
Evaluating the U-LP
Cryptosystem in Practice
Evaluierung des U-LP Verschlüsselungsverfahrens in der Praxis
Bachelor-Thesis von Jannik Vieten aus Neuwied
Tag der Einreichung:

1. Gutachten: Prof. Dr. Johannes Buchmann
2. Gutachten: Florian Göpfert

Fachbereich Informatik
Kryptographie und Computeralgebra

Evaluating the U-LP Cryptosystem in Practice
Evaluierung des U-LP Verschlüsselungsverfahrens in der Praxis

Vorgelegte Bachelor-Thesis von Jannik Vieten aus Neuwied

1. Gutachten: Prof. Dr. Johannes Buchmann
2. Gutachten: Florian Göpfert

Tag der Einreichung:

Erklärung zur Abschlussarbeit gemäß § 22 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Jannik Vieten, die vorliegende Bachelor-Thesis ohne
Hilfe Dritter und nur mit den angegebenen Quellen und Hilfsmitteln angefer-
tigt zu haben. Alle Stellen, die Quellen entnommen wurden, sind als solche
kenntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form
noch keiner Prüfungsbehörde vorgelegen.
In der abgegebenen Thesis stimmen die schriftliche und elektronische Fassung
überein.

Datum Unterschrift

Thesis Statement pursuant to § 22 paragraph 7 of APB TU Darmstadt

I herewith formally declare that I have written the submitted thesis indepen-
dently. I did not use any outside support except for the quoted literature and
other sources mentioned in the paper. I clearly marked and separately listed all
of the literature and all of the other sources which I employed when produc-
ing this academic work, either literally or in content. This thesis has not been
handed in or published before in the same or similar form.
In the submitted thesis the written copies and the electronic version are identical
in content.

Date Signature

1

Zusammenfassung

Seit vor einiger Zeit gezeigt wurde, dass (bisher theoretisch existente) Quantencomputer die
meisten der heute gängigen asymmetrischen Verschlüsselungsverfahren brechen können, ar-
beiten viele Forscher an der Entwicklung neuer Verfahren, die nicht so stark von einem Durch-
bruch im Quantencomputing beeinflusst werden würden. Eines dieser Verfahren ist U-LP, das
erste beweisbar sichere Verschlüsselungsverfahren, welches auf dem learning with errors (LWE)
Problem basiert, und das den Fehler und das Geheimnis von einer Gleichverteilung generiert. In
dieser Arbeit wird eine universelle Implementierung von U-LP in C präsentiert, die eine Biblio-
thek bildet, welche Funktionen zur Schlüsselerzeugung, Verschlüsselung, und Entschlüsselung
bereitstellt (sowohl für die Standardvariante von U-LP als auch für die ring-LWE Variante).
Die Verwendungszwecke für diese Implementierung liegen aktuell hauptsächlich im Test- und
Evaluationsbereich. Die Eignung von Programmiersprachen für das Schreiben einer solchen
Bibliothek wird diskutiert, die Programmierschnittstelle wird vorgestellt, und einige interes-
sante Aspekte werden erläutert. Anschließend wird evaluiert, wie die Wahl von bestimmten
Parametern das Laufzeitverhalten und die Größe der Datenstrukturen beeinflusst. Es wird U-
LP mit LP verglichen, dem Verfahren, an das U-LP angelehnt ist. Schlussendlich wird gezeigt,
wie U-LP durch die Verwendung der ring-LWE Variante und dem Einsatz von Parallelisierung
optimiert werden kann.

Abstract

Since it was shown that (yet hypothetical) quantum-computers can break most of today’s asym-
metric encryption schemes, many researchers are working on new cryptosystems, which would
not be critically affected by a breakthrough in quantum computing. One of these is U-LP, which
is the first provably secure encryption scheme based on the learning with errors (LWE) problem,
where noise and secret are drawn from a uniform distribution. In this thesis, I present a uni-
versal implementation of U-LP in the C programming language, providing a library which offers
key generation, encryption, and decryption capabilities for the standard variant of U-LP, as well
as for the ring-LWE variant. The use cases for this library are at the moment mainly testing
and evaluation purposes. In this thesis, I discuss the suitability of programming languages for
writing such a library, describe the API, and write about issues of the implementation, which
might be of interest. Afterwards, I evaluate how specific parameter choices influence the run-
time behavior and the size of the data structures. Beside that, I name some difficulties which
arise when using U-LP in practice. I compare U-LP with LP, the encryption scheme from which
U-LP is adapted. Finally I show and discuss how U-LP can be optimized and accelerated by using
the ring-LWE variant and parallelization.

Contents

1 Introduction 6

2 Background 7
2.1 Lattice-Based Cryptography . 7
2.2 Learning with Errors . 7
2.3 LP . 8
2.4 U-LP . 8

3 Implementing U-LP 9
3.1 Choice of Programming Language . 9
3.2 The Scope of the Library . 10
3.3 Defining an Interface for ulpcrypt . 11
3.4 Gathering Random Data . 12
3.5 Utility Functions . 12
3.6 Encoding / Decoding Functions . 13
3.7 Quality Assurance . 13

4 Evaluation 13
4.1 Influence of the Bit Length . 14
4.2 Comparison of U-LP and LP . 16
4.3 Optimization by Using the Ring Variant . 16
4.4 Optimization by Parallelization . 17

5 Conclusion 19

A ulpcrypt API Documentation v1.0 21

3

List of Tables

1 Typical parameters for LP and U-LP, including the bit length of modulus q, grouped
by the intended level of security in bit. The values are based on the estimation in
[CGW14]. 14

2 Comparison of the multiplication of 32 bit, and 64 bit numbers, where the data is
already present and must not be loaded. 14

3 Comparison of the multiplication of 32 bit, and 64 bit numbers, where the data
must be loaded from memory. 14

4 Comparison of the modular multiplication, executed on 32 bit, and on 64 bit
operands. Note that the operands are loaded from memory, so the overhead of
copying data from memory into CPU registers must be taken into account. 15

5 Runtime comparison of U-LP and LP, regarding key generation, encryption, and
decryption. Security parameter n is chosen differently to achieve the desired level
of security, while message length l = 256 is fixed (which is a reasonable number
when having hybrid encryption in mind). 16

6 Comparison of key sizes and ciphertext sizes of U-LP and LP. n is chosen according
to Table 1, l is set to 256. 17

7 Runtime of the U-LP ring-LWE variant, regarding key generation, encryption, and
decryption. 17

8 Key sizes and ciphertext sizes of the U-LP ring-LWE variant. 18
9 Runtime comparison between the singled-threaded and the multi-threaded ver-

sion of U-LP. Measured is the overall runtime of key generation, and the encryp-
tion and decryption of a plain text afterwards. The cryptosystem is instantiated
with n= 888 and l = 512. 18

4

List of Code Listings

1 32 bit multiplication with modulo . 15
2 64 bit multiplication with modulo . 15

5

1 Introduction

Regarding the history of cryptography, the usage of encryption changed fundamentally in the
last 30 years. Early cryptosystems where originally developed for military usage, intended to
assure the confidentiality of the command chain. With the rise of interconnected consumer
products and a large market for online businesses, more and more encryption schemes were de-
veloped and standardized for everyday use, aimed to protect against different kinds of threats.
This includes but is not limited to data theft, financial fraud and governmental wiretapping.
While symmetric schemes like AES or Twofish are used for the data encryption itself, the often
less efficient asymmetric schemes are suitable to solve the key exchange problem by encrypting
a symmetric session key. Classical cryptosystems like RSA, which rely on the hardness of the
factorization problem, or those based on the computational Diffie-Hellman problem, are well
established in Internet standards, but require an ongoing increase of parameter sizes due to
the development of more powerful computing devices. To overcome the high computational
load, caused by large parameters of classical schemes, elliptic-curve cryptography was intro-
duced, bringing lower encryption overhead by comparable security levels. Unfortunately, even
elliptic-curve cryptography is based on the discrete logarithm problem, which, as well as the
factorization problem, is solvable with quantum computers in polynomial time, as stated by
Shor [Sho97]. Today, it is still unclear, if it will become possible to build sufficiently large
quantum computers to break nowadays common asymmetric encryption algorithms. However,
several research groups are steadily working on such machines. Developing public-key encryp-
tion schemes which are (probably) not affected by quantum computers is reasonable for the case
they succeed. Several classes of such algorithms already exist, for example hash-based, code-
based, lattice-based, and multivariate-quadratic-equations cryptography. For a broad overview
of the so called post-quantum cryptography see the book from Bernstein, Buchmann, and Dah-
men [BBD09]. Anyhow, most of the existing encryption schemes are rather inefficient, so further
research and development is still necessary.

One lattice-based approach is the LP scheme by Lindner and Peikert as proposed in [LP11].
It relies on the hardness of the learning with errors (LWE) problem and uses discrete Gaussian
sampling for noise and secret generation. Learning with errors is basically about computing the
inner products of a fixed secret vector and several random vectors, and adding some noise to
this inner products afterwards. The problem is to recover the secret vector, given access to the
chosen random vectors and the above mentioned results. While LP is relatively efficient, dealing
with a discrete Gaussian distribution in practice is sometimes cumbersome. To overcome these
difficulties, Cabarcas, Göpfert, and Weiden adapted the LP scheme and presented a security
proof for noise and secret, sampled uniformly at random [CGW14]. The proof is based on the
work of Micciancio and Peikert [MP13]. The so called U-LP cryptosystem is subject of this thesis
which is structured as follows: At first, in Section 2, I provide some background on lattice-based
cryptography, the learning with errors problem, and the encryption schemes LP and U-LP. The
ring-LWE variants of LP and U-LP are also described. In Section 3, my implementation of the
U-LP cryptosystem is presented, including the rationale for the programming language used.
After that, in Section 4, I compare U-LP and LP, highlight bottlenecks concerning runtime behav-
ior and structure sizes, and show how the ring-LWE variant and parallelization can improve the
situation. I conclude in Section 5.

6

2 Background

U-LP, as well as LP, belongs to the lattice-based encryption schemes and is based on the learning
with errors problem. In this Section, I give a short overview about lattice-based cryptography,
explain the LWE problem, and show how to make use of it in LP and U-LP.

2.1 Lattice-Based Cryptography

The term lattice-based cryptography refers to a set of encryption schemes based on lattices.
In group theory, a lattice is a discrete subgroup of Rn. Using a basis B := (b1, b2, ..., bn) where
bi ∈ Rn are linear independent vectors (similar to the basis of a vector space), a lattice is defined
as follows:

L :=

¨

n
∑

i=1

ki bi

�

�

�

�

�

ki ∈ Z

«

For use in cryptography it is handy to deal with integer numbers, so it is common to demand
bi ∈ Z. Furthermore calculations are usually done modulo an integer q to obtain a finite set of
representatives for an infinite number of vectors in the lattice.

Hard problems over lattices make this algebraic structure valuable in cryptography. Those
problems are for example the shortest vector problem (SVP): find the shortest non-zero vector in
the lattice, or the closest vector problem (CVP): given a vector not in the lattice, find the lattice
element with the least distance to the given vector.

2.2 Learning with Errors

Another hard lattice problem is learning with errors [Reg09]: Let n> 0 be the dimension of the
lattice, q ≥ 2 the (usually prime) modulus, and χ a probability distribution on Zq. For a fixed
(and secret) vector s ∈ Zn

q denote with As,χ the probability distribution gained by choosing a
vector a ∈ Zn

q uniformly at random, choosing error e ∈ Zq according to χ and outputting pairs
(a, 〈a, s〉+ e), where 〈a, s〉 denotes the inner product of two vectors. All computations are done
modulo q. The (search) LWE problem is to reconstruct secret s, given access to an arbitrary
number of samples from As,χ . Without error e, this would be easy, since the remaining part
becomes a system of linear equations, which is trivially solvable via Gaussian elimination. But
with error, there is no efficient way of doing this known today, even with hypothetical quantum
computers. In fact, it turns out that LWE is hard as long as the hardest instance of standard
lattice problems is hard [Reg10]. This renders LWE attractive for use in cryptography.

Aside from the search LWE problem, there is another variant, called the decision LWE problem.
Instead of recovering s, it is about distinguishing samples drawn from the LWE distribution As,χ
from those sampled uniformly at random over Zn

q ×Zq. Regev proofed that search and decision
version of LWE are in most cases equivalent [Reg10].

When building cryptosystems atop of LWE, the key-sizes seem to become inordinately large
(matrices of size O(n2)). To overcome this issue, the ring-LWE variant is willingly adopted,
which leads to smaller key-sizes, exploiting the fact that there is no known security impact on
LWE, when the samples are of some structured form. In ring-LWE, the group Zn

q is replaced
by the polynomial ring Rq = Zq[x]/〈xn + 1〉. In this variant, let n > 0 be a power of two,
q ≥ 2 the prime modulus, and χ a probability distribution on Rq. For a fixed (and secret)
polynomial s ∈ Rq denote with As,χ the probability distribution gained by choosing a polynomial

7

a ∈ Rq uniformly at random, choosing error with small coefficients e ∈ Rq according to χ and
outputting pairs (a, a · s + e). Here, a · s denotes a simple multiplication of two polynomials.
Similar to the standard variant, described above, the problem is to find secret s, given access to
an arbitrary number of samples from As,χ .

2.3 LP

In [LP11], Lindner and Peikert proposed their provably secure LP encryption scheme, which
is based on the LWE problem and samples error from a discrete Gaussian distribution DZ,σ
with standard deviation σ. In the following, n denotes the security parameter, l the message
length, and q the modulus. Additionally, a pair of error-tolerant encoding/decoding functions
encode: Zl

2→ Z
l
q and decode: Zl

q → Z
l
2 is necessary, such that decode(encode(m) + e) = m, for

all messages m ∈ Zl
2 and ||e||∞ < bq/4c. Such functions are part of the implementation and are

described in Section 3.6.

Key Generation: Sample matrix A∈ Zn×n
q uniformly at random, choose E← Dl×n

Z,σ and S← Dl×n
Z,σ .

Calculate P = E − S · A∈ Zl×n
q . The public key is (A, P), the private key is S.

Encryption: To encrypt an l bit message m, choose e1 ← Dn
Z,σ, e2 ← Dn

Z,σ, e3 ← Dl
Z,σ, and set

m′ = encode(m). The ciphertext c = (c1, c2) ∈ Zn×1
q ×Zl×1

q is computed as follows: c1 = A· e1+ e2

and c2 = P · e1 + e3 +m′.
Decryption: For decryption, compute and return decode(S · c1 + c2) ∈ Zl

2.

Aside of that, a ring-LWE version of LP is also described in [LP11]. The parameters n and q
are specified as above, but instead of a message length l, the message m has to consist of n bit.
The group Zn

q is replaced by the ringRq = Zq[x]/〈xn+1〉, where a polynomial a =
∑n−1

i=0 ai x
i is

represented by its coefficient vector (a0, ..., an−1)T . Therefore, the encoding/decoding functions
must not necessarily change. With χ denote a probability distribution over Rq, for example a
discrete Gaussian. A discrete Gaussian over Rq can be obtained by sampling the coefficients of
a polynomial from DZ,σ.

Ring Key Generation: Sample a ∈ Rq uniformly at random and choose e ← χ, and s ← χ.
Calculate p = e− s · a ∈ Rq. The public key is (a, p), the private key is s.
Ring Encryption: To encrypt an n bit message m, choose e1 ← χ, e2 ← χ, and e3 ← χ. Set
m′ = encode(m). The ciphertext c = (c1, c2) ∈ R2

q is computed as follows: c1 = a · e1 + e2 and
c2 = p · e1 + e3 +m′.
Ring Decryption: For decryption, compute and return decode(s · c1 + c2) ∈ Zn

2.

2.4 U-LP

In [CGW14], Cabarcas, Göpfert, and Weiden presented an adapted version of LP, called U-LP,
which gathers noise (error), and secret from a uniform distribution, instead of a discrete Gaus-
sian. This allows a simpler implementation, precludes decryption failures and gives hope for
more efficient operations due to the simpler sampling. U-LP is worst-case secure regarding stan-
dard lattice problems. Unfortunately, the security proof requires to choose larger parameters
for U-LP, so a performance decrease is measurable as shown in Section 4.2. In the following, di-
mension n, message m of length l, modulus q, and the encoding/decoding functions are defined

8

as in LP. With Uz denote the uniform distribution modulo z. Additionally sk and se are the error
bounds for key generation and encryption.

Key Generation: Sample A←U n×n
q , E←U l×n

sk
, and S←U l×n

sk
. Compute P = E − S · A∈ Zl×n

q .
The public key is (A, P), the private key is S.
Encryption: To encrypt an l bit message m, sample e1 ← U n

se
, e2 ← U n

se
, e3 ← U l

se
, and set

m′ = encode(m) ∈ Zl
q. The ciphertext c = (c1, c2) is computed as follows: c1 = A · e1 + e2 and

c2 = P · e1 + e3 +m′.
Decryption: For decryption, compute and return decode(S · c1 + c2) ∈ Zl

2.

Equivalently to LP, the authors of U-LP mentioned a ring based analogue for U-LP in [CGW14],
which leads to notably smaller key sizes and performance increases. Again, the group Zn

q is

replaced by the ring Rq = Zq[x]/〈xn + 1〉, where a polynomial a =
∑n−1

i=0 ai x
i is represented by

its coefficient vector (a0, ..., an−1)T . Also, message m has to be of size l bit.

Ring Key Generation: Sample a ← U n
q , e ← U n

sk
, and s ← U n

sk
. Calculate p = e − s · a ∈ Rq.

The public key is (a, p), the private key is s.
Ring Encryption: To encrypt n bit message m, sample e1 ← U n

se
, e2 ← U n

se
, and e3 ← U n

se
.

Set m′ = encode(m). The ciphertext c = (c1, c2), is computed as follows: c1 = a · e1 + e2 and
c2 = p · e1 + e3 +m′.
Ring Decryption: For decryption, compute and return decode(s · c1 + c2) ∈ Zn

2.

3 Implementing U-LP

During this thesis, I implemented the U-LP cryptosystem (as well as LP) in C, creating a generic
library for using this cryptosystem in practice (which are at the moment primarily testing and
evaluation purposes). This includes the normal variant as well as the ring-LWE variant of U-LP.
The library is built with the CMake build system [cma], ensuring cross platform compatibility
(which is at least Windows, Mac OS X and Linux in this context). The compilation process relies
actually on the gcc compiler [GNU], but can be easily adapted to other compilers. As of this
writing, the source code of ulpcrypt can be found on GitHub [git]. The library is released under
the terms of the MIT license.

In this Section, I justify the choice of the programming language, giving pros and cons about
different options. I define the scope of the ulpcrypt library and its API, and write about parts
of the implementation, which might be of some interest. Afterwards, some quality assurance
measures, which are taken, are described.

3.1 Choice of Programming Language

When writing a cryptographic library, the first thing to consider is the programming language.
While there are hundreds of programming languages, many of them are not well suited for
developing security sensitive software. The main difficulty lies in the conjunction of perfor-
mance and safety guarantees, where the latter is often not taken into account. C for example,
the most prominent language in this field, compiles to extremely efficient machine code, taking

9

advantage of highly optimized compilers and libraries.1 On the other hand it is easy to unin-
tentionally produce critical flaws in C, which can lead to security vulnerabilities such as buffer
overflows or use-after-free bugs. Additionally, C comes with a very small standard library, which
requires the programmer to either write a lot of common code from scratch, or rely on third
party libraries. C++ tried to improve this situation, but introduced a lot of complex language
constructs, which are easily used incorrectly as well. Modern scripting languages, that come
with clean syntax and semantics, provide a huge standard library, and support the programmer
with automatic memory management. But such languages like Python or Ruby, often tend to
result in rather inefficient software. It is desired that cryptographic software computes their
expensive calculations without high delay. Therefore, languages which compile to efficient ma-
chine code are probably more suitable than interpreted scripting languages. Java might look
like a compromising alternative, but is only half way compiled, sometimes suffers from virtual-
machine bugs and is not established as the de-facto standard in this area, yet. Additionally,
automatic memory management such as garbage collection is often considered as a lack of con-
trol. For example, some might want to wipe the memory after holding sensitive data, but one
can argue that modern operating systems anyway zero out memory pages before passing them
to other processes.

Finally, I decided to write the U-LP library in C. Since U-LP is not ready for the use in real
world applications, the interest is mainly from academic nature. The goals which must be
achieved are comparability and (to some degree) compatibility to similar libraries. These are
typically written in C or C++, too. Additionally, performance is an important issue here, which
straightly leads to C as the language of choice.

Nevertheless, for the future it would be valuable to have a language which assists the de-
veloper in avoiding critical failures and still produces efficient code, suitable for the use in
cryptography and other security related areas (even down to operating system level code).
The Rust programming language [rus], driven by the Mozilla Foundation, is designed as a
system programming language, providing strong safety guarantees, although this language is
very young and still not stable, yet. Another promising candidate might be Google’s Go [Goo].
Time will show if that kind of language become prevalent.

3.2 The Scope of the Library

The main goal of this library, called ulpcrypt, is to provide an easy to use, universal implemen-
tation of the U-LP cryptosystem (for the normal variant as well as for the ring-LWE variant). It
should be possible to utilize it in common use cases such as hybrid encryption, when building a
secure channel over a network. U-LP, as well as most other post quantum encryption schemes,
is mainly of academic interest yet, due to its limited performance. So the primary purpose is
the evaluation and comparison to other encryption schemes. Since U-LP is the first provably
secure LWE cryptosystem based on uniform error distribution, it might be of special interest.
While I took measures to stem common problems like buffer overflows (see Section 3.7), far
advanced threats like side-channel attacks are currently out-of-scope of this implementation.
These become important, when cryptosystems are targeted for in use protocols.

1 GMP for example, the GNU Multiple Precision Arithmetic Library, offers assembly level optimized support for
arbitrary precision number types.

10

3.3 Defining an Interface for ulpcrypt

The central components when working with a cryptosystem are the public and private keys as
well as the plaintext and ciphertext structures. For the plaintext, it suffices to hold the data
in a uint8_t array of size d l

8e, which consists of arbitrary bytes. Here, l denotes the message
length in bit. For the ciphertext it is slightly more compound, because a ciphertext in U-LP
consists of two vectors. Therefore the ulp_ciphertext structure covers two uint64_t arrays,
holding c1 and c2. Additionally the dimension parameters n and l are part of this structure to
keep track of the array sizes. This is also required for the key structures, since C has no length
attribute for arrays and matrices. Beside that, ulp_public_key contains two uint64_t values
for modulus q and encryption-error-bound se, and the uint64_t matrices A and P. The mod-
ulus is also stored in ulp_private_key, because this value is necessary during the decryption
calculations and the public key must not necessarily be present at this time. Furthermore the
matrix S is part of the private key structure. Such matrices are stored as one-dimensional con-
secutive arrays, to make use of locality (for possible performance tuning). To make memory
allocation for such compound datatypes easier, the ulpcrypt library provides the functions
ulp_alloc_public_key, ulp_alloc_private_key, and ulp_alloc_ciphertext, which take
the dimension parameters n and l and return pointers to corresponding structures with appro-
priate array sizes. For memory deallocation, complementary functions ulp_free_public_key,
ulp_free_private_key, and ulp_free_ciphertext are also provided.

The first thing one might do when using ulpcrypt is generating a key pair. To accomplish
this goal, one needs to pass values for q, sk, and se. In [CGW14], the authors noted how
these parameters must be chosen to fulfill the requirements of the security proof. The function
ulp_generate_parameters does this computation and generates the three values dependent on
security parameter n and message length l. After that, one can feed all these five parameters
into the ulp_generate_key_pair function. Additionally, it takes two references to public and
private key struct pointers, which are filled during the function call. There is no need to create
these structures manually beforehand using the alloc-functions stated above.

To encrypt a uint8_t array of plaintext data, one can use the ulp_encrypt function. Beside
that array, the function takes a pointer to a ulp_public_key structure and a reference to a
ulp_ciphertext pointer. The latter structure is created during the encryption process, there is
no need to create this manually beforehand. Note that the length of the plaintext array has to
match the parameter l in the ulp_public_key structure.

The function ulp_decrypt works as expected, taking pointers to the ulp_ciphertext and
ulp_private_key structures, and a reference to a uint8_t pointer for the decrypted plain
text data, which again, is generated during the decryption process. Similar to the con-
straints for encryption, parameters n and l of the ulp_ciphertext have to match those in
the ulp_private_key.

The functions for the ring-LWE variant look similar to the above mentioned. The nomenclature
differs in the word ring, between ulp and the function name, for example ulp_ring_encrypt.
Note that there is no parameter l in the ring-LWE variant. Instead, message length must be
equal to the security/dimension parameter n. Key components a, p, and s are vectors instead
of matrices. a ulp_ring_generate_parameters function does not exist, because there is no
security proof and suitable parameter estimation, yet.

11

The library compiles to a static, as well as to a shared version. To access the function dec-
larations, it suffices to include the single header ulpcrypt.h. For a detailed API overview, see
Appendix A.

3.4 Gathering Random Data

U-LP requires generating secret, samples, and noise randomly. For the use in cryptography,
(pseudo) random number generators have to fulfill strong security properties. As stated in
[GPR06], these are:

• Pseudorandomness: The generated numbers conform to a desired probability distribution.

• Forward security: If an attacker learns the internal state of the pseudo random number
generator, he can not derive anything about the previously generated numbers.

• Backward security: If an attacker learns the internal state of the pseudo random number
generator, he can not foresee anything about subsequent numbers.

Such generators, which hold these properties, are called cryptographically secure pseudo-random
number generators (CSPRNG). The Linux operating system provides such CSPRNGs via the two
virtual devices /dev/random and /dev/urandom. Its security was evaluated in [GPR06] and
improved afterwards. The /dev/random device computes random numbers entirely based on
the Kernel’s entropy pool, which gathers noise from input devices, and system and network in-
terrupts. If there is not enough entropy available to safely generate the next random number,
/dev/random blocks until enough entropy is gathered. The /dev/urandom device, in contrast,
initializes a pseudo-random number generator when there is not enough “real” entropy avail-
able. This allows /dev/urandom to continuously output random numbers. As far as it is known,
this random device is suitable for the use in cryptography, too. In U-LP, a lot of random data is
required (e. g. multiple matrices during key generation), so /dev/random is inappropriate due
to its blocking behavior. It simply would last to long. Therefore I rely on /dev/urandom in this
implementation for uniform random number generation on Linux and Mac OS X. Unfortunately,
Windows does not offer such an easy to use random device. Instead it provides an API call to a
system random number generator in C++. To make use of it in plain C, some dynamic library
loads and casts are necessary, to make RtlGenRandom available.

3.5 Utility Functions

The different operations during the U-LP calculations require some utility functions. The most
important operation in ulpcrypt is the multiplication of two 64 bit integers modulo another
integer. This functionality is implemented in a function called mulmod and is the most time-
consuming operation involved. This is evaluated in Section 4.1. Basically, it relies on the
unsigned __int128 datatype provided by the GCC compiler, for storing the intermediate re-
sult. For the case that this datatype is not available, ulpcrypt contains a less performant fallback
implementation.

For parameter generation, it is necessary to do prime number checks. One fast algorithm is the
Miller-Rabin primality test. In this library, the deterministic variant of this test is implemented,
which relies on a fixed set of bases instead of generating those randomly. This ensures a defini-
tively correct result and eliminates the overhead of generating random bases. The deterministic

12

test is possible when only numbers below a concrete threshold are tested. This is the case here,
since all numbers must fit into a 64 bit register.

During the primality check, the computation of ad mod n must be performed. To do this
efficiently, a function for exponentiation by squaring is implemented.

In the ring-LWE variant, multiplication is done in Zq[x]/〈xn + 1〉. Multiplication in the ring,
including the calculation of modulo xn+1, is implemented in the function poly_mulmod. Instead
of performing a complete polynomial division, the implementation exploits the fact that when
xn + 1 is the modulus, it is xn ≡ −1. Therefore division can be replaced by some subtractions.

3.6 Encoding / Decoding Functions

When encrypting a message, the plain text is given as a uint8_t array, i. e. a bitstring of size l.
But to perform operations on the message in U-LP, it must be provided as an element of Zl

q, i. e. a
uint64_t array of size l. This conversion is done by the function encode which takes a uint8_t
array of size dl/8e and outputs a uint64_t array of size l. This is done by iterating over the input
array, interpreting it as a bit array, and multiplying each bit with bq/2c. The decode function
reverts the encoding by iterating over the uint64_t array, converting each value between q/4
and q− q/4 to the bit 1, and each value outside this interval to the bit 0. This is a pair of error
tolerant encoding/decoding functions as demanded in LP and U-LP. Note that there is no need
to change these functions for the ring version, since a vector in Zq[x]/〈xn+1〉 is represented as
an array of size n.

3.7 Quality Assurance

The ulpcrypt library should provide the functionality described in Section 3.3 and should
also be able to perform this operations flawlessly, in terms of correctness. To assure this, a
(semi-)automated test suite is built, which includes at least one test for each function provided
by the library. The test suite is built around the CTest tool, which is part of the CMake build
system.

The presented ulpcrypt is a cryptographic library and therefore a security sensitive software.
Measures must be taken to avoid critical bugs which might weaken the system. Therefore, static
code analysis tools are used, which can reveal flaws in the source code. One of this tools is
cppcheck [cpp], which can for example find memory leaks and out-of-bounds accesses. Another
tool with some kind of static code analysis is the gcc compiler itself.

Additionally the dynamic analysis tool valgrind [val] offers memory checking and the profil-
ing of function calls. The latter is useful for the investigation of time consuming parts of the
software, where performance tuning is especially worthwhile.

4 Evaluation

In this Section, the U-LP cryptosystem is evaluated. This includes the influence of the bit length
when calculating operations in U-LP. Then, U-LP is compared to LP, regarding runtime behaviour
and structure sizes. Afterwards, it is described how the usage of the ring-LWE variant and
parallelization can optimize the encryption scheme.

The stated test runs are done on a 64-bit Linux machine (Fedora 20) with an Intel® Core™ i5-
4200U CPU and 12 gigabyte main memory. The CPU has two physical cores and supports
Hyper-Threading.

13

Bit
Security

LP U-LP

n q dlog2(q)e σ n q dlog2(q)e s

85 – 87 256 378353 19 32 488 310027967972291 49 278420

116 – 118 320 590921 20 36 592 615698195236667 50 356922

228 – 229 512 1511821 21 46 888 2603483886956573 52 601141

Table 1: Typical parameters for LP and U-LP, including the bit length of modulus q, grouped by
the intended level of security in bit. The values are based on the estimation in [CGW14].

number of
multiplications

Times [ms]

32 bit 64 bit

108 39.71 40.71

Table 2: Comparison of the multiplication
of 32 bit, and 64 bit numbers,
where the data is already present
and must not be loaded.

number of
multiplications

Times [ms]

32 bit 64 bit

108 180.92 371.01

Table 3: Comparison of the multiplication
of 32 bit, and 64 bit numbers,
where the data must be loaded
from memory.

4.1 Influence of the Bit Length

Well established asymmetric cryptosystems like RSA usually deal with numbers up to the length
of 4096 bit to reach an acceptable level of security. U-LP and LP, in contrast, operate on matrices
of much smaller numbers. Table 1 shows typical parameters for LP and U-LP, and what security
level is implied. As one might see, the modulus q for LP is smaller than 32 bit and for U-LP is
not bigger than 64 bit. Therefore, all the numbers involved in these cryptosystems, fit entirely
into CPU registers of a modern 64 bit machine. This avoids calculations on arbitrary precision
data structures, which usually come with a notable overhead. Nevertheless, U-LP operates on
numbers twice as large as those of LP. The authors of [CGW14] stated, that multiplication in Zq
takes time proportional to log(q), which results in a performance drawback for U-LP. Considering
the difference of the bit lengths in practice, it turns out that the comparison is more intricate.
The multiplication of numbers on an arithmetic logic unit (ALU) should take a roughly constant
time, as long as the numbers fit entirely into a CPU register. Modern CPUs, which are highly
optimized, may result in a difference of one or two clock cycles, when recognizing that the
operands are only 32 bit long. But in general, multiplication of 32 bit numbers on a 64 bit
machine should not result in a remarkable performance gain. See Table 2 for an experiment.
While CPU cores are extremely fast, memory access is comparably slow, and this is one matter
which handicaps U-LP. The matrices used in U-LP must be read from memory and transferred to
the CPU. Due to the 32/64 bit difference, these matrices are as twice as large as those in LP, and
it takes nearly the doubled amount of time to transfer all this data. Table 3 shows the timing
behavior when multiplying 32 bit, and 64 bit numbers, which must be loaded from memory.

Unfortunately, the explanation above does not cover the whole subject of calculation in U-LP
(and LP). Instead of simply multiplying the numbers, they are afterwards reduced by the modulo
q (which is according to valgrind the most time consuming operation in U-LP). Doing so with 32
bit numbers is easy, since the result of a 32 bit multiplication consists of a 64 bit number which
entirely fits into a CPU register. Then, the x86_64 instruction div computes the quotient and

14

number of
mulmod

Times [ms]

32 bit 64 bit

108 320.81 1628.28

Table 4: Comparison of the modular multiplication, executed on 32 bit, and on 64 bit operands.
Note that the operands are loaded from memory, so the overhead of copying data from
memory into CPU registers must be taken into account.

the remainder simultaneously, so the intended result is available quickly (see Listing 1). Trying
the same with 64 bit operands exceeds the build-in capabilities of the CPU. The product of a
64 bit multiplication is 128 bit long and is written into two registers, one holding the upper 64
bits, one holding the lower 64 bits. While the result is easily available, too, it is not possible to
pass this compound number directly as an input to another instruction. Since the C standard
does not define an integer datatype greater than 64 bit, yet, I rely on the unofficial but handy
unsigned __int128 datatype, provided by the gcc. This allows to work with the 128 bit product
similar as with the 64 bit product. But as already mentioned, there is no x86_64 instruction for
dividing a 128 bit number. Listing 2 shows what the compiler produces to make this calculation
possible.

Listing 1: 32 bit multiplication with modulo
1 mov %edi ,%eax
2 mov %esi ,% es i
3 mov %edx,%ecx
4 imul %rs i ,%rax
5 xor %edx,%edx
6 div %rcx
7 mov %edx,%eax
8 retq

Listing 2: 64 bit multiplication with modulo
1 mov %rdi ,%rax
2 mov %rdx ,%rcx
3 push %rbp
4 mul %r s i
5 mov %rdx ,% r s i
6 mov %rax ,% rdi
7 mov %rcx ,%rdx
8 xor %ecx ,%ecx
9 ca l lq <__umodti3>

10 pop %rbp
11 retq

After the multiplication is performed, the integer arithmetic routine __umodti3 is called. Such
routines are provided by the compiler for the case that native operations are not supported by
the hardware. The use of __umodti3 results in a bigger piece of code, manually computing
the remainder, keeping track of overflows, etc. This costs much more time than the simple div
instruction. Table 4 shows a comparison between 32 bit and 64 bit multiplication with modulo
(called mulmod here). One can see that the operation on 64 bit operands is approximately five
times slower than those on 32 bit operands. We already lost the factor two by loading the dou-
bled amount of data from memory, so what remains for the pure application of mulmod is the
factor 2.5. Obviously the efficiency highly depends on the available hardware. Theoretic CPUs
which support 128 bit registers could compute the modular multiplication on 64 bit operands as
fast as on 32 bit operands. Unfortunately, while in principle, the AVX2 extension brings support
for integer instructions, it does not include division and modulo instructions.

15

Bit
Security

Times U-LP [ms] Times LP [ms]
Generation Encryption Decryption Generation Encryption Decryption

85 – 87 3648.29 18.90 5.82 467.13 4.93 1.14
116 – 118 5564.58 26.05 7.25 659.96 5.90 1.44
228 – 229 12521.58 51.48 10.54 1524.14 10.09 2.85

Table 5: Runtime comparison of U-LP and LP, regarding key generation, encryption, and decryp-
tion. Security parameter n is chosen differently to achieve the desired level of security,
while message length l = 256 is fixed (which is a reasonable number when having
hybrid encryption in mind).

4.2 Comparison of U-LP and LP

The main difference between U-LP and LP is the probability distribution, used for sampling noise
and secret. LP relies on a discrete Gaussian, while U-LP utilizes a uniform distribution, which
allows a simpler implementation. The authors of [LP11] based their security estimation on aver-
age case hardness results. For a fair comparison, the worst case hardness results from [CGW14]
should be used, which supply parameters for both, U-LP and LP. Unfortunately, as shown in Ta-
ble 1, the uniform probability distribution has negative impact on the parameter sizes, leading
to numbers greater than 32 bit. Exceeding this threshold means, that the overhead of 64 bit
operands, described in Section 4.1 comes in, reducing the performance of U-LP. Additionally,
larger random matrices must be generated and handled, which costs time. On the other hand,
uniform sampling should be more efficient than sampling from a Gaussian distribution, which
is derived from an underlying uniform distribution. Nevertheless, this depends highly on the
implementation of the Gaussian random number generator. In this implementation, a simple
Box-Muller transform is used. Table 5 shows the runtime behavior for U-LP and LP, regarding
key generation, encryption, and decryption. Due to the different security estimations, we need
bigger values for n in U-LP to achieve a similar level of security. This enlarges the size of the
matrices again and slows down the operations in U-LP. One can see that key generation with
U-LP is 7 to 9 times slower than with LP, while encryption and decryption is about 3.5 to 5 times
slower.

Another worthwhile comparison is about the key and ciphertext sizes. Table 6 shows the size
of the data structures, when instantiating the cryptosystems with reasonable security parameters
and an adequate message length (which is 256 here). While the size of the ciphertexts is only
about a couple of kilobytes, the keys quickly reach the size of a few megabytes in U-LP and
several hundred kilobytes in LP. The public key size increases most notably up to the factor 5.5
from LP to U-LP, while the increase factor of the private key size lies between 3.4 and 3.8. The
ciphertext growth scatters around the factor 2.9.

4.3 Optimization by Using the Ring Variant

The long computation time and the large data structures make the U-LP cryptosystem difficult
to use in practice. Using the ring-LWE variant as described in Section 2.4 can probably improve
this situation. Instead of matrices, one-dimensional vectors are used which immediately leads
to smaller keys. Having said this, one must note that there is no message length parameter l in
this modified scheme. Instead it is possible to encrypt plaintext messages up to the length of the
security parameter n. Unfortunately common message lengths such as 128 or 256 are way too

16

Bit
Security

Sizes U-LP [kB] Sizes LP [kB]
Public Key Private Key Ciphertext Public Key Private Key Ciphertext

85 – 87 2904.60 999.44 5.96 524.30 262.16 2.06
116 – 118 4016.16 1212.44 6.80 737.30 327.70 2.32
228 – 229 8127.00 1818.64 9.16 1572.88 524.30 3.08

Table 6: Comparison of key sizes and ciphertext sizes of U-LP and LP. n is chosen according to
Table 1, l is set to 256.

n
Times ring U-LP [ms]

Key Generation Encryption Decryption
256 7.28 7.82 2.94
488 18.76 24.01 10.77
592 24.64 36.68 15.71
888 40.94 76.81 35.42

Table 7: Runtime of the U-LP ring-LWE variant, regarding key generation, encryption, and
decryption.

short for an adequate level of security. Therefore, one has to choose larger messages when using
this system. Having hybrid encryption in mind, a possible scenario could be to concatenate two
(or more) symmetric keys, (for example one for encryption, one for MAC), append some extra
padding, and encrypt this enlarged message afterwards.

Table 7 shows the runtime for key generation, encryption, and decryption of the U-LP ring-
LWE variant. As expected, the performance gain for the key generation is enormous. Encryption
and decryption, in contrast, is only negligibly faster for a message length of 256. In fact, when
increasing message length in ring U-LP to values of n as used in standard U-LP, encryption and
decryption become even a bit slower. This might be due to the more costly modular multiplica-
tion for polynomials. When looking at the data structure sizes in Table 8, a remarkable decrease
of the key sizes is observable. But this does not hold for the ciphertext. The ciphertext size
might slightly increase, because in standard U-LP, it consists of n+ l entries, where in ring U-LP
it consists of 2 ∗ n entries (and n is usually larger than l). Additionally, the ciphertext is not
much smaller than the keys, as it is in standard U-LP, because of the vectors instead of matrices
as the underlying structures. But this should not be an issue.

While the advantages of faster key generation and smaller key structures are obvious, the
drawback of slower encryption and decryption might diminish this benefit. However, the com-
parison should be taken carefully anyway. There is no proof or an estimation of the security
properties of the ring U-LP variant yet, so it is unclear, if the juxtaposition of the cryptosystems
instantiated with equal n is meaningful. Additionally, optimizations for the ring variant might
be found which could improve the situation.

4.4 Optimization by Parallelization

A promising technique for the optimization of U-LP is the parallelization of several core rou-
tines. U-LP and LP, as well as numerous other lattice based algorithms seem to be perfectly
appropriate for parallelization, due to the intense use of matrices and vectors. Operations on
those data structures often involve the calculation of several independent partial results which

17

n
Sizes ring U-LP [kB]

Public Key Private Key Ciphertext
256 4.12 2.06 4.10
488 7.83 3.92 7.81
592 9.49 4.75 9.48
888 14.23 7.12 14.21

Table 8: Key sizes and ciphertext sizes of the U-LP ring-LWE variant.

n l
Times [s]

1 Thread 4 Threads
888 512 24.56 9.29

Table 9: Runtime comparison between the singled-threaded and the multi-threaded version of
U-LP. Measured is the overall runtime of key generation, and the encryption and de-
cryption of a plain text afterwards. The cryptosystem is instantiated with n = 888 and
l = 512.

might attract the use of parallelization techniques. As observable in Table 6, key generation is
the worst performing part of U-LP. So a first approach would be to speed this process up, by
parallelizing calculations such as the matrix multiplication S × A. While this highly depends on
the degree of parallelization, even with a simple OpenMP [ope] tuning is a speedup between
2 and 3 measurable. This is shown in Table 9. Note that the test run is done on two physical
CPU cores which support Hyper-Threading. There are more portions of the code which allow
parallelization, but when looking at the runtimes of the encryption and decryption functions,
which only last a few milliseconds, it is likely that parallelization brings in a certain overhead
for thread creation and scheduling, which could cancel out the intended benefit. Also note that
a time consuming part of U-LP is the generation of large portions of random data, which cannot
be parallelized well in the current implementation, where random data is read from a virtual
system device (on UNIX compatible OS).

However, in general, parallelization can improve the runtime behavior significantly, depend-
ing on the different usage of parallelization techniques. A handy feature for example, is the
vectorization capability of modern CPUs (such as SSE and AVX), which can be used to compute
multiple operations simultaneously. Unfortunately, as mentioned earlier, the lack of integer
division and modulo functions is an issue. Another powerful method is the massive parallel
execution of a program on the GPU (as possible with the OpenCL standard [Khr]). The recent
OpenMP 4.0 standard brings also support for GPGPU2 and the calculation on dedicated accel-
erator devices. Such levels of parallelization can lead to a huge performance gain, but are not
trivial to implement. Additionally, GPUs and accelerator devices are not available on every sys-
tem. Many embedded devices do not include such hardware but should nevertheless be able to
perform cryptographic operations.

2 General Purpose Computation on Graphics Processing Unit

18

5 Conclusion

During this thesis I implemented the U-LP and the LP cryptosystems and built a library around
them, providing functions for key generation, encryption, and decryption, for the standard vari-
ant, as well as for the ring-LWE variant. This might be viable for comparison experiments, when
evaluating new (lattice based) encryption schemes. Such schemes could become very important,
when a breakthrough in quantum computing renders classical asymmetric encryption schemes
useless. Additionally, certain lattice based encryption schemes bring in the advantage of strong
security proofs. Two examples are LP and U-LP, where the latter is the first provably secure LWE
encryption scheme, which gathers noise and secret from a uniform distribution.

In this thesis, I instantiated the cryptosystems with practice-oriented parameters and evalu-
ated runtime behavior and structure sizes. Unfortunately, as shown in Section 4.2, U-LP has
some performance drawbacks. Especially the times needed for key generation can be hindering
for practical usage of U-LP. In Sections 4.3 and 4.4, I showed that this situation can be im-
proved to some extent, by using the ring-LWE variant and parallelization. Nevertheless, further
optimization has to be done, both in the theoretical structure of the encryption schemes and
the parameter selection, and in the practical implementation. Massive parallelization on GPUs
could lead to reduced execution times, while dedicated hardware support would diminish some
overhead, for example when dealing with 128 bit operands. Another problematical point is
the size of the key structures. Sizes of several megabytes are probably too large for real time
applications such as browsing the Web. While the ciphertext is relatively small, compared to
the keys, the blow up is immense. For example a 256 bit plain text message can result in a 6
kilobyte ciphertext.

However, while further research is necessary, lattice-based encryption schemes seem to be a
promising alternative for classical cryptosystems. Peikert explained in [Pei14] how useful some
schemes already can be as drop-in replacements in protocols for everyday use in the Internet.

19

References

[BBD09] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen. Post-Quantum Cryptog-
raphy. Springer, 2009.

[CGW14] Daniel Cabarcas, Florian Göpfert, and Patrick Weiden. Provably secure LWE encryp-
tion with smallish uniform noise and secret. In Proceedings of the 2nd ACM workshop
on ASIA public-key cryptography, pages 33–42. ACM, 2014.

[cma] CMake. http://www.cmake.org/. Accessed: 2014-09-27.

[cpp] Cppcheck - a tool for static C/C++ code analysis. http://cppcheck.sourceforge.
net/. Accessed: 2014-09-27.

[git] ulpcrypt on GitHub. https://github.com/exploide/ulpcrypt. Accessed: 2014-
09-27.

[GNU] GNU Project. GCC, the GNU compiler collection. https://gcc.gnu.org/. Accessed:
2014-09-27.

[Goo] Google Inc. The go programming language. https://www.golang.org/. Accessed:
2014-09-27.

[GPR06] Zvi Gutterman, Benny Pinkas, and Tzachy Reinman. Analysis of the linux random
number generator. In Security and Privacy, 2006 IEEE Symposium on, pages 15–pp.
IEEE, 2006.

[Khr] Khronos Group. The open standard for parallel programming of heterogeneous sys-
tems. https://www.khronos.org/opencl/. Accessed: 2014-09-27.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based
encryption. In Topics in Cryptology–CT-RSA 2011, pages 319–339. Springer, 2011.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small parame-
ters. In Advances in Cryptology–CRYPTO 2013, pages 21–39. Springer, 2013.

[ope] The OpenMP API specification for parallel programming. http://openmp.org/. Ac-
cessed: 2014-09-27.

[Pei14] Chris Peikert. Lattice cryptography for the internet. IACR Cryptology ePrint Archive,
2014:70, 2014.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM), 56(6):34, 2009.

[Reg10] Oded Regev. The learning with errors problem. Invited survey in CCC, 2010.

[rus] The rust programming language. http://www.rust-lang.org/. Accessed: 2014-09-
27.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM journal on computing, 26(5):1484–1509, 1997.

[val] Valgrind. http://www.valgrind.org/. Accessed: 2014-09-27.

20

http://www.cmake.org/
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
https://github.com/exploide/ulpcrypt
https://gcc.gnu.org/
https://www.golang.org/
https://www.khronos.org/opencl/
http://openmp.org/
http://www.rust-lang.org/
http://www.valgrind.org/

A ulpcrypt API Documentation v1.0

General Usage

ulpcrypt compiles to a shared and a static library. To make the function definitions available, just include
the header ulpcrypt.h. Most functions return the value 0 on success and a negative value, otherwise.
Exceptions are the functions for allocating structures, which return a pointer, and the functions for
deallocating structures, which return nothing.

Structures

ulp_public_key

Public key for U-LP.
Structure members:
size_t n - security parameter
size_t l - message length
uint64_t q - modulus
uint64_t se - error bound for encryption
uint64_t* A - part of the public key
uint64_t* P - part of the public key

ulp_private_key

Private key for U-LP.
Structure members:
size_t n - security parameter
size_t l - message length
uint64_t q - modulus
uint64_t* S - secret

ulp_ciphertext

Ciphertext for U-LP.
Structure members:
size_t n - security parameter
size_t l - message length
uint64_t* c1 - first part of the ciphertext
uint64_t* c2 - second part of the ciphertext

Functions

ulp_alloc_public_key

Allocate heap memory for storing a U-LP public key.
Parameters:
size_t n - security parameter
size_t l - message length
Return value:
ulp_public_key* - pointer to the allocated heap memory

21

ulp_alloc_private_key

Allocate heap memory for storing a U-LP private key.
Parameters:
size_t n - security parameter
size_t l - message length
Return value:
ulp_private_key* - pointer to the allocated heap memory

ulp_alloc_ciphertext

Allocate heap memory for storing a U-LP ciphertext.
Parameters:
size_t n - security parameter
size_t l - message length
Return value:
ulp_ciphertext* - pointer to the allocated heap memory

ulp_free_public_key

Deallocate heap memory for a U-LP public key.
Parameters:
ulp_public_key* pub_key - pointer to the memory to free
Return value:
void

ulp_free_private_key

Deallocate heap memory for a U-LP private key.
Parameters:
ulp_private_key* priv_key - pointer to the memory to free
Return value:
void

ulp_free_ciphertext

Deallocate heap memory for a U-LP ciphertext.
Parameters:
ulp_ciphertext* ciphertext - pointer to the memory to free
Return value:
void

ulp_generate_parameters

Generate the parameters for the U-LP cryptosystem dependent on n and l.
Parameters:
size_t n - security parameter
size_t l - message length
uint64_t* sk - pointer to error bound for key generation (will be generated)
uint64_t* se - pointer to error bound for encryption (will be generated)
uint64_t* q - pointer to modulus (will be generated)
Return value:
int - 0 on success, a negative value otherwise

22

ulp_generate_key_pair

Generate a keypair for the U-LP cryptosystem.
Parameters:
size_t n - security parameter
size_t l - message length
uint64_t sk - error bound for key generation
uint64_t se - error bound for encryption
uint64_t q - modulus, must be less than 263 due to possible overflow problems
ulp_public_key** pub_key_p - pointer to a public key pointer (will be generated)
ulp_private_key** priv_key_p - pointer to a private key pointer (will be generated)
Return value:
int - 0 on success, a negative value otherwise

ulp_encrypt

Encrypt a message with the U-LP cryptosystem.
Parameters:
uint8_t msg[] - the bytes to encrypt (number of bits has to match the l parameter in the key)
ulp_public_key* pub_key - the public key used for encryption
ulp_ciphertext** ciphertext_p - pointer to the ciphertext pointer (will be generated)
Return value:
int - 0 on success, a negative value otherwise

ulp_decrypt

Decrypt a ciphertext with the U-LP cryptosystem.
Parameters:
ulp_ciphertext* ciphertext - pointer to the ciphertext to decrypt
ulp_private_key* priv_key - the private key used for decryption
uint8_t** msg_p - pointer to the message buffer pointer (will be generated)
Return value:
int - 0 on success, a negative value otherwise

Ring Structures

ulp_ring_public_key

Public key for U-LP ring variant.
Structure members:
size_t n - security parameter
uint64_t q - modulus
uint64_t se - error bound for encryption
uint64_t* a - part of the public key
uint64_t* p - part of the public key

ulp_ring_private_key

Private key for U-LP ring variant.
Structure members:
size_t n - security parameter
uint64_t q - modulus
uint64_t* s - secret vector

23

ulp_ring_ciphertext

Ciphertext for U-LP ring variant.
Structure members:
size_t n - security parameter
uint64_t* c1 - first part of the ciphertext
uint64_t* c2 - second part of the ciphertext

Ring Functions

ulp_ring_alloc_public_key

Allocate heap memory for storing a U-LP public key (ring variant).
Parameters:
size_t n - security parameter and message length
Return value:
ulp_ring_public_key* - pointer to the allocated heap memory

ulp_ring_alloc_private_key

Allocate heap memory for storing a U-LP private key (ring variant).
Parameters:
size_t n - security parameter and message length
Return value:
ulp_ring_private_key* - pointer to the allocated heap memory

ulp_ring_alloc_ciphertext

Allocate heap memory for storing a U-LP ciphertext (ring variant).
Parameters:
size_t n - security parameter and message length
Return value:
ulp_ring_ciphertext* - pointer to the allocated heap memory

ulp_ring_free_public_key

Deallocate heap memory for a U-LP public key (ring variant).
Parameters:
ulp_ring_public_key* pub_key - pointer to the memory to free
Return value:
void

ulp_ring_free_private_key

Deallocate heap memory for a U-LP private key (ring variant).
Parameters:
ulp_ring_private_key* priv_key - pointer to the memory to free
Return value:
void

24

ulp_ring_free_ciphertext

Deallocate heap memory for a U-LP ciphertext (ring variant).
Parameters:
ulp_ring_ciphertext* ciphertext - pointer to the memory to free
Return value:
void

ulp_ring_generate_key_pair

Generate a keypair for the U-LP cryptosystem (ring variant).
Parameters:
size_t n - security parameter and message length
uint64_t sk - error bound for key generation
uint64_t se - error bound for encryption
uint64_t q - modulus, must be less than 263 due to possible overflow problems
ulp_ring_public_key** pub_key_p - pointer to a public key pointer (will be generated)
ulp_ring_private_key** priv_key_p - pointer to a private key pointer (will be generated)
Return value:
int - 0 on success, a negative value otherwise

ulp_ring_encrypt

Encrypt a message with the U-LP cryptosystem (ring variant).
Parameters:
uint8_t msg[] - the bytes to encrypt (number of bits has to match the n parameter in the key)
ulp_ring_public_key* pub_key - the public key used for encryption
ulp_ring_ciphertext** ciphertext_p - pointer to the ciphertext pointer (will be generated)
Return value:
int - 0 on success, a negative value otherwise

ulp_ring_decrypt

Decrypt a ciphertext with the U-LP cryptosystem (ring variant).
Parameters:
ulp_ring_ciphertext* ciphertext - pointer to the ciphertext to decrypt
ulp_ring_private_key* priv_key - the private key used for decryption
uint8_t** msg_p - pointer to the message buffer pointer (will be generated)
Return value:
int - 0 on success, a negative value otherwise

25

	Introduction
	Background
	Lattice-Based Cryptography
	Learning with Errors
	LP
	U-LP

	Implementing U-LP
	Choice of Programming Language
	The Scope of the Library
	Defining an Interface for ulpcrypt
	Gathering Random Data
	Utility Functions
	Encoding / Decoding Functions
	Quality Assurance

	Evaluation
	Influence of the Bit Length
	Comparison of U-LP and LP
	Optimization by Using the Ring Variant
	Optimization by Parallelization

	Conclusion
	ulpcrypt API Documentation v1.0

