

⌈ u

2h+1

⌉

=

⌈log2 u⌉
∑

h=1

⌈ u

2h

⌉The last update requires H −K − 1 = 2u− 1 hashes to omplete TreehashH−K−1up to height H −K − 1. So far only ⌈log2 u⌉ of these hashes were onsidered, so wehave to add 2u− 1− ⌈log2 u⌉ hash value evaluations. In total for the worst ase weget the following upper bound for the number of hashes required for one round:
⌈log2 u⌉
∑

h=1

⌈ u

2h

⌉

+ 2u− 1− ⌈log2 u⌉(3)
≤

⌈log2 u⌉
∑

h=1

(u

2h
+ 1

)

+ 2u− 1− ⌈log2 u⌉

=

⌈log2 u⌉
∑

h=1

(u

2h

)

+ ⌈log2 u⌉+ 2u− 1− ⌈log2 u⌉

= u

⌈log2 u⌉
∑

h=1

(1

2h

)

+ 2u− 1Using the geometri series it is
⌈log2 u⌉
∑

h=1

1

2h
=

(1/2)⌈log2 u⌉+1 − (1/2)

1/2− 1
= −2 · ((1/2)⌈log2 u⌉+1 − 1/2) = 1−

1

2⌈log2 u⌉Additionally it is
−

1

2⌈log2 u⌉
≤ −

1

2log2 u+1
= −

1

2 · 2log2 u
= −

1

2u
= −

1

H −KInluding this we get
(3) ≤ (1−(

1

H −K
))

H −K

2
+H−K−1 =

H −K

2
−

1

2
+H−K−1 =

3

2
(H−K−1)One additional hash is performed in step 4a of Algorithm 3. This leads to themaximum of 3

2
(H − K − 1) + 1 hashs per round. What remains now is to show50

4.4 Computational Boundsthat there is no other ase that requires more hash evaluations, so that the abovementioned ase is indeed the worst ase.If a treehash instane on height less than H − K − 1 reeives all updates and isompleted in this round, less than (3) hashes are required. The same holds if thetreehash instane reeives all updates but is not ompleted in this round.The last ase to onsider is the one where the u available updates are spent ontreehash instanes on di�erent heights. If the ative treehash instane has a tailnode on height j, it will reeive updates until it has a tail node on height j + 1,whih requires 2j updates and 2j hashes (so 2j < u, otherwise again only onetreehash instane would reeive updates). First onsider the ase that the ativetreehash instane is not ompleted by the u updates. Additional to the 2j hashesthere an be t ∈ {0 . . .H −K − j − 2} hashes whih take nodes from the stak, ason the stak nodes on heights j + 1 . . .H −K − 3 ould be stored. Then the nexttreehash instane worked on has a tail node on heights j or j + 1 (> j + 1 is notpossible, otherwise the old treehash instane would get the next updates again, < jis not possible beause then this treehash instane would have gotten the updatesearlier) and it annot store nodes on the stak on heights ≤ j + t (on eah heightat most one node is stored on the stak). But this is the same ase whih appearsin the above mentioned worst ase if it omputes a node on height j and gets thenext updates for the same instane. The last ase to onsider is the ase where theative treehash instane is ompleted by the �rst 2j updates and hashes. Again it ispossible that t ∈ {0 . . .H −K − j − 2} hashes are additionally needed for nodes onthe stak. Then the next ative treehash instane has a tail node on height ≥ j, andon the stak there an only be nodes with height at least j + t + 1. Again this aseappears in our worst ase senario, as it makes no di�erene if the same instanereeives the next update or another one. So we ould show that all other ases anbe redued to the worst ase and this bound was given above.Considering the bounds of (H − K)/2 + 1 Leafal operations and
3
2
(H − K − 1) + 1 hash evaluations per round it is easy to see that the ompu-tation osts of our algorithm is bounded linearly in H. Sine H = log2 N the ost islogarithmially in the number of leaves N, so that it lies in O(log2 N).51

4.5 Storage E�ieny4.5 Storage E�ienyLemma 4. Keep onsists of at most ⌊H/2⌋+ 1 node values. For the upper K − 1Retain staks 2K−K−1 nodes are stored. On the shared stak at most H−K−1nodes are stored. Therefore the total spae required by Algorithm 3 is bounded by
3H + ⌊H/2⌋+ 2K − 3K − 1.Proof. Spae requirements for Keep nodes. Consider that in step 2 of Algo-rithm 3 a node gets stored in Keeph (h = 1 . . .H − 2). Then the node in Keeph−1is removed in the same round in step 4a.Next we will show that if a node is stored in Keeph, h = 0, . . . , H − 3, thenKeeph+1 is empty. A node is stored in Keeph+1 in rounds ϕ ∈ Aa = {2h+1 − 1 +

a · 2h+3, . . . , 2h+2 − 1 + a · 2h+3}, a ∈ N0. In rounds ϕ′ = 2h − 1 + b · 2h+2, b ∈ N0, anode gets stored in Keeph. We will show that ϕ′ /∈ Aa. Assume(4) ϕ′ ∈ Aa ⇔ ϕ′ ≥ 2h+1 − 1 + a · 2h+3

︸ ︷︷ ︸

(4.1)

and ϕ′ ≤ 2h+2 − 1 + a · 2h+3

︸ ︷︷ ︸

(4.2)(4.1) ϕ′ ≥ 2h+1 − 1 + a · 2h+3

⇔ 2h − 1 + b · 2h+2 ≥ 2h+1 − 1 + a · 2h+3

⇔ 1 + b · 22 ≥ 21 + a · 23

⇔ 4b ≥ 1 + 8a

⇔ b ≥ 1/4 + 2a(4.2) ϕ′ ≤ 2h+2 − 1 + a · 2h+3

⇔ 2h − 1 + b · 2h+2 ≤ 2h+2 − 1 + a · 2h+3

⇔ 1 + b · 22 ≤ 22 + a · 23

⇔ 4b ≤ 3 + 8a

⇔ b ≤ 3/4 + 2aSo ϕ′ ∈ Aa is equivalent to 1/4 + 2a ≤ b ≤ 3/4 + 2a. Sine a ∈ N0 this is aontradition to b ∈ N0. That shows that Keeph+1 is always empty when Keephgets a node to store. 52

4.5 Storage E�ienyWe have shown that if a node gets stored in Keeph, then Keeph+1 is empty andKeeph−1 gets removed in the same round. So at most every seond Keep storesa node at the same time, totally we have to store less then ⌊H/2⌋ nodes. Betweensteps 2 and 4a of Algorithm 3 we need to store one temporary node, what gives usa total spae requirement of ⌊H/2⌋+ 1 for the Keep nodes.Nodes stored in Retain. In the highest K−1 Retain staks all right nodes arestored. During the initialization, for heights H −K, . . . , H − 2, the nodes yi[2j + 3]for j = 2H−i−1 − 2 down to 0 are stored. This makes totally
H−2∑

i=H−K

(2H−i−1 − 1) =
−2∑

i=−K

(2−i−1 − 1) =
K∑

i=2

(2i−1 − 1) =
K−2∑

i=0

(2i+1)− (K − 1)Using the geometri series we have
K−2∑

i=0

2i =
2K−1 − 1

2− 1
= 2K−1 − 1Inluding this, we get

2 · (2K−1 − 1)−K + 1 = 2K −K − 1This is the storage needed for the highest K−1 Retain staks where all right nodesare stored.Nodes stored on the stak. We will show that at most one tail node an bestored on eah height h = 0 . . .H −K − 3. An instane Treehashh stores at most
h tailnodes. While the �rst one is stored in Treehashh itself, the remaining h− 1nodes are pushed on the stak. Additionally one temporary node ould be storedshort before the top nodes on the stak are hashed together to a higher node.When Treehashh gets ative and reeives its �rst update, all lower instanes withheight less than h are either ompleted or not initialized. Otherwise the height ofsuh an instane would be less than h and it would have reeived updates beforeTreehashh did. For the same reason, instanes with index > h an only store nodeson height greater than h, or they are as well either ompleted or empty. Considerthe ase that an instane on height i stores a node on the stak. Then all other53

4.5 Storage E�ienyTreehash instanes on heights > i an only store nodes on height ≥ i, beauseotherwise Treehashi would not have reeived updates. And sine Treehashi anonly store nodes up to height i − 1 on the stak we have seen that there an neverbe two nodes with the same height stored on the stak.The instane TreehashH−K−1 is the one with the highest index. It stores nodesup to height H−K−2, where nodes on height 0 . . .H−K−3 an be stored on thestak (the �rst one is stored in TreehashH−K−1 itself). This is the ase in round
ϕ = 2H−K+1 − 2, the round where the update that ompletes TreehashH−K−1 isperformed. Considering the temporary node reated by Leafal we get a totalbound of H −K − 1 of the nodes stored on the stak.Spae requirements in total. On eah height h ∈ {0 . . .H − 1} there is alwaysone authentiation node stored. For this reason, the spae needed for authentiationnodes is H. Eah of the H −K Treehashs saves one node. Summing up gives ustotally

H + (⌊H/2⌋+ 1) + (2K −K − 1) + (H −K − 1) + (H −K)

= 3H + ⌊H/2⌋+ 2K − 3K − 1

Sine the spae requirements are exponential in K, this parameter should be hosensmall. The following hart shows the size of the Retain staks orresponding tothe value K. The number of 720 nodes is a big amount and should never be neededfor the retain nodes. So K ould be hosen 2 if H is even or 3 if H is odd.
K 2 3 4 5 6 7Size of Retain 1 4 11 26 57 120Table 2: Total number of node stored in Retain (2K −K − 1)

54

4.6 Computing Leaves using a PRNG4.6 Computing Leaves using a PRNGFor the omputation of eah leaf of the Merkle tree a random number Seedϕ isrequired. Out of this seed the keys of the one time signature are reated. Rememberthat these Seeds are omputed onseutively using the forward seure Prng:Seedϕ+1 ← Prng(Seedϕ)In the �ow of authentiation path omputation not only onseutive leaves are om-puted: for upoming right nodes omputed by the Treehashs some future nodesare required as well. It would be very ine�ient to ompute every Seed value intime when it is needed: the maximum number of PRNG alls would be 3 · 2H−K−1whih ours when TreehashH−K−1 gets its �rst update. A speial sheduling forthese seeds has to be implemented to distribute the alls to the Prng.Our proposed sheduling strategy requires H−K alls to the PRNG eah round. Wehave to store two seeds for eah height h = 0, . . . , H−K−1. The �rst (SeedAtive)is used to suessively ompute the leaves for the authentiation node urrently on-struted by Treehashh and the seond (SeedNext) is used for upoming rightnodes on this height. SeedNext is updated using the PRNG in eah round. Dur-ing the initialization, we set SeedNexth = Seed3·2h for h = 0, . . . , H − K − 1.In eah round, at �rst all seeds SeedNexth are updated using the PRNG. If inround ϕ a new treehash instane is initialized on height h, we opy SeedNexthto SeedAtiveh. In that ase SeedNexth = Seedϕ+1+3·2h holds and thus is theorret seed to begin omputing the next authentiation node on height h.4.7 Comparison of Theoretial BoundsThis setion is terminated with a omparison of the theoretial bounds of the formerdisussed authentiation path algorithms. Table 3 shows the omposition in short.Comparing our new algorithm to Szydlo's, the omputation time needed per roundseems to inrease. The di�erene is the distintion between leaf alulations andsimple hashes. As the number of Leafal operations with Szydlo's algorithm55

4.7 Comparison of Theoretial Boundsould grow up to H , at most (H − K)/2 + 1 are done with our sheduling. Withthis the maximum number of hashes to perform per round is more balaned and intotal lower using the new algorithm.Algorithm Computation Time SpaeMerkle 2 log2(N)− 2 1/2(log2(N))2Jakobsson et. al. 2 log2(N)/ log2(log2(N)) 1.5(log2(N))2/ log2(log2(N))Szydlo log2(N) 3 log2(N)− 2Algorithm 3 3
2
(log2(N)−K − 1) + 1 3.5 log2(N) + 2K − 3K − 1

+(log2(N)−K)/2 + 1Table 3: Comparison of omplexity bounds. In onern of omputation time, Algorithm 3distinguishes between hash funtion evaluations (�rst row) and leaf alulations (seondrow)Conerning the memory, we �rst saved half of the Keep nodes, as only every seondhas to be stored at one. The parameter K provides a time-memory trade-o� for ouralgorithm. For the staks the bound we found is really tight, whereas for Szydlo'salgorithm this is only true if dynami memory alloation is possible. Otherwise thespae needed ould grow quadratily in H.These theoretial results are analyzed in setion 6 of this thesis by some pratialwork.

56

5 Java Implementation5.1 OverviewAs one part of this thesis, the GMSS signature sheme was implemented using theJava programming language. Responsible for the use of ryptographi algorithms inJava appliations is the Java Cryptography Arhiteture (JCA) [24℄. It is the Javaseurity API, providing standardized programming interfaes for message digests,digital signatures, key exhange or yphers for use with all Java appliations. As itis an API, it stritly separates the implementation of algorithms from their usage.Some interfaes are required out of a Java Cryptography Extension (JCE), whih isa part of the the Java Platform.GMSS was integrated into the FlexiProvider pakage [25℄, whih is an open soureryptographi servie provider for the JCA. A provider for the JCA has two fun-tions: it administrates the implementation of the ryptographi algorithms and itis responsible for the assignment of algorithms to their names. The FlexiProviderontains modules for integration into any appliation built on top of the JCA. AsGMSS is topi of the post quantum omputing researh, it was implemented as partof the FlexiPQCProvider, whih ontains algorithms seure against quantum om-puter attaks. The FlexiProvider inludes established algorithms like RSA or DSAas well as algorithms that are still researh topis, like GMSS.As the JCA provides interfaes, it allows the simple exhange of ryptographi al-gorithms. For this GMSS an easily be integrated into other appliations basedon the JCA. GMSS was implemented so that the underlying message digest algo-rithm (used for the OTSS and the Merkle tree) an be exhanged easily. So theFlexiProvider implementation will stay seure if a message digest algorithm dropsout. Some prede�ned versions of GMSS (using the hash funtions SHA1, SHA224,SHA256, SHA384 and SHA512) an be integrated into appliations by using someprede�nded objet identi�ers (OIDs). Those OIDs assigned to GMSS an be foundin Appendix D. The omplete soure ode an be found as download on the websiteof the FlexiProvider projet [25℄. 57

5.1 OverviewFor the implementation of GMSS the JCE of Fraunhofer Gesellshaft (FhG) wasused. For enoding and deoding of an ASN.1 representation of the GMSS keys, theASN.1 ode pakage provided by sourefourge.net2 was imported. Both pakagesan also be found via the FlexiProvider website. ASN.1 stands for Abstrat SyntaxNotation One. It is a desription language for the de�nition of data strutures, stan-dardized by the ITU-T [26℄. It is used for interoperability with other appliations.Using this notation it is for example ommonly possible to use the GMSS keys forX.509 erti�ates.A former Java implementation of GMSS already existed [17℄. The main drawbakof this work was the implementation of the authentiation path algorithm. It usedthe Szydlo algorithm for the sheduling of the authentiation path omputation.The absene of a seed sheduling was the �rst fat slowing down the omputation.But even worse was the fat that eah stak was omputed at one, whih meantthe omputation of 2h leaves at one. The distributed omputation of these leavesin ombination with the more balaned authentiation path algorithm of setion 4balanes the whole signature generation time.The GMSS parameter set was upgraded: now it ontains additionally the K valuesfor eah layer of the GMSS struture. In summary the GMSS parameter set P isnow
P = (T, (h1, . . . , hT), (w1, . . . , wT), (K1, . . . , KT))For the appliation of the new authentiation path algorithm with GMSS a datastruture for the treehash instanes is required. For this the lass Treehash wasimplemented. It stores the �rst node itself and uses a shared stak for the storageof additional tail nodes. The update method of this lass exeutes the treehashalgorithm (Algorithm 1) one.There are more nodes being preomputed in the new implementation. Not onlythe leaves of the tree after the following are preomputed, but as well those nodesneeded for the atual tree. This additional distributed leaf omputation is shown inthe next setion.2SoureForge.net is one of the most famous Open Soure software olletion, availableat http://soureforge.net 58

5.2 Distributed Node Computation5.2 Distributed Node ComputationThe former GMSS implementation distributed the alulation of the next leaf in
Ti,j+2, the tree after the following of the urrently proessed tree Ti,j . For theatual tree, every leaf is alulated at one. The idea is now to distribute theomputation of those leaves as well over the pass of the underneath tree Ti+1,j . Thistree onsists of 2hi+1 leaves, thus the omputation of upper nodes is distributed over
2hi+1 steps. Distributed generation of a leaf means the omputation of the OTS keyorresponding to the leaf. Using the Winternitz OTS sheme eah random value
xi is hashed 2w − 1 times (i = 1 . . . tw) to get the values yi. The onatenation ofthese values is hashed one to get the OTS publi key Y . For reation of everyrandom value xi one hash is required. So the total number of hash funtion alls is
(2w − 1) · tw + 1 + tw. For eah of the 2hi+1 leaves of the underneath tree we get anamount of

⌈(
(2w − 1) · tw + 1 + tw

)
/ 2hi+1

⌉This is the number of hashes performed per round, so that after 2hi+1 rounds the leafis ompleted. In the implementation, the lass GMSSLeaf already existing adopts thisdistributed omputation. A detailed desription of this lass an be found in [17℄.Atual Proessed Nodes. The �rst leaf to preompute is the following leaf onthe atual layer i whih is needed when in the layer beneath a next tree is begun.The next leaf of tree Ti,j is partly omputed when advaning a leaf in the lower tree
Ti+1,j (see Figure 14). On the lowest layer H − 1 eah leaf has to be omputed atone, no distribution is possible (as no lower tree exists).Another way to ompute this leaf would be the veri�ation of the signature belongingto the root of the following tree on the lower level. This one time signature is alreadyknown, it was preomputed out of its root value. For the next leaf of tree Ti,j, theOTS publi key belonging to the signature is required. It an be omputed by justverifying the preomputed signature. On average half of the hashes for the leaf ouldbe saved using this approah. 59

5.2 Distributed Node Computation

PSfrag replaements
Ti,j

Ti+1,jFigure 14: While advaning a leaf in tree Ti+1,j, the next leaf of tree Ti,j is partlyomputed.Treehash Nodes. Seondly the leaves needed for the authentiation path algo-rithm, used for the omputation of upoming right nodes, an be preomputed. Inround ϕ of tree Ti,j at maximum (H −K)/2 Leafal operations have to be donefor the authentiation path algorithm. The leaves are diretly passed to the treehashupdates. On eah layer besides the lowest one the alulation of these (H −K)/2leaves is distributed equally over the �ow of the 2hi+1 leaves of the underlying tree
Ti+1,j. So while advaning

2hi+1

(H −K)/2
=

2hi+1+1

H −Ksteps in the lower tree, one single leaf of the upper tree Ti,j is omputed. Sine everyleaf requires an amount of (2w−1) · tw +1+ tw the total number of hashs to performwhile advaning a leaf in Ti+1,j is
((2w − 1) · tw + 1 + tw) · (H −K) / 2hi+1+1When all 2hi+1 leaves of the lower tree were passed, all (H −K)/2 leaves needed forthe treehash updates have been omputed. Figure 15 depits this preomputationproess. The implementation of the treehash update proess is desribed below,when handling the implementation of the authentiation algorithm.60

5.2 Distributed Node Computation

Figure 15: Suppose (H −K)/2 = 4, so that the four dark leaves of the upper tree arerequired for treehash updates. They are omputed while advaning leaves in the lowertree.Distributed Root Calulation. The implementation of the distributed preom-putation of the root of tree Ti,j+2 was hanged as well. For the new authentiationpath algorithm additional values have to be omputed, not only the root of thenext but one tree is neessary. The authentiation path of the �rst leaf of tree
Ti,j+2 is stored in AuthTi,j+2

. This is the standard approah in the MSS key gen-eration, where the value of the �rst leaf of eah height of the tree is stored. Thethird leaf of eah height is again stored in TreehashTi,j+2
and the upper nodeslose to the root are stored in RetainTi,j+2

. All treehash instanes share one singlestak StakTi,j+2
, whih is stored as well. When advaning to the �rst leaf of Ti,j+2the authentiation path omputation will start with those stored values. The valueRootTi,j+2

is applied for the distributed signature generation, like it was desribedin setion 2.5.2.In Java the lass GMSSRootCal is responsible for the preomputation of the next butone tree; this lass is also used in the keypair generator of GMSS for the omputationof the �rst two trees of eah GMSS layer. For this reason the implementation of thekey pair generator was rewritten (and shortened beause of the re-use of this partof ode) in the new implementation. 61

5.3 Implementation of the Authentiation Path Algorithm5.3 Implementation of the Authentiation Path AlgorithmMost of Algorithm 3 was implemented exatly following the algorithm desription.The omputation of τ , the storage of nodes in Keep if neessary, the omputationof left nodes and so on. The Keep array was implemented in a way that eah twoonseutive levels share one entry of the array: nodes on layer h and h − 1 areboth stored in Keep⌊h / 2⌋. Temporarily in step 2 of Algorithm 3 the higher node isstored until step 4a was performed and the shared keep entry is surely empty. TheLeafal operation in the third step was replaed on upper layers: the leaf wasalready prealulated and must only be opied. The initialization of the treehashinstanes an be performed without ommitting the start index: the seed shedulingdesribed at the end of the last setion makes sure that the SeedAtive is alwaysthe right seed belonging to the leaf ϕ + 1 + 3 · 2h when restarting a treehash.The most ruial part of the implementation is the update of the treehashs. Asmentioned above, the omputation of eah of the (H −K)/2 leaves is distributed.This fat onditions that the update of the treehash is paused until all 2hi+1+1

H−K
leavesof the lower tree Ti+1,j have been �nished. So step 5a is omputed partly for layer iwhen advaning one leaf in layer i + 1.ConlusionAs a result of these improvements, the new implementation provides more balanedtime harateristis. The divergene in time needed for the generation of a signatureis essentially smaller than before. This is ahieved by appliation of the new, morebalaned authentiation path algorithm as well as by spending more attention tothe distribution of upper tree omputation. The next setion shows some pratialresults whih shall state this pronounement.

62

6 ResultsThis setion presents some results obtained using the new authentiation path al-gorithm. First Algorithm 3 is ompared to Szydlo's sheduling algorithm. Thetheoretial improvements of setion 4 shall be on�rmed using pratial results.The seond part gives some results of the revised GMSS sheme, ompared to theprevious GMSS implementation [7, 17℄ as well as other known shemes for digitalsignatures like DSA or ECDSA. At this junture the size of keys and signatures aswell as the time needed for key pair generation, signature generation, and veri�ationrespetively, are onsidered.6.1 Comparison: Authentiation Path AlgorithmBoth authentiation path algorithms were used for the pass of one single Merkletree. The graphs of Figures 16 and 17 illustrate the number of hash evaluationsneeded for eah round; the blue line is the result using Szydlo's algorithm, thered line used Algorithm 3. The leaves and hashes for left node omputation werenot onsidered, beause both algorithms use the same proedure here. For theomparison a Winternitz parameter w = 2 and a 160 bit hash funtion was hosen.This leads to the ost of 256 hash funtion evaluations for one leaf alulation(tw = 85 and we need (22 − 1) · tw + 1 = 256 hashes). Table 4 shows the statistialdata belonging to the tests. H denotes the height of the Merkle tree.Mean Value Standard Deviation
H Algorithm 3 Szydlo Algorithm 3 Szydlo5 214.9 405.4 95.8 263.010 899.9 1028 314.0 452.1Table 4: Statisti data of the number of hashes required per round

63

6.1 Comparison: Authentiation Path Algorithm

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

PSfrag replaements
Round ϕ

Numberofhashe
s

SzydloAlgorithm 3

Figure 16: Number of hashes needed for right nodes per round while advaning one Merkletree. On the x-axis the single rounds are assigned (tree height H = 5 =⇒ 25 = 32 rounds),the y-axis shows the number of needed hash funtion evaluations.
0 100 200 300 400 500 600 700 800 900 1000

0

500

1000

1500

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

Figure 17: Number of hashes per round. The upper graph shows the result of Algorithm 3,the lower graph belongs to Szydlo's algorithm (H = 10 =⇒ 1024 rounds).64

6.1 Comparison: Authentiation Path AlgorithmIt is evidently notieable that the sheduling used within the new algorithm leads toa more balaned authentiation path omputation and with this to a more balanedsignature generation. Also the total number of hash values was redued. As onean see in Table 4 the mean value of the number of hashes per round is reduedompared to Szydlo's algorithm. This shows that the new algorithm atually getsalong with less hashes per round. The standard deviation, whih indiates thebalaning, dereases drastially. By this we assert the better balaning of our newalgorithm.Visually these improvements are reognizable by the fat that in Figures 16 and 17the red line proeeds mostly below the blue one and the blue graph shows muhmore oszillating properties. For higher values of H we get related results.Worst Case Values. We are going to ompare the results gained theoretiallyin setion 4 with some measured pratial values. The following table presentssome results obtained with a pratial implementation of both hash tree traversalalgorithms. It presents the worst ase number of hashes and leaves required perround. Again a Winternitz parameter w = 2 and a 160 bit hash funtion are hosen,so that the number of hashes for one leaf alulation is 256. The values in braketsare the theoretially foreasted osts of lemma 3 and 4.Our Algorithm Szydlo's Algorithm
H leaves hashes hashes total leaves hashes hashes total5 1 (1) 1 (2.5) 257 3 1 76910 4 (4) 8 (11.5) 1032 6 3 153915 6 (6) 14 (17.5) 1551 9 5 230920 9 (9) 24 (26.5) 2328 12 7 3079Table 5: Comparison of the number of hashes required in the worst ase.It is onsiderable that the preomputed bounds hold. The number of leaves om-puted per round is tight. Even in the worst ase, our new algorithm needs lesshashes than Szydlo's former algorithm. 65

6.2 Comparison: GMSS6.2 Comparison: GMSSIn this part the GMSS implementation is analyzed. As hash funtion, all tests usedthe SHA1 version out of the FlexiCoreProvider. As pseudo random number gener-ator the Sha1PRNG of the Sun provider was used. All tests were performed on anIntel Core 2 Duo T7200 2GHz proessor with 1 GB RAM. As runtime environmentthe Sun JRE 1.3 was deployed.The time needed for generation and veri�ation of a single signature is quite small.For this it is essential to measure timings in miroseonds. Following [27℄ we usethe hrtlib.dll library, whih provides a timer to exatly measure time di�erenes inthose spheres. Just reating a signature more than one and omputing the meanvalue would not be a solution: the private key hanges with every signature, so it isnot easy to reate the same signature more than one.Nearly all parametersets P used for the testings are haraterized by the fat thatthe Winternitz parameter belonging to the lowest layer is smaller than all others.Smaller parameter w allows faster signature generation, but is responsible for biggersignatures. As on the lowest layer the publi keys for the leaf values have to beomputed at one and annot be distributed, a smaller parameter on this layerspeeds up the whole proess, even more than the parameters on upper layers woulddo. For this the Winternitz parameter on the lowest layer is mostly hosen smallerthan the others.Balaning. First a omparison between the old GMSS implementation of [17℄ isompared to the new one. Using the parameterset P = (4, (4, 4, 4, 4), (8, 8, 8, 3)) thesignature generation lasts arbitrarily four milliseonds, whatever implementation isused. But among di�erent signatures the duration varies more or less, beause theo�ine part does not always ompute the same parts. Figure 18 depits the resultingtimings for both implementations for 200 signatures. The red line indiates thetimings of the new implementation, the blue line belongs the old one. The parameter
K is set to 2 on eah layer. 66

6.2 Comparison: GMSS

900 920 940 960 980 1000 1020 1040 1060 1080 1100
0

5

10

15

20

25

30

35

PSfrag replaements
Signature Index ϕ

SigningTime[m
s℄

old implementationnew implementation

Figure 18: Time needed for signing with GMSS. The red line shows the timings usingthe new GMSS implementation, the blue line belongs to the old implementation. The usedparameterset is P = (4, (4, 4, 4, 4), (8, 8, 8, 3)), K is set 2 on eah layer.

67

6.2 Comparison: GMSSFigure 18 illustrates that the time needed for signing is muh more balaned usingthe new GMSS implementation. The edges within the blue graph ome up every
16 signatures. Using a bottom tree of height 4 (whih means 24 = 16 leaves),the old implementation needs muh time for advaning a leaf on the seond lowestlayer. This is the situation where the new implementation uses the better balanedauthentiation path algorithm. Furthermore the preomputation of the atual andthe oming (treehash) leaves of this tree saves time. Those leaves are omputedompletely within the old implementation, whereas in the other ase they an besimply opied. So the applied hanges really a�et the timings the way it wassupposed.The statistial analysis of the data emphasizes the better balaning of the new im-plementation: whereas the mean value remains nearly the same (5.0 ms (old) to 4.2ms (new)), the standard deviation of the timings was redued to more than a sev-enth part: it dereases from 4.6 ms to 0.6 ms using the new GMSS implementation.This evidently shows that the sheduling of the nodes in the upper tree really leadsto better balaning attributes for the signature generation.Greater Amounts Of Signatures. In [7℄ some linear optimization was used to�nd optimal GMSS parameter sets, allowing modular key and signature sizes besidesappliable timings. The optimal sets for an amount of 240 and 280 signatures wereadopted and the parameter K was inluded. So we get the following parameter setsfor our test:

P40 = (2, (20, 20), (10, 5), (2, 2)) P ′
40 = (2, (20, 20), (9, 3), (2, 2))

P ′
80 = (4, (20, 20, 20, 20), (7, 7, 7, 3), (2, 2, 2, 2))The following tabular shows the resulting timings and memory requirements. Thekey size always denotes the byte length of the ASN.1 enoded keys. The timingswere obtained on the above mentioned platform as mean value of the �rst 212 sig-natures. With a tree of height 20 on the lowest layer, for omparison the �rst 221or even more signatures should have been reated, so that an advane on upper68

6.2 Comparison: GMSSlayers was onsidered. But this test would take too long, so only the �rst 212 wereonstruted. To show how this e�ets the �nal results, we ompared the timings andkey sizes of a GMSS struture with lowest layer height 10 with 210 and 215 signa-tures: the di�erene in the private key size is 0.2%, whereas in timings no di�ereneis reognizable. So we adopt that for our parametersets it is adequate to ompareonly the �rst 212 signatures.The values in the tables represent the following: m values are memory requirementsfor the keys and the signature. The time needed for key pair generation, signatureonstrution or veri�ation, respetively, is denoted by t values.
mpubli key mprivate key msignature tkeygen tsign tverify

P40 75 bytes 12341 bytes 1868 bytes 539 min 13.4 ms 13.1 ms
P ′

40 75 bytes 12501 bytes 2348 bytes 299 min 6.6 ms 8.1 ms
P ′

80 93 bytes 30372 bytes 4256 bytes 464 min 7.4 ms 8.4 msTable 6: Measured values for the new GMSS implementationFor omparing these numbers with the old GMSS implementation, we adopt theresults from [17℄ measured on an Asus V6J (1.83GHz CPU).
mpubli key mprivate key msignature tkeygen tsign tverify

P40 67 bytes 5467 bytes 1868 bytes 579 min 22.6 ms 19.4 ms
P ′

40 67 bytes 5547 bytes 2348 bytes 321 min 11.6 ms 10.6 ms
P ′

80 79 bytes 14731 bytes 4256 bytes 498 min 11.6 ms 9.5 msTable 7: Measured values for the old GMSS implementation, from [17℄The timings are quite the same using both implementations, the disrepanies aremostly aused by the di�erent platforms. The signature size remains exatly thesame, it was not touhed by the revision of GMSS. The publi key rises few, as the
K parameters for eah layer have to be stored additionally. The private key sizenearly doubles. For the better authentiation path omputation, more upomingdata has to be stored, like the treehash instanes or the staks of the following trees69

6.2 Comparison: GMSSon eah height. This data is stored in the private key, and that is why its size grows.However, the sizes of up to 30 kilobytes are still useable in pratie. The table onlyshows a mean value of the private key sizes: for P ′
40 it ranges from 10541 to 12731bytes, for P ′

80 it di�ers between 28413 and 30602 bytes. The balaning of the timingsannot be seen in this tables, the ahievements in this onern have been shown inthe last setion.Some more measures are depited in Appendix A. Therefrom we get some moreinformation of the a�ets of the GMSS parameters: if the parameters K raise, theprivate key size rises as well. Higher K makes sure that more upper nodes arepermanently stored in the private key, so it is lear that its size inreases. Simulta-neously the signing time delines, as the upper nodes must no more be omputedhosing higher K values. The signature size is not a�eted by this parameter.The impats of the parameter w are the same as before in GMSS: hoosing bigger
w values, the signature and the private key sizes deline, whereas the timings growa bit. Smaller w's have exatly the ontrary impat.It is onluded that GMSS is ready to use in pratial appliations. The timingsare omparable to other signature shemes that are used widely today, like ECDSA,DSA or RSA. For measured results of these shemes see for example [5℄. Even ifthe key sizes, espeially of the private signing keys, are relatively big, GMSS is stillappliable. We have reated up to 280 signature keys with reasonable e�ort andosts. This amount should be adequate for todays use, even in online appliationslike paket signing in broadast protools.

70

7 Conlusion and Further WorkMerkle Tree Traversal. This thesis presented a new algorithm for the ompu-tation of onseutive authentiation paths in Merkle trees. Compared to the bestformerly known, the new algorithm features a better balaning onerning the realnumber of hash funtion alls per round. This property ould be obtained theoreti-ally, and it ould be approved by pratial results as well. The worst ase numberof leaves alulated per round was redued to (H −K)/2 + 1, while the maximumnumber of hashes to perform is bounded linearly in H .Parameterization allows a trade-o� between omputation time and memory de-mands. This allows the appliation of the algorithm on di�erent kinds of devies,for example on smart ards and similar low omputation applianes. The storageneeded for the �ow of the algorithm is bounded logarithmially in the number ofleaves, whih is the best omplexity to reah. Even on hardware whih does notallow dynami memory alloation, the new algorithm does only need linear spae.This results in the utilization of one single stak shared by all treehash instanes.For heights H greater than twenty the advantages of Algorithm 3 deline. But inpratie Merkle trees with heights H > 20 should not be applied. The key pairgeneration, whih must always ompute the whole tree at one, lasts too long in thisase. It is muh more omfortable to use the extensions of MSS, if greater amountsof signatures are demanded.Pratial Part: GMSS. The seond part of this thesis was the implementationof the new algorithm into an existing GMSS implementation for the FlexiProvider.The onstrution and use of the JCA assures maximal �exibility. The generalizedMerkle signature sheme an be plugged into every appliation based on the JCA. Asan example there exists a MS Outlook plugin for signing emails with any algorithmof the FlexiPovider [5℄. The Winternitz one time signature sheme an easily bereplaed by any other OTS sheme. As a �rst further work the BiBa OTS sheme [13℄shall be integrated into GMSS, as it allows smaller signatures than the Winternitzsheme. For the hash funtion, used for the onstrution of the Merkle trees, di�erent71

variants have been implemented, e.g. SHA1 or SHA512. But even if the SHA-familyshould turn out inseure, the message digest funtion ould be exhanged easily. Thesame ours to the used pseudo random number generator. While we used the onedesribed in [14℄, another one ould be made use of.Still one drawbak of GMSS is the long key generation time. As an amount of 280keys an be regarded as ryptographially unlimited, in pratie this problem anbe disregarded, beause it only must be run one before all signatures are reated.So this part an be done o�ine, before the reation of the �rst signature.The Merkle signature shemes are haraterized by an enormous �exibility. Equippedwith so many parameters these shemes an be used on nearly every imaginable plat-form. The size of the keys and the signatures an be adjusted as well as the timingsfor signature generation or veri�ation, respetively. This makes GMSS (as atualthe best implementation of the Merkle shemes) appliable on all hardware devies.The timings for signature generation and veri�ation, respetively, are omparableto the widely used shemes like RSA, DSA or ECDSA. The GMSS publi key iseven smaller than former keys. The private key is relatively big, but for today'spratial usage still reasonable. Therefore, a onlusion is that today there aredigital signature shemes that exist out of the post quantum omputing �eld withpossible pratiable use.

72

Referenes[1℄ Peter W. Shor. Algorithms for quantum omputation: Disrete logarithms andfatoring. In IEEE Symposium on Foundations of Computer Siene, pages124�134, 1994.[2℄ Lov K. Grover. A fast quantum mehanial algorithm for database searh. InSTOC '96: Proeedings of the twenty-eighth annual ACM symposium on Theoryof omputing, pages 212�219, New York, NY, USA, 1996. ACM.[3℄ Arjen K. Lenstra and Eri R. Verheul. Seleting ryptographi key sizes. Jour-nal of Cryptology, 14(4):255�293, 2001. Updated version from 2004 available athttp://plan9.bell-labs.om/who/akl/index.html.[4℄ Ralph C. Merkle. A erti�ed digital signature. In Pro. Advanes in Cryptology(Crypto'89), volume 435 of Leture Notes in Computer Siene, pages 218�238.Springer-Verlag, 1989.[5℄ Johannes Buhmann, Luis Carlos Coronado Garia, Erik Dahmen, MartinDöring, and Elena Klintsevih. CMSS � an improved Merkle signature sheme.In Pro. Progress in Cryptology (Indorypt'06), volume 4329 of Leture Notesin Computer Siene, pages 349�363. Springer-Verlag, 2006.[6℄ Luis Carlos Coronado Garía. On the seurity and the e�ieny of the Merklesignature sheme. Cryptology ePrint Arhive, Report 2005/192, 2005.[7℄ Johannes Buhmann, Erik Dahmen, Elena Klintsevih, Katsuyuki Okeya, andCamille Vuillaume. Merkle signatures with virtually unlimited signature a-paity. 5th International Conferene on Applied Cryptography and NetworkSeurity - ACNS'07, LNCS 4521, Springer, 2007, pp. 31-45.[8℄ Whit�eld Di�e and Martin E. Hellman. New diretions in ryptography. IEEETransations on Information Theory, IT-22(6):644�654, 1976.[9℄ Alexander May. Skript zur Vorlesung Publi Key Kryptanalyse, TU Darmstadt,2005/2006.

[10℄ Digital signature standard. FIPS PUB 180-2, 2002. Available at http://sr.nist.gov/publiations/PubsFIPS.html.[11℄ Ron Rivest. The MD5 Message-Digest Algorithm, 1992.[12℄ Chris Dods, Nigel Smart, and Martijn Stam. Hash based digital signatureshemes. In Pro. Cryptography and Coding, volume 3796 of Leture Notes inComputer Siene, pages 96�115. Springer-Verlag, 2005.[13℄ Adrian Perrig. The BiBa one-time signature and broadast authentiation pro-tool. In ACM Conferene on Computer and Communiations Seurity, pages28�37, 2001.[14℄ Digital signature standard. FIPS PUB 186-2, 2000. Available at http://sr.nist.gov/publiations/PubsFIPS.html.[15℄ Y. Hu, A. Perrig, and D. Johnson. Paket leashes: A defense against wormholeattaks in wireless ad ho networks. Tehnial report, Department of ComputerSiene, Rie University, 2001.[16℄ Mihael Szydlo. Merkle tree traversal in log spae and time (preprint version),2003. Available at http://www.szydlo.om.[17℄ Sebastian Blume. E�ient Java implementation of GMSS, diploma thesis, 2007.[18℄ Mihir Bellare and Sara K. Miner. A forward-seure digital signature sheme.Leture Notes in Computer Siene, 1666:431�448, 1999.[19℄ Shimon Even, Oded Goldreih, and Silvio Miali. On-line/o�-line digital signa-tures. In CRYPTO '89: Proeedings on Advanes in ryptology, pages 263�275,New York, NY, USA, 1989. Springer-Verlag New York, In.[20℄ Markus Jakobsson, Tom Leighton, Silvio Miali, and Mihael Szydlo. FratalMerkle tree representation and traversal. In Pro. Cryptographer's Trak atRSA Conferene (CT-RSA'03), volume 2612 of Leture Notes in ComputerSiene, pages 314�326. Springer-Verlag, 2003.

[21℄ Dalit Naor, Amir Shenhav, and Avishai Wool. One-time signatures revisited:Have they beome pratial. Cryptology ePrint Arhive, Report 2005/442,2005.[22℄ Mihael Szydlo. Merkle tree traversal in log spae and time. In Pro. Advanesin Cryptology (Eurorypt'04), volume 3027 of Leture Notes in Computer Si-ene, pages 541�554. Springer-Verlag, 2004.[23℄ Piotr Berman, Marek Karpinski, and Yakov Nekrih. Optimal trade-o� forMerkle tree traversal. El. Coll. on Comp. Complexity, 49, 2004.[24℄ Sun Mirosystems. JavaTM Cryptography Arhiteture - API Spei�ationand Referene, 2004. Available at http://java.sun.om/j2se/1.5.0/dos/guide/seurity/CryptoSpe.html.[25℄ FlexiProvider researh group at Tehnishe Universität Darmstadt. Flexi -provider - an open soure java ryptographi servie provider, 2001 - 2008.Available at http://www.flexiprovider.de.[26℄ International Teleommuniation Union Teleommuniation Standardiza-tion Setor (ITU-T). Abstrat Syntax Notation One (ASN.1) X.680: Spei-�ation of basi notation, ITU Standard, 2002.[27℄ Vladimir Roubtsov. My kingdom for a good timer! Reah submilliseond timingpreision in Java. JavaWorld.om, January 2003, http://www.javaworld.om/javaworld/javaqa/2003-01/01-qa-0110-timing.html.[28℄ Don Johnson and Alfred Menezes. The ellipti urve digital signature algorithmECDSA, 1999.[29℄ Ron Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digitalsignatures and publi-key ryptosystems. Commun. ACM, 21(2):120�126, 1978.[30℄ Taher El Gamal. A publi key ryptosystem and a signature sheme based ondisrete logarithms. In Proeedings of CRYPTO 84 on Advanes in ryptology,pages 10�18, New York, NY, USA, 1985. Springer-Verlag New York, In.

[31℄ Boris Ederov. Merkle tree traversal tehniques, bahelor thesis, 2007.[32℄ S. Miali. E�ient erti�ate revoation. Tehnial Report MIT/LCS/TM-542b, 1996.[33℄ A. Perrig, R. Canetti, D. Tygar, and D. Song. The tesla broadast authentia-tion protool, 2002.[34℄ Charanjit Jutla and Moti Yung. Paytree: 'amortized-signature' for �exiblemiropayments. In 2nd Workshop on Eletroni Commere, pages 213�221.USENIX, 1996.[35℄ Ronald L. Rivest and Adi Shamir. Payword and miromint: Two simple mi-ropayment shemes. In Seurity Protools Workshop, pages 69�87, 1996.

A Pratial Results
mpubli key mprivate key msignature tkeygen tsign tverify

P = (2, (8, 8), (10, 5), (2, 2))

75 bytes 5852 bytes 1388 bytes 8.0 se 8.9 ms 15.1 ms
P = (2, (8, 8), (10, 5), (6, 6))

75 bytes 7780 bytes 1388 bytes 8.1 se 5.8 ms 14.6 ms
P = (4, (8, 8, 8, 8), (3, 3, 3, 3), (2, 2, 2, 2))

93 bytes 26261 bytes 5216 bytes 1.9 se 4.2 ms 2.1 ms
P = (4, (8, 8, 8, 8), (8, 8, 8, 3), (2, 2, 2, 2))

93 bytes 16464 bytes 3116 bytes 11.6 se 4.1 ms 13.9 ms
P = (4, (8, 8, 8, 8), (8, 8, 8, 3), (6, 6, 6, 6))

93 bytes 21315 bytes 3116 bytes 11.8 se 2.5 ms 14.3 ms
P = (4, (10, 10, 10, 10), (9, 9, 9, 3), (2, 2, 2, 2))

93 bytes 18205 bytes 3156 bytes 80.2 se 5.2 ms 24.8 ms
P = (4, (12, 12, 12, 12), (9, 9, 9, 3), (2, 2, 2, 2))

93 bytes 20585 bytes 3256 bytes 136 se 12.7 ms 11.4 ms
P = (4, (16, 16, 16, 16), (8, 8, 8, 3), (2, 2, 2, 2))

93 bytes 20000 bytes 3316 bytes 322.9 se 63 ms 22.1 ms
P = (2, (10, 10), (5, 4), (2, 2))

75 bytes 8335 bytes 1968 bytes 4.8 se 6.9 ms 1.2 ms
P = (2, (10, 10), (10, 5), (2, 2))

75 bytes 6977 bytes 1468 bytes 32.6 se 10.6 ms 15.1 ms
P = (2, (15, 15), (5, 4), (3, 3))

75 bytes 10873 bytes 2168 bytes 149 se 9.3 ms 2.1 ms
P = (2, (15, 15), (8, 5), (3, 3))

75 bytes 9834 bytes 1748 bytes 409 se 13.8 ms 5.1 msContinues on next page...77

mpubli key mprivate key msignature tkeygen tsign tverify
P = (3, (15, 15, 10), (5, 5, 4), (3, 3, 2))

84 bytes 17982 bytes 3072 bytes 193 se 7.4 ms 2.9 ms
P = (3, (15, 15, 10), (8, 8, 5), (3, 3, 2))

84 bytes 15644 bytes 2392 bytes 849 se 11.1 ms 10.4 ms
P ′

40 = (2, (20, 20), (9, 3), (2, 2))

75 bytes 12501 bytes 2348 bytes 299 min 6.6 ms 8.1 ms
P40 = (2, (20, 20), (10, 5), (2, 2))

75 bytes 12341 bytes 1868 bytes 539 min 13.4 ms 13.1 ms
P ′

80 = (4, (20, 20, 20, 20), (7, 7, 7, 3), (2, 2, 2, 2))

93 bytes 30372 bytes 4256 bytes 464 min 7.4 ms 8.4 msTable 8: Results of the new GMSS implementation: time and memory requirements ofseleted parameter sets. For the average timings, in eah ase the mean value of the �rst
212 signatures were onsidered.

78

B Code ExamplesThis setion presents an example ode extrat that shows how to use the Flexi-Provider implementation of GMSS. It is divided into three steps: Generating a keypair, generating a signature and verifying the signature.Generating a Key Pair.Input: Parameterset, Output: ASN.1 enoded keys1. Add ProvidersSeurity.addProvider(new FlexiCoreProvider());Seurity.addProvider(new FlexiPQCProvider());2. Get KPG instaneKeyPairGenerator kpg = KeyPairGenerator.getInstane("GMSSwithSHA1");3. Set the required Parameterset, reate orresponding ParameterspeGMSSParameterset gps = new GMSSParameterset(3, {10, 10, 10}, {2, 4,3}, {2, 2, 2});GMSSParameterSpe gpsp = new GMSSParameterSpe(gps);4. Initializing Key Pair Generatorkpg.initialize(gpsp);5. Generating key pairKeyPair GMSSkeyPair = kpg.generateKeyPair();GMSSPrivateKey privateKey = (GMSSPrivateKey)GMSSkeyPair.getPrivate();GMSSPubliKey publiKey = (GMSSPubliKey)GMSSkeyPair.getPubli();byte[℄ privKey = privateKey.getEnoded();byte[℄ pubKey = publiKey.getEnoded();
79

Generating a Signature.Input: enoded keys, message, Output: signature1. Get the private keyKeySpe privKeySpe = new PKCS8EnodedKeySpe(privKey);KeyFatory kf = KeyFatory.getInstane("GMSS", "FlexiPQC");privateKey = (GMSSPrivateKey)kf.generatePrivate(privKeySpe);2. Initialize the signature generation phaseSignature Sig = Signature.getInstane("GMSSwithSHA1","FlexiPQC");Sig.initSign(privateKey);3. Create the signatureSig.update(message.getBytes());byte[℄ sigBytes = Sig.sign();Verifying the Signature.Input: signature, message, enoded publi key1. deode publi keyKeySpe pubKeySpe = new X509EnodedKeySpe(pubKey);publiKey = (GMSSPubliKey)kf.generatePubli(pubKeySpe);2. Initialize Veri�ationSig.initVerify(publiKey);3. Veri�ation Proess, returns either true or falseSig.update(message.getBytes());Sig.verify(sigBytes);
80

C ASN.1 EnodingThis part presents the ASN.1 enoding [26℄ of the GMSS keys. The publi keyenoding was modi�ed only marginally: the ParameterSet was extended by thesequene of the parameter K for eah layer. This is the new ASN.1 de�nition of theGMSS publi key:GMSSPubliKey ::= SEQUENCE {publiKey SEQUENCE OF OCTET STRINGheightOfTrees SEQUENCE OF INTEGERParameterset ParSet}ParSet ::= SEQUENCE {T INTEGERh SEQUENCE OF INTEGERw SEQUENCE OF INTEGERK SEQUENCE OF INTEGER}The private key ASN.1 de�nition was enlarged with the treehash, stak and re-tain parts. DistrRoot and TreehashStak were added as well. The whole ASN.1de�nition of the GMSS private key is the following:GMSSPrivateKey ::= SEQUENCE {algorithm OBJECT IDENTIFIERindex SEQUENCE OF INTEGERurSeeds SEQUENCE OF OCTET STRINGnextNextSeeds SEQUENCE OF OCTET STRINGurAuth SEQUENCE OF AuthPathnextAuth SEQUENCE OF AuthPathurTreehash SEQUENCE OF TreehashStaknextTreehash SEQUENCE OF TreehashStakStakKeep SEQUENCE OF StakurStak SEQUENCE OF StaknextStak SEQUENCE OF StakurRetain SEQUENCE OF RetainnextRetain SEQUENCE OF RetainnextNextLeaf SEQUENCE OF DistrLeaf81

upperLeaf SEQUENCE OF DistrLeafupperTHLeaf SEQUENCE OF DistrLeafminTreehash SEQUENCE OF INTEGERnextRoot SEQUENCE OF OCTET STRINGnextNextRoot SEQUENCE OF DistrRooturRootSig SEQUENCE OF OCTET STRINGnextRootSig SEQUENCE OF DistrRootSigParameterset ParSetnames SEQUENCE OF ASN1IA5String}DistrLeaf ::= SEQUENCE {name SEQUENCE OF ASN1IA5StringstatBytes SEQUENCE OF OCTET STRINGstatInts SEQUENCE OF INTEGER}DistrRootSig ::= SEQUENCE {name SEQUENCE OF ASN1IA5StringstatBytes SEQUENCE OF OCTET STRINGstatInts SEQUENCE OF INTEGER}DistrRoot ::= SEQUENCE {name SEQUENCE OF ASN1IA5StringstatBytes SEQUENCE OF OCTET STRINGstatInts SEQUENCE OF INTEGERtreeH SEQUENCE OF Treehashret SEQUENCE OF Retain}TreehashStak ::= SEQUENCE OF TreehashTreehash ::= SEQUENCE {name SEQUENCE OF ASN1IA5StringstatBytes SEQUENCE OF OCTET STRINGstatInts SEQUENCE OF INTEGER}ParSet ::= SEQUENCE {T INTEGERh SEQUENCE OF INTEGERw SEQUENCE OF INTEGERK SEQUENCE OF INTEGER}Retain ::= SEQUENCE OF StakAuthPath ::= SEQUENCE OF OCTET STRINGStak ::= SEQUENCE OF OCTET STRING82

D Objet Identi�ersThe following table shows the objet identi�ers of some prede�ned GMSS imple-mentations. Those use the given hash funtion for the OTS sheme as well as forthe Merkle tree onstrution. For all ases the hash funtions are taken out of theFlexiCoreProvider.Hash funtion Objet Identi�er (OID)SHA1 1.3.6.1.4.1.8301.3.1.3.3.1SHA224 1.3.6.1.4.1.8301.3.1.3.3.2SHA256 1.3.6.1.4.1.8301.3.1.3.3.3SHA384 1.3.6.1.4.1.8301.3.1.3.3.4SHA512 1.3.6.1.4.1.8301.3.1.3.3.5Table 9: Objet Identi�ers for GMSSThe di�erent number groups of the above given objet identi�ers signify the follow-ing:1.3.6.1.4.1.8301 Darmstadt University of Tehnology1.3.6.1.4.1.8301.3 Cryptography and Computer Algebra Researh Group1.3.6.1.4.1.8301.3.1 Cryptographi Algorithms1.3.6.1.4.1.8301.3.1.3 Post Quantum Cryptography1.3.6.1.4.1.8301.3.1.3.3 GMSS

83

