
Fachbereich Mathematik

Masterarbeit

Efficient Proactive Secret Sharing

Jacqueline Brendel

26. Januar 2016

Betreuer: Prof. Dr. Johannes Buchmann

Zweiter Gutachter: Dr. Denise Demirel

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst habe und

alle benutzten Quellen einschließlich der Quellen aus dem Internet und alle sonstigen

Hilfsmittel angegeben habe. Diese Arbeit hat in gleicher oder ähnlicher Form noch

keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 26.01.2016

Jacqueline Brendel

3

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Dr. Denise

Demirel for her enthusiasm, invaluable advice and encouragement.

For the non-scientific side of my thesis, I particularly want to thank my part-

ner Alex for his infinite patience, love and many coffee dates. Your ambition and

kindness never fail to inspire me.

Last but not least, I would like to thank my family, especially my mother Sophie,

and my sister Sandra, for always keeping me grounded, never losing faith in me and

supporting me in every way imaginable throughout my life.

5

Contents

1 Introduction 7

1.1 Short Introduction . 7

1.2 Problem Statement and Contribution 7

1.3 Thesis Outline . 8

2 Foundations of Proactive Secret Sharing 9

2.1 Shamir’s Secret Sharing . 9

2.2 Verifiable Secret Sharing . 10

2.2.1 Feldman VSS . 11

2.2.2 Pedersen VSS . 11

2.3 Proactive Secret Sharing . 12

2.3.1 Synchronous Proactive Secret Sharing 12

2.3.2 Asynchronous Proactive Secret Sharing 13

3 G2
its Verifiable Proactive Secret Sharing Protocol 16

3.1 Description . 16

3.1.1 Setup and Terminology . 16

3.1.2 Assumptions and Requirements 16

3.1.3 Protocol Description . 17

3.2 Remark . 20

4 Long-term Secure Implementation of G2
its 21

4.1 The Commitment Scheme . 21

4.2 The Communication System . 21

4.2.1 Reliable Communications . 22

4.2.2 The Broadcast Channel . 22

4.2.3 Perfectly Secret Encryption 23

4.2.4 Information-theoretic Secure Key Agreement 24

4.3 Summary . 27

5 The Enterprise Scenario 29

5.1 Scenario Description . 29

5.2 Terminology and General Assumptions 30

5.2.1 Shareholder Structure . 30

5.2.2 Network . 31

5.2.3 Adversary . 31

6

5.3 A First Approach . 32

5.3.1 Shortcomings . 32

5.3.2 Key Ideas . 32

6 The Enterprise PSS Scheme (EPSS) 36

6.1 The EPSS Scheme . 36

6.1.1 EPSS Initial Distribution Protocol 36

6.1.2 Basic Redistribution Protocol 39

6.1.3 Extension to Basic Redistribution Protocol: Average Case

Complaint Resolution . 42

6.1.4 Extension to Basic Redistribution Protocol: Worst Case Com-

plaint Resolution . 46

6.1.5 Malicious Coordinator . 51

6.1.6 EPSS Reconstruction Protocol 51

7 Security Analysis of EPSS 54

7.1 General Assumptions and Definition 54

7.2 Integrity and Availability . 55

7.2.1 Initial Distribution . 55

7.2.2 Redistribution . 56

7.2.3 Reconstruction . 56

7.3 Confidentiality . 58

7.3.1 Initial Distribution . 59

7.3.2 Redistribution . 60

7.3.3 Reconstruction . 63

8 Communication Analysis 64

8.1 Parameters . 64

8.2 Comparison . 65

8.2.1 G2
its VSR . 65

8.2.2 G2
its VSR in Enterprise Scenario 65

8.2.3 EPSS . 65

8.3 Result . 65

9 Conclusion 67

9.1 Summary . 67

9.2 Future Work . 67

7

1 Introduction

1.1 Short Introduction

Long-term secure archival is growing in its relevance due to the ever increasing dig-

italization of documents throughout all areas of our lives, for example medical or

legal data. There exist various meanings of the expression long-term to describe the

life time of the data in question, ranging from a few years or decades to everlast-

ing, but in all cases it is clear that storage of this kind of data must take special

precautions to ensure the basic protection goals of authenticity, integrity and confi-

dentiality. In the course of the stored document’s life time, hardware will be replaced

and network structures will change repeatedly. Long-term storage solutions must

be able to handle these changes while retaining the required protection goals for

the data. Long-term authenticity and integrity are well-studied (cf. e.g. [30] for

a comprehensive overview over the approaches), whereas long-term confidentiality

remains a major open research question. So far, the only acknowledged solution

to protect the confidentiality of long-term relevant data are Proactive Secret Shar-

ing schemes which will be discussed in detail in the next chapter. As opposed to

traditional threshold secret sharing schemes such as Shamir’s[26], proactive secret

sharing schemes limit the time frame an adversary has at its disposal to compro-

mise the threshold number of shares, by renewing the shares periodically without

reconstructing the original secret. The renewed shares still combine to the original

secret, but any knowledge the adversary has gained about previous shares becomes

useless once the renewal was completed. Thus, proactive secret sharing schemes are

especially well suited to protect sensitive data with a long life span.

1.2 Problem Statement and Contribution

The benefits of proactive secret sharing schemes compared to standard archival so-

lutions when it comes to long-lived sensitive data are obvious. Unfortunately, the

widespread adaptation of proactive secret sharing is hindered by its impracticality.

As a result of the large amount of traffic generated during the periodic share renewal

and redistribution processes as well as the accompanying computational overhead,

these schemes do not scale well and are considered inefficient. Furthermore, due to

their abstract nature, prevailing proactive secret sharing protocols omit details con-

cerning the practical implementation of long-term security related primitives. And

yet, proactive secret sharing combined with verifiable secret sharing is recognized

as a sound and the only currently known approach to long-term secure archival of

8

confidential information. The practical implementation of such schemes is an open

issue in ongoing research.

In this thesis we wish to relax the commonly made strong assumption that there

exist private point-to-point communication channels between any two nodes involved

in the PSS (re)distribution and reconstruction process. This is done by clustering

the shareholders into groups that can only communicate securely within the cluster

itself and across clusters through single distinguished nodes within the cluster. We

will see that this modified situation lends itself well to structures commonly found in

enterprises. This so-called enterprise scenario is then the basis for the introduction

of the Enterprise PSS (EPSS) scheme that is able to accommodate the modified

assumption while still retaining strong security properties.

The basis for the EPSS approach will consist of the PSS protocol by Gupta and

Gopinath [16] combined with methods found in asynchronous proactive secret shar-

ing schemes (cf. section 2.3.2) which achieves a further step towards practicability

by relaxing the assumptions on the network from synchronous to asynchronous. The

choice of [16] is due to its reasonable assumptions which model an apt enough repre-

sentation of the real world. Additionally, it allows for dynamic addition and removal

of shareholders without reconstructing the original secret. Its use of Pedersen com-

mitments over Feldman VSS provides information-theoretic security which is agreed

to be the adequate security level for storage of long-lived sensitive data, therefore

making it a solid starting point not only for our but any further research in practi-

cal proactive secret sharing schemes. Additionally, we will conduct a short analysis

concerning possible recommendations for concrete implementations for long-term

security related features of PSS protocols such as [16].

1.3 Thesis Outline

The thesis is structured as follows: In the next section, we will portray the his-

toric evolution of proactive secret sharing while introducing the relevant crypto-

graphic building blocks and preliminaries. In Chapter 3, the protocol by Gupta

and Gopinath [16] will be presented in detail before we specify its long-term secure

aspects in Chapter 4. The remainder of the thesis is dedicated to introducing and

presenting the Enterprise PSS protocols for initial distribution, redistribution and

reconstruction (Chapter 6) followed by a security analysis (Chapter 7). The thesis

will close with a short comparison of the presented scheme and [16] with respect to

communication complexity (Chapter 8) and an outlook on future work concerning

the topic of proactive secret sharing.

9

2 Foundations of Proactive Secret Sharing

Proactive secret sharing schemes can be said to have evolved from traditional secret

sharing schemes in an iterative process where shortcomings were identified and then

resolved. We want to outline this development and, in the course of doing so,

introduce preliminaries and notions which are relevant for the rest of the thesis.

2.1 Shamir’s Secret Sharing

Secret sharing allows for a secret s to be divided into so-called shares which are then

distributed secretly among a number of n parties P1, . . . , Pn, commonly referred to

as shareholders. The combination of any m shares, i.e., the collaboration of at least

m shareholders, enables the reconstruction of the original secret s, while fewer than

m shares will not suffice to gain any additional information about s.

This approach is especially useful for highly sensitive data which must be stored

reliably and access should only be authorized if a minimum number of shareholders

collaborate. A popular example is the storage of signature keys, where it should be

impossible for a single person to sign e.g. the final version of a software product,

whereas a distinguished group of individuals can generate the signature needed for

its release.

Due to their construction such schemes are also called (m,n)-threshold schemes.

The concept of secret sharing was first introduced independently by Adi Shamir [26]

and George Blakley [4] in 1979. Shamir’s approach is based on the interpolation

of polynomials over finite fields and assures that an adversary which possesses less

than m shares, learns no partial information about the secret s. This guarantee is

not given in Blakley’s original scheme, which conceals the secret as an intersection

of n-dimensional hyperplanes. Furthermore, while the size of the shares in Shamir’s

protocol is the same as that of the secret, Blakely’s protocol produces shares which

are m− 1 times the length of the secret. For these reasons, Shamir’s Secret Sharing

is more widely deployed and we will describe in detail how it works:

Sharing Let D be the dealer, who holds the secret s ∈ Zp with p prime and

p > n. D now chooses coefficients a1, . . . , am−1 ∈R Zp uniformly at random which

determine the polynomial a(x) = s + a1x + a2x
2 + · · · am−1xm−1 of degree m − 1

with constant term s, i.e., a(0) = s. The share si of participant Pi is then given by

si := a(i) = s +
∑m−1

k=1 aki
k with i = 1, . . . , n.

10

Reconstruction For reconstruction of the secret s a subset B containing any m

shareholders is chosen, say, Pi1 , Pi2 , . . . , Pim and their respective shares sij are re-

trieved. Polynomial interpolation then yields the unique polynomial p such that

p(ij) = sij for j = 1, . . . ,m. It holds that p(x) = a(x). Thus, the secret s is then

given by evaluation of the polynomial p at zero.

Remark 2.1. It is reasonable to choose the number of participants n such that

n = 2m − 1 as this implies that the secret can be recovered if and only if there

is an honest majority. We assume that there always exists an honest majority as

otherwise, the dishonest parties could collude and simply reconstruct the secret

without further ado.

2.2 Verifiable Secret Sharing

In the above described secret sharing shemes, less than m shareholders are not able

to determine the interpolating polynomial and can therefore not reconstruct the

secret s as long as the dishonest parties remain passive. But what happens if the

m − 1 shareholders collude, and do not remain passive eavesdroppers but actively

try to gain unwarranted access to information about the secret through malicious

behaviour? What if the dealer is dishonest? To answer these questions, we must

first define what it means for a dealt share to be valid:

Definition 2.2. We say that a share si of a secret s is valid (or consistent) if

si = a(i) for the previously determined secret sharing polynomial a(x) with constant

term s.

A dishonest dealer could, for example, distribute invalid shares to (some of) the

participants which - if used for reconstruction - would not yield the polynomial asso-

ciated with the original secret and the secret could be lost. Furthermore, during the

reconstruction phase there is no way to ascertain that the shares provided by the

select group of shareholders are indeed the ones which were originally dealt which

could again impact the recovery of the secret. We recognize the need to be able

to confirm the consistency of shares with the original secret. This is achieved by

Verifiable Secret Sharing (VSS) schemes. The first interactive VSS scheme (along

with the general idea) was proposed in 1985 by Chor, Goldwasser, Micali and Awer-

buch [9]. Two commonly used examples are the computationally secure Feldman

VSS [14] and the information-theoretically secure Pedersen VSS [22]. Both are non-

interactive and in the following their application to secret sharing schemes is laid

out.

11

2.2.1 Feldman VSS

Let p and q be sufficiently large prime numbers with p = qr + 1. Now let s ∈ Zq be

the secret which is to be distributed by a dealer D according to an (m,n)-threshold

secret sharing scheme. Furthermore, let g ∈ Zp of order q. It is assumed that the

computation of discrete logarithms is intractable.

1. The dealer shares the secret s as described in section 2.1. Additionally, the

dealer computes the values ga1 , ga2 , . . . , gam−1 and broadcasts them along with

the concealed secret gs.

2. Each Pi can now verify its received share si by checking if the congruence

gsi ≡ (gs) · (ga1)i · (ga2)i2 · · · (gam−1)i
m−1

(1)

is satisfied.

Upon reconstruction of the secret, the provided shares can be checked for consis-

tency with equation (1) by the reconstructing party. The occurrence of discrepancies

in the verification equation (1) is handled differently in protocols but is most com-

monly dealt with by implementing a complaint mechanism where shareholders can

accuse the dealer of cheating and the issue is then resolved by identifying the dishon-

est party. Since usually an honest majority of shareholders is assumed, the existence

of at least m participants with consistent shares is guaranteed and hence the secret

remains reconstructible even in the presence of dishonest participants.

2.2.2 Pedersen VSS

Besides being very efficient, Feldman VSS [14] is only computationally secure as the

confidentiality of the secret relies on the hardness of computing discrete logarithms

over finite fields. Information-theoretic security is achieved by Pedersen’s verifiable

secret sharing protocol [22] which works as follows:

Again, let p and q be sufficiently large prime numbers with p = qr + 1 and s ∈ Zq

be the secret which is to be distributed by a dealer D according to an (m,n)-

threshold secret sharing scheme. Generators g and h of a q-th order subgroup of Z∗p
are selected by D, i.e., it holds that gq ≡ 1 mod p and hq ≡ 1 mod p and made

public. It is assumed that logg(h) is not known as otherwise the dealer D would be

enabled to distribute invalid shares without detection.

12

1. The dealer shares the secret s as described in section 2.1 without sending the

shares to the participants just yet. Let t ∈R Zq be chosen by D arbitrarily at

random. The secret sharing procedure is also applied to the value t, i.e., the

polynomial b(x) = t+b1x+b2x
2+ · · ·+bm−1x

m−1 with uniformly random coef-

ficients is defined and shares ti := b(i) for Pi, i = 1, . . . , n are computed. The

share pair (si, ti) is then transmitted privately to the respective participant.

The dealer D then computes the values gsht and ga1hb1 , ga2hb2 , . . . , gam−1hbm−1

and broadcasts them.

2. The shareholders can now verify their received share pair with the equation

gsihti ≡ gsht

m−1∏
j=1

(gajhbj)
ij

. (2)

2.3 Proactive Secret Sharing

We have seen that secret sharing schemes can be made secure against active adver-

saries, who willingly distribute invalid shares with the introduction of verifiability

features as provided by Feldman or Pedersen commitments to the original secret

s. Unfortunately, when dealing with long-lived sensitive documents which must re-

main confidential over decades, even verifiable secret sharing schemes are ill-suited.

They cannot provide confidentiality and integrity over the whole life span of such

long-lived secret since their security depends on the assumption that a fixed upper

bound for the number of compromised shares exists, namely less than m. In the

long term setting this is inappropriate as adversaries can use the entire lifetime of

the secret to incrementally gain access to sufficiently many shares to reconstruct the

secret.

2.3.1 Synchronous Proactive Secret Sharing

With the introduction of proactive secret sharing in 1995, Herzberg et al. [17]

resolved the above mentioned shortcoming. Their simple but yet revolutionary idea

was to prevent the number of exposed or otherwise lost shares from exceeding the

threshold m by renewing the shares periodically without changing the secret. This

periodic refreshment is performed even if there is no indication of faults or adversarial

activity in the system. Therefore, the time frame in which an adversary must collect

m shares is dramatically reduced since any m− 1 or less shares collected before the

renewal are rendered useless. The protocol by Herzberg et al. supports either

Feldman [14] or Pedersen [22] commitments. In Herzberg et al.’s as well as in all the

13

schemes mentioned within this paragraph, a synchronous network is assumed. There

exist schemes which support asynchronous networks and they will be discussed in

short in the next section.

Two years later, a further advancement was made by Desmedt and Jajoda [12].

Unlike Herzberg et al.’s approach, their scheme was able do deal with permanent

compromise by enabling the dynamic removal and addition of shareholders. How-

ever, this came at the cost of the verifiability feature and so their scheme allowed

faulty shareholders to undetectably invalidate shares during the redistribution pro-

cess. This drawback was solved in 2002 by Wong et al. [32] who ensured that

new shareholders could verify the correctness of the shares they were dealt. Un-

fortunately this was only possible under the strong (and perhaps in some scenarios

unrealistic) assumption that all receiving shareholders must be honest during the

redistribution process.

In their first paper from 2006 [15], Gupta and Gopinath built on the protocol

by Wong et al. and achieved to relax this controversial condition insofar as only

a simple majority of the recipients needed to be honest during the (re)distribution

process. As Wong et al., Gupta and Gopinath used Feldman’s VSS and therefore

only established computational security. In their revised protocol called G2
its from

2007 [16] they incorporated Pedersen commitments, achieving information-theoretic

security.

2.3.2 Asynchronous Proactive Secret Sharing

The main body of work of PSS schemes that remove the synchronous network as-

sumption, is covered by the papers of Cachin et al.[6], Zhou at al.[35] and Schultz

and Liskov[25]. In contrast to synchronous network, asynchronous networks have

no access to a common global clock. This kind of environment eliminates the ease

with which synchronous proactive secret sharing protocols could tell when redistri-

butions would be initiated according to their schedule. In asynchronous proactive

secret sharing schemes, these time intervals need now be defined in terms of events

in the protocol themselves (e.g. in [25]) or by conservative estimates on the exe-

cution time of redistribution (cf. [35]). Additionally, there exist no upper bounds

on message delivery delays and processor execution speeds which makes it more

problematic to identify faulty parties as e.g. not receiving a message from a server

could either mean that it is corrupted or it is simply slow to respond (but otherwise

functioning correctly). Under these demanding circumstances, agreement has to be

achieved for the share (re)distribution process to be successful. Nevertheless, asyn-

14

chronous proactive secret sharing schemes tend to be closer to applications in the

sense that they are less susceptible to attacks that slow down processor execution

speeds or delay messages within the network. Also many networks found in the wild

are not synchronous (e.g. the Internet).

All proactive secret resharing (or redistribution) protocols can be divided into two

abstract tasks:

1. The computation of the resharing by the current shareholders and

2. the agreement on a resharing and the subsequent transfer of the new shares

to the new shareholders.

While the first task of resharing computation can be solved by methods already

presented in synchronous proactive secret schemes such as the creation of a sub-

sharing (e.g. in [12],[32],[16],[6]) or by adding a sharing of the zero element to already

existing shares (cf. [17], [25]), the agreement procedure has to be adjusted to the new

asynchronous situation. This is due to the fact that one can no longer rest assured

that all honest nodes will be able to broadcast their vote e.g. during a majority vote

execution. The scheduling of messages within the network is commonly assumed to

be under the control of the adversary and therefore such message could be held back.

Agreement is then ordinarily reached by so-called Byzantine Agreement protocols

such as the Byzantine Fault Tolerance protocol by Castro and Liskov[8]. BFT allows

arbitrary faulty behaviour of m− 1 <
⌊
n
3

⌋
of the n involved parties without relying

on synchrony to guarantee optimal resilience. BFT requires one of the involved

parties to serve as primary. In a nutshell, BFT itself is divided up into three parts:

1. pre-prepare: the primary broadcasts the value over which agreement is to

be established.

2. prepare: the nodes which are inclined to accept the value broadcast their

agreement.

3. commit: if a node sees 2m− 1 agreeing prepare messages on the broadcast

channel it commits to the value. After again 2m − 1 commit messages have

been seen, the protocol commits locally.1

In asynchronous PSS schemes the primary is often referred to as the coordinator.

It oversees for example the redistribution process and handles the agreement over

1The value of 2m−1 guarantees that even if up to m−1 messages have been sent by misbehaving

nodes, at least m messages by non-faulty parties have been recorded.

15

which values are used for the share renewal. The coordinator is not assumed to be

fully trusted and its behaviour is scrutinized by the other nodes such that if there

exists doubt about the honesty of the coordinator, it can be replaced.

16

3 G2
its Verifiable Proactive Secret Sharing Protocol

3.1 Description

In this section a detailed description of the verifiable proactive secret sharing proto-

col by Gupta and Gopinath [16] will be given. As mentioned before, their G2
its VSR

protocol will constitute the foundation for the modification within the enterprise

scenario which will be introduced in section 5.

3.1.1 Setup and Terminology

Let p and r be sufficiently large prime numbers with r = pq + 1. As usual let Zp

and Zr denote the prime fields with modulo p and modulo r arithmetic, respectively.

Now let k ∈ Zp be the secret which is initially held by the distinguished client node

C. The secret will be shared proactively among the access structure [n,m] where

n is the number of nodes to receive a share and m is the minimum (threshold)

number of shares which are necessary to reconstruct the secret. Note that the secret

should be reconstructible if and only if there is an honest majority, i.e., for any

access structures [n,m] it holds that n = 2m − 1. Since the protocol allows for

redistribution of the shares to a new set of nodes with accordingly chosen threshold

numbers, let [n′,m′], [n′′,m′′], etc. denote these different access structures. To be

able to establish witnesses for the Pedersen commitment, generators g, h ∈ Zr are

selected by the client C such that gp ≡ 1 mod r, hp ≡ 1 mod r and logg(h) is not

known. Furthermore let t ∈ Zp be chosen arbitrarily at random as a one-time pad

for the secret k.

3.1.2 Assumptions and Requirements

General Assumptions In addition to the above, it is required that at any point

in the protocol at most m− 1 servers are compromised, i.e., there always exists an

honest majority. In particular, it is assumed that during (re)distribution there is

always a (simple) honest majority among the receiving nodes. At a certain point in

the protocol it will be necessary that all honest participating nodes agree on a single

set of nodes within a precomputed sequence that satisfy a given validity condition.

To achieve this an algorithm A(x, I,Z) is established during initialization which

will output a sequence Z of subsets of I containing x elements each. The algorithm

A(x, I,Z) is known to all participating nodes.

17

Adversary Assumptions The underlying threat model is that of a mobile and ac-

tive adversary. I.e., an adversary that can dynamically attack nodes within the

network by moving from node to node and that can cause arbitrary (malicious)

behaviour of the compromised nodes. All (secret) information stored within a com-

promised server becomes available to the adversary. In particular this implies that

the adversary can spoof and decrypt messages. The threshold m in the secret shar-

ing scheme was chosen as such that an adversary can never corrupt more than m−1

nodes within the network at any given time.

Network Assumptions The communication capability between the nodes is pro-

vided by a group communication system G which enjoys the following properties:

• guaranteed reliable delivery of messages

• private point-to-point communication channels between any two nodes

• reliable broadcast channel including all participating nodes

• authentication measures are in place (no spoofing is possible)

This implies in particular, that a synchronous network is assumed, i.e., a network

in which there exist fixed upper bounds on message delays within the network.

3.1.3 Protocol Description

Initial Distribution The secret k is initially distributed by the client C to the

access structure [n,m] the following way:

1. With p, r and t chosen as described above, the client C picks coefficients al
and bl, l = 1, . . . ,m − 1 to form the polynomials a(x) = k +

∑m−1
l=1 alx

l and

b(x) = t +
∑m−1

l=1 blx
l. The shares si := a(i) of k and ti := b(i) of t can now

be computed and the share pair (si, ti) is then sent privately to node i of the

access structure [n,m] for each i = 1, . . . , n.

2. To share the secret in an information-theoretic secure way, the client uses the

generators g and h to compute the witnesses gkht, ga1hb1 , . . . , gam−1hbm−1 which

are then broadcast to all n share holders.

18

3. Each node i uses its received share pair and the witnesses to verify:

gsihti ≡ gkht

m−1∏
l=1

(galhbl)i
l

(3)

(i) If equation (3) holds, node i accepts (si, ti) and saves it as its share pair

along with the witness gkht.

(ii) If the verification check fails, node i broadcasts an authenticated com-

plaint stating that it did not receive a correct share from client C. In

response the client gets the chance to defend itself by broadcasting the

share pair (ŝi, t̂i) that it claims to have sent to node i. All members of

[n,m] now use these values to check equation (3). If the check is success-

ful, i saves (ŝi, t̂i) as its share pair along with the witness gkht. Otherwise

the nodes that detect a discrepancy in equation (3) remark that there

exists a valid complaint against C. A majority vote can now determine if

the complaint was justified since the majority of the nodes are assumed

to be honest. If necessary, i.e., if the complaint was valid, the protocol

is then aborted.

Redistribution Periodically the shares get redistributed from the current access

structure [n,m] (sender nodes) to a new access structure [n′,m′] (receiver nodes).

Note that the two sets need not be disjoint.

1. Each sender node i applies the secret sharing procedure to its shares si and

ti, i.e., node i picks coefficients a′il and b′il, l = 1, . . . ,m′ − 1 to form the

polynomials a′(x) = si +
∑m′−1

l=1 a′ilx
l and b′(x) = ti +

∑m′−1
l=1 b′ilx

l. From this,

sub-shares ŝij := a′(j) and t̂ij := b′(j) for each receiver node j in [n′,m′] are

obtained and are then sent privately to the respective node j.

2. To generate the witnesses every sender node i computes gsi , ga
′
i1 , . . . , g

a′
i(m′−1)

and hti , hb′i1 , . . . , h
b′
i(m′−1) where g, h are the same generators as chosen in the

initial distribution. Their respective products gsihti , ga
′
i1hb′i1 , . . . , g

a′
i(m′−1)h

b′
i(m′−1)

are then broadcast to the n′ receiver nodes.

3. Each node j ∈ [n′,m′] uses its received sub-share pairs and the respective

witnesses to verify that for all i = 1, . . . , n:

gŝijht̂ij ≡ gsihti

m′−1∏
l=1

(ga
′
ilhb′il)

jl

(4)

19

(i) If equation (4) holds, node j accepts the (ŝij, t̂ij) and saves it as its

sub-share pair from node i.

(ii) If the verification check fails, node j broadcasts an authenticated com-

plaint stating that it did not receive a correct share from sender node

i. In response node i can defend itself by broadcasting the share pair

(ˆ̂sij,
ˆ̂tij) that it claims to have sent to node j. All members of [n′,m′]

now use these values to check equation (4). If the check is successful, j

saves (ˆ̂sij,
ˆ̂tij) as its sub-share pair. Otherwise the nodes that detect a

discrepancy in equation (4) mark node i with the valid complaint label

VC.

4. Since all honest receiver nodes, which again form a majority, flagged the same

sender nodes as VC, the receiver nodes can now exclude these sender nodes

from the protocol. Remark that each honest member of [n′,m′] has the same

set of reduced sender nodesR and since there exists an honest majority among

the sender nodes, R contains at least m nodes.

Let |R| = u. The receiver nodes now apply algorithm A toR which constructs

a sequence {Bu}u=1,...,M of m-subsets where 1 ≤M ≤
(
u
m

)
.

5. Each node i ∈ [n,m] also broadcasts its gkht witness. Each receiver node j

stores the value gkht which was sent by the (honest) majority of sender nodes.

6. For each u = 1, . . . ,M the receiver nodes now check

gkht ≡
∏
i∈Bu

(gsihti)bi where bi =
∏
l∈Bu,
l 6=i

l

l − i
(5)

Obviously, there exists at least one such Bu. Now let Bũ be the first one to

satisfy equation (5) for all its members.

7. Each node j ∈ [n′,m′] now establishes its pair of shares (s′j, t
′
j):

s′j =
∑
i∈Bũ

biŝij and t′j =
∑
i∈Bũ

bit̂ij where bi =
∏
l∈Bũ,
l 6=i

l

l − i
(6)

and stores it along with the witness gkht.

20

Reconstruction If the reconstruction of the original secret k is wished by the client

the following steps need to be taken:

1. The client C requests the shares from each node i in the current access struc-

ture, say [n,m]. Each node then returns its share pair (si, ti) privately to the

client.

2. The client applies the aforementioned algorithm A which results in a sequence

{Bu}u=1,...,M where M ≤
(
n
m

)
of m-subsets of the n nodes.

3. The client successively checks each Bu for its share validity through the fol-

lowing equation:

gkht ≡
∏
i∈Bu

(gsihti)bi where bi =
∏
l∈Bu,
l 6=i

l

l − i
(7)

4. Upon finding the first Bu such that all m shares in it are valid, say Bũ, the

client can now use Bũ to reconstruct the original secret k via

k =
∑
i∈Bũ

sibi where bi =
∏
l∈Bũ,
l 6=i

l

l − i
(8)

Note that such a Bũ is always found since there are at least m honest nodes

(by assumption).

3.2 Remark

Though being one of the most advanced proactive secret sharing protocols currently

available, the protocol by Gupta and Gopinath has certain shortcomings which

we shortly want to present and which will be addressed in the following chapters

where the EPSS protocol will be introduced. First and foremost, for the concrete

applicability of the scheme, the synchronous network assumption should be removed

or relaxed since such guarantees can usually not be given within real world systems.

Furthermore, there are no indications as to how to proceed when the protocol is

aborted. Is it re-initiated? If so, with what changes to e.g. the client or the access

structure? Lastly, we want to mention that if long-term security is to be achieved,

the issue of expiring bindingness properties of Pedersen commitments should be

discussed. Otherwise the long-term integrity of the secret cannot be assured. We

will address this issue shortly in the next chapter, as well as the details concerning

the concrete implementation of other long-term security relevant features within the

protocol.

21

4 Long-term Secure Implementation of G2
its

In this section we want to put the long-term secure implementation of the abstract

G2
its protocol in concrete terms by first pinpointing the relevant elements with respect

to long-term security and then providing suitable solutions, all the while bearing in

mind the information-theoretic secure setting which is to be preserved.

4.1 The Commitment Scheme

Pedersen VSS [22] is used in G2
its to guarantee the integrity of the (re)distributed

shares at any point in the protocol. Pedersen commitment schemes are perfectly

hiding, i.e., the value committed to remains secret until opened, but unfortunately

only computationally binding. This means that after a certain period of time, the

integrity of the value committed to by the sender is no longer given. The authors

of the G2
its Verifiable Secret Redistribution protocol give no indication as to how

to proceed in this case, but in their 2015 paper How to Securely Prolong the Com-

putational Bindingness of Pedersen Commitments [11], Denise Demirel and Jean

Lancrenon show how to resolve this issue for the G2
its protocol. Once a Pedersen

commitment with a larger security parameter to the secret value is created, their

protocol describes how to provide an efficient perfect zero-knowledge proof that the

newly created commitment with updated security parameter commits to the same

secret as the one of which the bindingness was about to run out.

4.2 The Communication System

With G2
its VSR being an interactive protocol, the correct implementation of com-

munication between the participants plays an integral part. The key requirements

given in [16] are the reliable delivery of messages, the existence of a broadcast chan-

nel and the possibility to have both authenticated and private communication links

between any two nodes, which we will start our analysis with.

It is crucial for all private transmissions to be protected in the long term since an

attacker could simply store all occurring traffic until it becomes feasible to break the

applied encryption, thereby compromising each share and consequently the whole

secret. With this, it is easy to see that public key encryption and key agreement

schemes cannot provide the desired level of confidentiality due to their underlying

computational assumptions and vulnerability to exhaustive key search.

At this point it is worth noting that this argument does not apply to the au-

thentication requirement. Since authenticity of the sender is only relevant within a

22

narrow time frame of the interaction between the nodes, public key signatures are

sufficient and need not be replaced by long-term secure signatures. All in all, we are

now left looking for information-theoretic secure encryption, i.e., schemes which are

provably secure even against an adversary with unbounded computational power. A

special case of these are perfectly secret schemes and from the discussion above, it is

clear that the solution can only be found among symmetric cryptographic systems.

4.2.1 Reliable Communications

It is necessary to assume that the underlying network structure connecting the

partaking nodes supports reliable delivery of messages on the broadcast as well as

the private channels. The assumption has to be made since such considerations do

not include long-term security related aspects and are therefore outside the scope of

this thesis.

4.2.2 The Broadcast Channel

Gupta and Gopinath assume the existence of a reliable broadcast channel but there

are two problems with this requirement: The term broadcast is defined such that

it reaches all nodes in a network. This behaviour might not actually be wished for

in the case of the G2
its protocol. Often it is only necessary that a subset of nodes

receive a certain message.

Take for example the share redistribution process during which each node i in

[n,m] broadcasts its witnesses to the nodes in the new access structure [n′,m′]. In

a strict broadcast scenario, this message would also be sent to the nodes in the

current access structure [n,m], which is unnecessary. The described behaviour is

more accurately covered by what is commonly referred to as multicast where a

message is sent to a select group of receivers instead of the entire network.

Furthermore, the question of reliable multicast (or broadcast, for that matter) is

still subject to ongoing research and is by no means satisfactorily answered for the

general case. Therefore, most current networks are not able to meet this requirement.

In order to still be able to achieve the desired specifications, reliable multicast has

to be mimicked through unicasts. This means that the sender initiates a separate

transmission of the same message to each receiving node. For messages from one

sender to one receiver reliable delivery can be guaranteed. However, this approach

cannot guarantee to the receivers by itself they all received the same message.

If indeed a broadcast channel is required many options are available. One of

the most illustrative examples of such is a public (digital) bulletin board which we

will use throughout the rest of the thesis for its comprehensibility. The main ideas

23

behind this medium are that it is accessible for all participants to post on it or

read the messages published on it. Furthermore, it is assumed that messages on the

bulletin board cannot be deleted or changed. Bulletin boards are usually used within

e-voting protocols, where they allow voters to e.g. verify that their vote has been

counted. Later in our protocol, for example, the commitment to the secret gkht will

be published on the bulletin board by the client during the initial distribution. In all

later redistribution steps, the nodes will use this value for their verification of shares.

The indefinite availability of the client’s initial commitment on the bulletin board

makes it unnecessary for shareholders to keep track of the commitment throughout

the long life-time of the secret.

4.2.3 Perfectly Secret Encryption

First, we want to give a formal definition of what it means for an encryption scheme

E =(Gen, Enc, Dec), consisting of a key-generation algorithm Gen, an encryption

algorithm Enc and a decryption algorithm Dec, to be perfectly secret:

Definition 4.1 (Perfect Secrecy). An encryption scheme E =(Gen, Enc, Dec)

with message space M is perfectly secret if for every probability distribution over

M, every message m ∈M, and every ciphertext c ∈ C for which Pr[C = c]≥ 0:

Pr[M = m|C = c] = Pr[M = m].

Shannon showed that for perfect secrecy to be achieved the key space K must be

at least as large as the message space M [27], i.e.,

|K| ≥ |M|. (9)

For schemes with fixed key length, this implies in particular that the key length must

be greater or equal to the message length. This imposes an undeniable limitation

with regard to practicality on such ciphers since a large amount of secret key material

must be agreed on and administered in a secure manner. Nevertheless, as an essential

component in achieving long-term confidentiality, this highest of all security levels

cannot be dismissed so easily, as shown for example by Wolf in [31]. Probably the

best-known example of a perfectly secret cipher is the one-time-pad (OTP), made

popular by Vernam [29] in 1917:

Vernam OTP Let n > 0 be fixed. As before, let K denote the key space, M the

message space and C the ciphertext space. Set K = M = C = {0, 1}n, i.e., the set

of all bit strings of length n.

Then the Vernam OPT encryption scheme E =(Gen, Enc, Dec) is realised as

follows:

24

• Gen: A key k ∈R K is chosen uniformly at random.

• Enc: The encryption c of a message m ∈ M with given key k ∈ K is accom-

plished by bitwise exclusive or (XOR, denoted by ⊕), i.e., c := m⊕ k.

• Dec: Given the ciphertext c ∈ C and key k ∈ K, the original message m is

retrieved by m := k ⊕ c.

• Validity: It holds that k ⊕ c = k ⊕ (k ⊕m) = m.

Since |K| = |M|, the one-time pad is already optimal with regard to key length

and we need to look no further in our considerations for a perfectly secret encryption

scheme. This leaves us with the issue of key agreement and management which we

will now discuss.

4.2.4 Information-theoretic Secure Key Agreement

The topic of key agreement protocols is an interesting one and has been studied

extensively as it is in some sense the basis of private key cryptography: let Alice

and Bob be the two parties who wish to communicate over an insecure channel using

private key cryptography (e.g. OTPs) in the presence of an adversary Eve. Before

either of them can send an encrypted message, they have to assure that they are

both in the possession of the same private key k. We are of course interested in how

Alice and Bob can agree on a shared private key in an information-theoretic secure

manner. The standard approaches to this problem are the noisy channel model, the

Bounded Storage and Limited Access model, as well as quantum key distribution.

For an extensive treatment of these models, we refer to the survey on long-term

confidentiality by Braun [5].

We will describe each of these briefly and analyse them according to their suit-

ability for G2
its VSR where the smooth execution of the protocol requires each pair

of nodes to exchange a large amount of key material. Furthermore, we will consider

other means of key distribution between two (or more) communication partners.

Noisy Channel Model Noise is a natural occurrence in every physical communi-

cation channel and induces errors on these channels. The fact that the different

channels of Alice, Bob and Eve experience different noise levels, i.e., error proba-

bilities, can then be used to create a secret key by public interaction between Alice

and Bob from a given a random publicly broadcast bit string.

One of the first approaches was Wyner’s Wire-Tap Channel [33], but this protocol

required the adversary Eve to receive a degraded version of the transmitted signal -

25

an assumption which cannot be made realistically. Csiszar and Körner [10] relaxed

this assumption and required Eve’s channel to be noisier than that of Alice and

Bob. Generally, a significant drawback of key agreement protocols based on noisy

channels is that it is unlikely to have information about the error probability on

the adversary’s channel. Especially protocols which assume the inferiority of the

adversary’s channel fail to model sensible scenarios.

A more realistic approach was described by Maurer [19] who allowed the adver-

sary’s channel to be even less noisy than that of legitimate participants. This came

at the cost of the further requirement that the legitimate participants have access

to a secondary, noiseless and authenticated public channel. Let R denote the ran-

dom publicly broadcast bit string. Since Alice, Bob and Eve have different noisy

channels with different error probabilities they all receive a different version of R:

Alice receives X, Bob receives Y and Eve receives Z.

The goal of Alice and Bob is now to to derive a secure key from their received

signals X and Y . In order to be able to do so they engage in a protocol consisting

of the following phases:

1. Advantage Distillation: Alice and Bob use the aforementioned secondary chan-

nel to share information about their received signals X and Y and thereby

attain an advantage over Eve.

2. Information Reconciliation: This advantage is used by them to agree on a

string S which is the same for Alice and Bob with high probability.

3. Privacy Amplification: This string is then modified into the secret key.

All of the above mentioned approaches assume a passive adversary. Active adver-

saries, as are present in our case, have been considered for example in [20], [24] and

[34].

The Bounded Storage Model The Bounded Storage model was first introduced

by Maurer [18]. As the name indicates, it rests on the assumption that the adversary

Eve has limited storage capacity, say, s. Furthermore, it is assumed that Alice and

Bob shared a short secret key k in advance and that there exists a very large source

of randomness R which is publicly available and |R| > s, i.e., it can only be partially

stored by Eve. Suitable examples for R would be a satellite broadcast, a deep space

radio source or a pulsar. Alice and Bob use their pre-shared key k to determine which

part r of R to access. They then can expand k to a much longer key x = f(r, k)

by applying a key expansion function f . During this, Eve is allowed to read all of

26

R and store some value h(R) with h(R) ≤ s. Naturally, each signal from R is lost

permanently after transmission, unless it was stored.

There were quite few improvements made to the original proposal e.g. by [7],

[2] and [1], but still the crucial assumption that the adversary’s storage is signifi-

cantly bounded has become somewhat unrealistic with ever dropping storage costs.

Moreover, a truly practical realisation of R proves problematic. Not only must each

participant have the adequate equipment to listen to signals coming from e.g. deep

space radio sources but it also takes a considerable amount of time to receive the

needed volume of signals.

The G2
its protocol relies on the fact that each two participating node have ex-

changed secret keys and due to the usage of OTPs this amounts to a lot of secret

key material. Furthermore, it is not reasonable to assume that each pair of partici-

pants in the protocol (esp. during the redistribution phase with the introduction of

new nodes in access structure [n′,m′]) have a pre-shared secret k.

Limited Access Model First proposed by Rabin [23] the Limited Access model

follows a similar idea to the Bounded Storage model. The scheme is based on the

existence of a large network of so-called page server nodes. Alice and Bob have again

pre-shared a short secret key k which will specify a subset of pages from a selection

of page server nodes. Alice and Bob will then access these pages and download the

respective bit strings. The crucial assumption of the protocol is that Eve is not able

to monitor all page server nodes and all strings downloaded by Alice and Bob.

But as in the Bounded Storage model the assumptions about Eve’s capabilities

are not justifiable and therefore it is not suitable as a key agreement protocol for

our scenario.

Quantum Key Distribution A completely different approach is given by quantum

key distribution which relies on the transmission of qubits rather than classical bits.

The well-known BB84 protocol by Bennet and Brassard [3] was the very first quan-

tum cryptographic protocol. It achieves secret key agreement by sending polarized

photons over fibre-optic cables from one legitimate participant to the other. An-

other approach, the E91 protocol [13], was described by Ekert in 1991 and is based

on the possibility of quantum entanglement. The protection from an eavesdropping

adversary is in both protocols given by the so-called observer effect which states

that certain systems cannot be measured without altering the state of the system.

Before measurement qubits exist in a superposition of their two base states, com-

monly denoted in Dirac notation by |0〉 and |1〉. Once they are measured they are

well-defined in one of the two possible states. For example if Eve eavesdropped on

27

the transmission of polarized photons from Alice to Bob, the superposition of the

quantum states would collapse and Bob could see that the information had been

accessed before it reached him and was therefore likely compromised. Analogously,

in entangled particle systems the measurement of one of the two particles also yields

a change in the (nonlocal) opposite particle. Unfortunately, these very promising

ideas are still impractical for widespread use since they require dedicated and ex-

pensive hardware in order to be able to generate and measure the needed qubits

and therefore scale badly. Additionally, the transmission of e.g. polarized photons

is only possible via fibre-optic cables between any two participants and there exist

serious limits on the distances that can be bridged.

”Offline” Key Exchange As we have seen, existing information-theoretic secure

key agreement protocols have their flaws concerning the underlying assumptions

or practicability of the protocols. In our case we have to ensure information-

theoretically secure key agreement between nodes which belong to the same company

or at least collaborating companies. This implies, that it is feasible to achieve key

exchange by e.g. trusted couriers. This enables the exchange of a sufficiently large

amount of OTP keys to go through multiple iterations of the protocol on a storage

medium such as a thumb drive or disk.

4.3 Summary

At this point, we want to briefly summarize our findings so far: We examined

the long-term secure aspects of the verifiable secret sharing protocol by Gupta and

Gopinath and found that some substantiations were necessary. We saw that the used

Pedersen commitments in themselves are not sufficient for long-term secure integrity

of the committed value and need to be prolonged regularly. The required private

point-to-point communications are achieved by symmetric OTP encryption, which

provide perfect secrecy and are optimal with respect to key length. The issue of key

agreement or exchange is a complex one in the information-theoretic secure setting

and a conclusive best choice cannot be made and is highly dependent on the concrete

scenario. Due to our special environment, which will be described in detail in the

following Chapter 5, the participants in the key agreement/ exchange process are

servers belonging to the same company and thus we decided on the direct generation

of keys and exchange in person via a qualified trusted courier, e.g. an employee.

We are aware that this solution is not feasible for a lot of applications and one

of the other presented methods might be worth further considerations. Commonly

28

used key agreement protocols today are based on public key cryptography and do

not provide information-theoretic security which is necessary to guarantee the long-

term secure storage of highly sensitive data. Nevertheless, public key signatures can

be used to ensure authenticity of sent messages since it is only relevant for the short

time interval in which these messages are processed. On a side note, we clarified

the usage of the term ’broadcast’ and mentioned the lack of reliable broadcast or

multicast protocols leading to the emulation through unicasts. Nevertheless, we will

keep the phrase ’broadcast’ in the following in accordance with the G2
its protocol.

29

5 The Enterprise Scenario

In the following we wish to present the setup in which the EPSS scheme (described

in Chapter 6) is situated. In order to gain efficiency and a more realistic model for

use case environments, we propose to relax the commonly made assumption that

any two parties within the protocol must be able to communicate via a direct private

communication link. This assumption, which is also found in the protocol by Gupta

and Gopinath [16] (cf. 3.1.2), demands that e.g. during redistribution from an [n,m]

access structure to an [n′,m′] access structure up to
(
n+n′

2

)
private channels need to

be established2. A PSS scheme wishing to achieve long-term security requires these

channels to be information-theoretically secure. Obviously, as detailed in Chapter

4, this is not an option for most use cases as establishing information-theoretically

secure channels is still costly and limited to special cases (e.g. QKD) or arduous (e.g.

offline OTP key material exchange). It was found that nevertheless this requirement

is most realistically achieved by securely exchanging OTP key material on e.g. hard

disks.

5.1 Scenario Description

Specifically, we have in mind the application of PSS within a company with e.g.

different locations or departments where it is infeasible for all shareholders to se-

curely exchange secret key material (e.g. due to geographical distance) and thus, to

establish a direct information-theoretically secure communication link. Therefore,

we assume that there exist clusters of shareholders (e.g. all shareholders grouped

by their company location) and secure channels are established only within clusters

and across clusters.

This will in the following be referred to as the enterprise scenario as it is a natural

structure found within enterprise networks. Enterprises above all have a vested inter-

est in the long-term confidential storage of some of their data, be it a secret company

recipe or signature keys and are therefore prime use cases for practical PSS schemes.

Remark 5.1. We wish to stress that the scenario presented here is not to be con-

fused with use cases of what is called Hierarchical Secret Sharing (e.g. by Tassa

[28]). In Hierarchical Secret Sharing, a hierarchy among the shareholders is intro-

duced with respect to different degrees of authorization. Some shareholders receive

2This corresponds to the number of edges in the complete graph Kn+n′ , i.e., in an undirected

graph in which any two of the n+ n′ vertices are connected by an edge.

30

in a sense ’more’ reconstruction power than others such that fewer of these more

powerful shareholders are needed to establish an authorized subset than of share-

holders of a lower level. In our scenario, all shareholders enjoy equally potent shares

and are grouped by their position within the actual network.

5.2 Terminology and General Assumptions

5.2.1 Shareholder Structure

Client and Shareholders The nodes which establish communications across clus-

ters will be referred to as roots, while the other nodes are referred to as child nodes.

Any node belongs to a single cluster. We assume that a client that wants to share

a secret has the means to communicate securely, e.g. via an OTP-encrypted chan-

nel, with at least a single root node in the access structure designated for initial

distribution. This root node is then responsible for distributing the received data

to all other root nodes. However, for simplicity, we assume that the client has a

direct communication link to every root node within the access structure. Further-

more, the client is not assumed to be a shareholder. Again, this is easy enough

to implement in any given PSS scheme, but for sake of simplicity we demand the

strict separation of these two kinds of nodes. To guarantee the smooth execution

of the PSS protocols, it is assumed that sufficiently many OTPs were exchanged in

advance between all the root nodes and the client, as well as between the root node

and child nodes within a cluster. The same is true for the respective nodes before

the redistribution process.

Notation In the following, let the client be denoted by C and let n be the total

number of participating nodes with ids 1, 2, . . . , n and let m define the threshold of

the secret sharing scheme. To accommodate the additional parameter N which will

denote the number of root nodes within an access structure, access structures will

in the following be denoted by [n,m,N], [n′,m′, N ′], and so forth. The root nodes

are denoted in capital letters to distinguish their id’s from the child nodes and the

cluster of root node I will commonly be referred to as NI .

Parameter Choice As usual, the threshold m is derived from the assessment as

to how many servers are estimated to be compromised within a single time period

(maximally m−1). Following [16], we assume n = 2m−1 for the moment. Obviously,

it is necessary to choose N such that N << n to gain the maximal advantage in terms

of communication complexity, as otherwise the number of secure communication

31

channels between root nodes increases and the partition is close to the original

unclustered setup. Furthermore, it is advisable that clusters be of roughly the same

size to avoid inbalances in the conceived worth (or vulnerability) of these clusters

to potential adversaries.

5.2.2 Network

Authentication Following the assumptions made in many PSS schemes, we assume

that all messages are authenticated by the sending party using a signature scheme

that is considered secure at the time of message generation and transmission. It is

not feasible to spoof the identity of a sender within the network.

Reliability The underlying network is considered reliable in the sense that all sent

messages cannot be arbitrarily delayed and are eventually delivered (within a rea-

sonable upper bound on message delay).

The Broadcast Channel Another means of communication between nodes par-

ticipating in the PSS scheme, is the broadcast channel. It is - just like the private

channels - assumed to be reliable. There are many ways to implement broadcast

channels, but in the following we will use the example of a public bulletin board due

to its nice illustrative properties. Any nodes will have read and write access to this

bulletin board. Nodes cannot at any point be prohibited from reading or writing

to the bulletin board and the bulletin board cannot be cleared. I.e., any message

posted to the bulletin board will be available on the board indefinitely. The posts

on the board are authenticated by signatures which implies that no node can post

on behalf of another node.

5.2.3 Adversary

The assumed model of the adversary is the same as in most PSS schemes, namely

the one of a mobile and active adversary as described previously in Section 3.1.2.

We will not differentiate between adversary-induced malicious behaviour of nodes

and regular failures (e.g. hardware failures). Both cases will be referred to as

compromised, dishonest or malicious nodes. We assume all compromised nodes to

act in collusion. Furthermore, we assume that an adversary can be removed from a

compromised node by a reboot procedure.

32

5.3 A First Approach

5.3.1 Shortcomings

As a first naive approach one might try to simply use an existing PSS protocol such

as the one by Gupta and Gopinath [16] on top of the newly created shareholder

structure in which the shareholders are clustered into groups. As mentioned be-

fore, information-theoretically secure communications across clusters can only be

established through a distinguished shareholder within each cluster. Messages are

then no longer sent via private point-to-point communication channels between any

two nodes but by directing them along the given communication paths within and

between the clusters. This approach, however, leads to substantial problems:

• Root nodes learn all (sub-)shares that are routed through them during initial

distribution, redistribution and reconstruction. This presents a serious threat

to the confidentiality of the shared secret k.

• Root nodes can effectively cut off their cluster from all communications, en-

dangering the availability of the secret k.

• Since the communication links involved in the (re)distribution of the secret

are no longer point-to-point, the resolution of complaints becomes more com-

plex. The complaint mechanism applied in the G2
its does no longer suffice to

guarantee a swift complaint handling while retaining confidentiality, integrity

and availability of the secret k.

From this it is clear that several changes need to made to existing PSS schemes

such as G2
its protocol to accommodate the changes presented by the clustered sce-

nario.

5.3.2 Key Ideas

In this section, we will first describe the key ideas that went into into the devel-

opment of the EPSS scheme which ease the above mentioned shortcomings before

presenting the detailed initial distribution, redistribution and reconstruction proto-

cols in Chapter 6. A security analysis will follow in Chapter 7.

Separation of Roots and Shareholders The threat to confidentiality can be met

by various measures: For once, root nodes should not be part of the access structure,

i.e., they should not act as shareholders. This can first and foremost be justified

by their inherent difference to simple shareholding nodes. The root node’s primary

33

function in the clustered scenario is to enable secure communication flows across

clusters and between shareholders and client. As such vital parts of the network

infrastructure used by the PSS protocol, these nodes are granted stronger security

and stability assertions and have access to more computational resources than simple

shareholders. While certain root nodes may become expendable (because their clus-

ter is entirely removed) and some root nodes may be replaced over time, no marked

fluctuations are expected from one time period to the next in stark contrast to the

interchangeability of the child nodes which have the sole purpose of storing shares

and redistributing them. Therefore, it is reasonable to exclude root nodes from

the dynamic changes in the access structures across share redistribution processes.

This also goes in accordance with existing PSS protocols since they too abstract the

shareholders and clients from the (necessary) rest of the network infrastructure such

as e.g. switches. This new situation is depicted in Figur 1.

Figure 1: Clustered Scenario with Roots and Shareholders separated in Functionality.

Encryption of (Sub-)Shares The above presented measure alone, however, is not

enough to strengthen the confidentiality within the new structure. A further step is

to encrypt all (sub-)shares with the public key of the receiver, which eliminates the

immediate risk of exposing the secret to compromised root nodes or during complaint

distribution on the bulletin board. Even if the threshold number of shares would be

34

exposed to compromised colluding (root) nodes, the secret cannot be reconstructed

as long as the underlying computational assumption of the encryption scheme is

not broken. Since a signature scheme is already put into place it is not unnatural

to necessitate the maintenance of a public key pair by all involved nodes. Note,

that this encryption scheme does not replace the information-theoretically secure

channels. The public-key-encrypted shares are still secured for transport with OTP-

encryption. The advantage of the computationally secure encryption is to not expose

(sub-)shares as plain text to root nodes which receive and transmit them.

Data Aggregation Recall that the overall motivation for the clustered scenario was

to present an efficient PSS solution. The main weakness of current PSS schemes is

their high communication complexity, i.e., the amount of data sent by honest parties

during an average run of the protocol. Although the clustered scenario offers fewer

communication channels, the same information needs to be transmitted in order

to guarantee the same functionality. To reduce load on the network, data should

therefore be aggregated whenever possible before being further distributed. During

the redistribution process for example, the data needs to be transmitted from the

sending shareholders to the receiving shareholders via their respective root nodes.

Similarly, the reconstruction has the shareholder’s respective roots as a relay to

the client. Therefore, the data aggregation will take place within root nodes. The

root nodes on the sender side will combine the sub-shares they received from their

children to one partial share per receiver node j. These will then be transmitted to

the respective receiver nodes which will, finally, compute the new share for each of

their children j.

Homomorphic Encryption Since root nodes process encrypted (sub-)shares, it is

necessary that the public-key scheme allows for computations on the encrypted data

in order to achieve the aggregation of data. As we will see in 6, an additively ho-

momorphic encryption scheme, further denoted by E , will be sufficient for the task.

While there is a slight increase to the data being sent due to ciphertext expansion,

the combination of this measure with the data aggregation will eventually decrease

the load on the network as opposed to a solution within the clustered scenario

without either of the measures. Since over the lifetime of the shared secret, many

encryption schemes will have the assumed property, we treat the homomorphic pub-

lic key encryption scheme as a black box and only require the additive homomorphic

property as well as the security at the time of encryption and transmission.

35

Complaint Resolution As the traceability of complaints becomes more complex

with each additional involved party that is potentially misbehaving, the informa-

tion disclosed on the broadcast channel when trying to resolve these complaints

increases and presents a further threat to the confidentiality of the secret. Further-

more, in the absence of direct point-to-point communication channels between any

two nodes, the possibility of (honest) nodes being involuntarily cut off from all com-

munications by dishonest nodes along the communication paths, is an additional

risk that must be detected and handled. Solutions to both of these problems can

be found in asynchronous proactive secret sharing schemes as briefly presented in

2.3.2. Asynchronous schemes have to deal with arbitrary long message delays and

therefore must supply their PSS schemes with a mechanism to finish in the pres-

ence of unresponsive shareholder and are therefore a solid basis to build a complaint

resolution extension upon.

36

6 The Enterprise PSS Scheme (EPSS)

In the following chapter, we will use the situation and ideas described in the previous

Chapter 5 as a foundation for the introduction of the Enterprise PSS Scheme (EPSS).

6.1 The EPSS Scheme

After presenting the EPSS protocol for the initial distribution of the secret, a basic

EPSS redistribution protocol which treats the case where all participants are honest

is presented. This is done to show the general idea behind the modification to the

redistribution process and to give a starting point for further considerations with

malicious entities involved. With malicious entities present, the protocol execution

will make it necessary to establish consensus among the honest participating nodes.

The mechanisms to achieve consensus are in parts inspired by asynchronous PSS

schemes (cf. 2.3.2) which rely on Byzantine agreement. It is well known that

Byzantine agreement can only be achieved optimally in the presence of less than

bn
3
c faults among n shareholders. Furthermore, these solutions often call for a

dedicated node Coord which acts as a coordinator to the redistribution process.

The coordinator will be selected among the root nodes in a deterministic round-

robin fashion such that an adversary cannot influence the choice. We choose a

root node to take the role of the coordinator as they are assumed to have both

higher computation capabilities than shareholders and they are able to communicate

securely across access structures. The coordinator can be chosen among the sender

as well as the receiver roots, as no profound fluctuations among the root nodes is

expected in the ordinary case. The participating nodes can usually request for a

new coordinator if they suspect misbehaviour. The chapter will be closed with the

EPSS reconstruction protocol as well as some small-scale considerations in case of

a dishonest coordinator.

Notation Any m-subset Bu can be written as the unique union of pairwise disjoint

sets N1,N2 . . . ,NN where NI describes the set of all nodes in Bu that belong to

the cluster of root node I, 1 ≤ I ≤ N . Some NI may be the empty set. If in the

following, the notation NI ∈ Bu is used, only non-empty sets NI are considered.

6.1.1 EPSS Initial Distribution Protocol

Let the client C be trusted with the task of sharing the secret k. The client C

takes the role of the coordinator and handles the initial distribution of the secret k.

37

Should the initial distribution process not be able to complete within a reasonable

time frame or should any discrepancies be detected by the participating nodes which

monitor the client that indicate misdemeanour, the system management will be

alerted and further investigations are triggered. Therefore a dishonest client can

be assumed to be always detected. Such discrepancies can include for example

abortion of the process although the broadcast channel has seen sufficiently many

finished messages.

1. The client C which wants to share its secret k, initializes the secret-sharing

process by broadcasting an initDistr message which contains all chosen share-

holders i ∈ [n,m,N].

2. The client C then picks coefficients al and bl, l = 1, . . . ,m − 1 to form the

polynomials a(x) = k +
∑m−1

l=1 alx
l and b(x) = t +

∑m−1
l=1 blx

l. The shares

si := a(i) of k and ti := b(i) of t can now be computed.

3. The client C encrypts the shares si and ti for node i using the homomorphic

encryption resulting in the encrypted share pair (Ei(si), Ei(ti)) which is then

signed by the client.

4. Subsequently, the encrypted and signed share pairs for each of the N clusters

are gathered and each collection is OTP-encrypted for the respective root

node. The shares are thereby secured for transport and can be sent to their

appropriate root node.

5. To share the secret in an information-theoretic secure way, the client uses

generators g and h to compute the commitments

gkht, ga1hb1 , . . . , gam−1hbm−1

which are then published in an authenticated manner on the bulletin board.

6. Upon receiving the share pairs, the root nodes verify the client’s signature as

well as the format of the message (i.e., the correct number of shares of the

correct size are contained).

• Those shares which carry a valid signature of the client and are well-

formatted are then forwarded to the respective child node in an information-

theoretic secure fashion.

• The other ones are discarded and no further action is taken by the root

nodes.

38

7. Upon receiving the share from its root nodes, each child i verifies the client

C’s signature on the share pair, decrypts them and checks that

gsihti ≡ gkht

m′−1∏
l=1

(galhbl)
il

(10)

holds.

• If the verifications are successful, the child i saves (si, ti) as its share

pair and signals the successful storage with a finishedSigi message on the

bulletin board. Shareholders i handle invalid signatures gracefully if and

only if the verification equation (10) is satisfied, in that they accept the

share pair nevertheless.

• If the verification equation (10) fails, the child node i does not store the

received share pair and broadcasts a rejectSigi message to indicate the

failure to store a valid share pair.

8. After a pre-defined time frame, the client C checks if there are at least 2m− 1

distinct and authentic finished message present.

• If so, the client announces the successful initial distribution of the se-

cret by an authenticated doneDistr broadcast. All involved nodes securely

delete any internal data used in the distribution process such that the only

stored data are the distributed share pairs stored with the shareholders.

• If less than 2m−1 shareholders in [n,m,N] reported the successful storage

of the shares, the initial distribution failed. The client C then broadcasts

an abortDistr message. Upon seeing an abortDistr message, all involved

nodes securely delete any data used in the distribution. The client then

re-initiates the initial distribution process.

Remark 6.1. For the initial distribution it is not wishful to carry out a complaint

resolution protocol (as later described for the redistribution process) since this al-

ways leads inadvertently to the leakage of information about the secret. Since the

process of initial distribution can be executed efficiently due to its shortness, it

is reasonable to re-start the process with varying shareholders until it terminates

successfully. Should the process not be able to complete within a reasonable time

frame, further investigations into the client (and - if there exist indications -the in-

volved root nodes) are necessary as indicated above. A rebooting procedure or the

replacement of suspiciously behaving nodes (especially root nodes or the client) will

ultimately resolve the issue.

39

6.1.2 Basic Redistribution Protocol

General Idea

The basic EPSS redistribution protocol works as follows: a distinguished root node

- in the following referred to as Coord - will be chosen to direct the activities of

the redistribution process. In particular, this node will be responsible for the se-

lection of distributing nodes in the current access structure [n,m,N] and will also

determine whether the redistribution to the new access structure [n′,m′, N ′] termi-

nated successfully. After initiating the redistribution process, Coord will identify

an m-subset Bũ of [n,m,N] such that the stored shares of members of Bũ are con-

sistent with the original secret. These so-called sender nodes will then create an

encrypted sub-sharing of their stored shares and forward the result to their root

nodes. Upon receiving the sub-sharings, the root nodes will aggregate the received

data into encrypted partial share pairs for each j ∈ [n′,m′, N ′] and transmit these to

the respective receiver root nodes. Here, the data is further aggregated by comput-

ing the new (still encrypted) share pairs for each j ∈ [n′,m′, N ′] from the received

partial shares. Each j then stores its new share pair after decryption and verification

and signals the successful storage by a broadcast finished message. The coordinator

Coord then collects these messages and declares the redistribution to be completed

successfully once m′ distinct messages have been broadcast.

Basic EPSS Redistribution

1. A coordinator Coord is chosen among the root nodes.

2. The coordinator Coord initiates the redistribution process by sending an initRedist
message over the broadcast medium.

3. All nodes i ∈ [n,m,N] publish the commitment to their currently stored share

pair (si, ti) of the form gsihti on the bulletin board.

4. The coordinator executes the algorithm A on [n,m,N] to obtain a sequence

of m-subsets {Bu}1≤u≤L where L =
(
n
m

)
. The coordinator then selects the first

element in the sequence B1 to check if all of its members have stored shares

which are consistent to the original secret. This can be seen by evaluating if

the following equation holds:

gkht ≡
∏
i∈B1

(gsihti)bi where bi =
∏
l∈Bu,
l 6=i

l

l − i
(11)

40

(i) If equation (11) holds, the coordinator publishes a selectB1 message on

the bullet board.

(ii) If equation (11) does not hold, the coordinator chooses the second ele-

ment B2 in the sequence generated by A and evaluates the verification

for this set. This process repeats until the first Bũ is found for which

equation (11) holds.3

5. Let Bũ denote the m-subset that was established in Step 4. All i ∈ Bũ compute

their sub-sharings according to the new access structure [n′,m′, N ′]. Each

sub-share is homomorphically encrypted for the respective receiver node j ∈
[n′,m′, N ′], i.e., (ŝij, t̂ij) is encrypted to (Ej(ŝij), Ej(t̂ij)). The ciphers are then

signed individually and transmitted securely to the sender’s root node via the

OTP-encrypted channel.

6. Each sender node i publishes the commitments

ga
′
i1hb′i1 , ga

′
i2hb′i2 , . . . , g

a′
i(m′−1)h

b′
i(m′−1)

to the coefficients of its chosen sharing polynomials on the bulletin board in

an authenticated manner.

7. Each root I collects all sub-sharings by i ∈ NI and verifies the sender’s signa-

tures. It then aggregates the received data by computing the encrypted partial

share pair for receiver node j given by:

Ej(sNI
j) =

∑
i∈NI

bi · Ej(ŝij)

Ej(tNI
j) =

∑
i∈NI

bi · Ej(t̂ij)

where

bi =
∏
l∈NI ,
l 6=i

l

l − i
.

Each partial share pair (Ej(sNI
j), Ej(tNI

j)), j = 1 . . . n′, is then signed and trans-

mitted via the OTP-encrypted channel to the appropriate cluster root node J

to which j belongs.

3Note, that such a Bũ does always exist even in the presence of up to m − 1 dishonest nodes in

[n,m,N] (considered later in this chapter).

41

8. The receiving roots verify the sender root’s signature and compute the new

share pair (Ej(s′j), Ej(t′j)) for child node j by

Ej(s′j) =
∑
NI∈Bũ

Ej(sNI
j)

Ej(t′j) =
∑
NI∈Bũ

Ej(tNI
j).

After signing each share pair individually, the new shares are transmitted

OTP-encrypted to the respective child node.

9. The child node verifies the signature of its root node on the received share

pair. It then decrypts the share pair and verifies if

gs
′
jht′j =

∏
NI∈Bũ

∏
i∈NI

(
gsihti

m′−1∏
l=1

(ga
′
ilhb′il)j

l)bi (12)

holds. If this is the case, node j ∈ [n′,m′, N ′] stores (s′j, t
′
j) as its share pair.

10. After the successful decryption, verification and storage of the new share pair,

node j publishes a signed finishedSigj message on the bulletin board. The

coordinator Coord announces the successful termination of the redistribution

process by broadcasting a doneRedist message once he verified the existence of m′

correctly signed, distinct finished messages which ensures that at least m′ valid

shares have been redistributed. Note, that m′ messages already guarantee the

success of the redistribution protocol since all nodes are assumed to be honest.

11. Upon receiving the doneRedist message, all involved nodes securely delete any

data used in the redistribution process such that the only stored data is the

new shares within the new access structure.

Proof of Correctness of Eq. (12).

gs
′
jht′j = g

∑
NI∈Bũ

s
NI
j h

∑
NI∈Bũ

t
NI
j

≡
∏
NI∈Bũ

gs
NI
j ht

NI
j

≡
∏
NI∈Bũ

g
∑

i∈NI
biŝijh

∑
i∈NI

biŝij

≡
∏
NI∈Bũ

∏
i∈NI

(gŝijht̂ij)bi

≡
∏
NI∈Bũ

∏
i∈NI

(
gsihti

m′−1∏
l=1

(ga
′
ilhb′il)j

l)bi

42

6.1.3 Extension to Basic Redistribution Protocol: Average Case Complaint

Resolution

In the following section we will investigate what we consider to be the average case

in the enterprise setting: we allow both old and new shareholders to contain com-

promised nodes whose maximal number is bounded by the respective threshold (i.e.,

at most m − 1 compromised nodes in [n,m,N] and m′ − 1 in [n′,m′, N ′]). On the

level of root nodes, no compromise is to be expected. As mentioned beforehand,

this is a reasonable assumption as it goes in accordance with previous PSS proto-

cols which only consider compromise among the shareholders, but not within the

network infrastructure (e.g. switches). Furthermore, enterprise networks are closely

monitored, especially machines which are crucial to the smooth execution of opera-

tions which include the root nodes in the EPSS scheme. Nevertheless, the possibility

of misbehaving root nodes (if only through e.g. hardware failures) exists and the

according extension to the EPSS protocol will be treated in Section 6.1.4.

While we assumed that it is not possible for an attacker to spoof the identity

of another node within the access structure, this can only be ensured by careful

signature checks. Should a root node detect an invalid signature, the message is

discarded. If after a certain amount of time, the root node has not received all mes-

sages necessary for the continuation of the protocol, an authenticated cannotResume

message is broadcast, listing those nodes which were unresponsive. The coordinator

Coord can then re-initiate the protocol taking into account the information gained

from these messages about unresponsive nodes within the network.

Preparatory Measures

The redistribution is established along three private channels:

1. from the redistributing sender nodes to their root nodes,

2. from these root nodes to the root nodes of the receiving access structure, and

finally,

3. from there to the receiver nodes [n′,m′, N ′].

After each transmission, varying verifications are done to be able to detect discrep-

ancies as early as possible. In the following we will describe which discrepancies can

arise and how they are dealt with in the presence of dishonest shareholders.

43

Transmission 1: Sender Children to Sender Roots Malicious sender children in

Bũ can either send incorrect messages to the roots or refrain from participating in

the protocol execution. Incorrect messages can have various forms. The message

can carry an invalid signature and/or can be malformed in the sense that it does

not contain n′ encrypted sub-shares of the correct sizing. If one of these cases is

detected by a root node I, it will discard the messages in question and wait for a

pre-established amount of time. After the timeout, the root node will list all its

children from which it has not yet received a correctly signed and formed message

(thus including completely unresponsive nodes). This list is then published in an

authenticated cannotResumeSigJ message on the bulletin board.

After collecting all cannotResume messages within a given time frame, the coor-

dinator Coord re-initiates the protocol by choosing the first valid m-subset4 which

contains none of the accused child nodes. If no such messages are recorded, the

protocol execution can continue unchanged. We wish to stress here, that a sender

root node is not able to detect sub-sharings which are inconsistent with the sender

node’s stored (and previously verified) share pair.

Transmission 2: Sender Roots to Receiver Roots Since both parties are assumed

to be honest and the channels are assumed to be reliable, a receiver root J will

eventually receive all necessary partial shares. Should a message with an invalid

signature be received, the message is simply discarded and no further action is

taken.

Transmission 3: Receiver Roots to Receiver Children After computing the new

encrypted share pairs, the receiver roots forward these values signed to their chil-

dren. Should a child node receive a share pair which carries an invalid signature, it

simply discards the share pair and waits for the correct share pair to arrive (which

is guaranteed again by the reliability of the channels and the honesty of the root

nodes). Each child node in [n′,m′, N ′] then decrypts and verifies the received share

pair. If some child node j detects a discrepancy in the verification equation (12), this

event is tracked by node j broadcasting an authenticated rejectSigj message. This

message indicates to all other nodes and in particular the coordinator, that node j

is not happy to store the received and decrypted share pair (s′j, t
′
j) because it con-

firmed that the value is inconsistent with the published commitments. Of course,

the lodged complaint might also be unwarranted due to a dishonest node j.

4I.e., all of its members have stored shares which are consistent with the original secret.

44

The general strategy is then to collect the reporting of discrepancies. The resolu-

tion of complaints is only initiated by the coordinator through an initResol message

if less than 2m′ − 1 new shareholders were able to complete the storage of their

new shares after a reasonable amount of time. If 2m′ − 1 distinct finished messages

are recorded, the necessary lower bound of m′ valid new shares is attained even in

the presence of m′ − 1 malicious receiver nodes which may report an unwarranted

successful storage of new shares. Therefore, this is a reasonable approach with re-

spect to efficiency, as the ultimate goal of the redistribution process is to establish

a minimum of m′ valid new shares and the process of identifying dishonest parties

is communication intensive and potentially threatening to the confidentiality of the

secret and should thus to be avoided whenever possible.

General Idea

In the following we will describe the resolution of complaints which is initiated by

the coordinator Coord if it was not able to record 2m′ − 1 authenticated finished

messages from different receiver nodes. The processing of the complaints is done by

choosing a single complaint at random. As we will later see in the Security Analysis

in Chapter 7, only a single recorded complaint should be resolved in the indicated

fashion before a re-initiation of the redistribution protocol must be enforced. This is

due to the fact, that a resolution of more complaints could lead to the exposure of the

secret k. The goal of the resolution is to pinpoint the dishonest parties among the

sender nodes in Bũ and potentially dishonest receiver nodes, by gradually revealing

information and using an existing honest majority among a set of nodes which will

be further referred to as the Jury. The Jury can consist of any set of entities that

has access to the broadcast channel and can guarantee an honest majority among

its members. In our present case, the Jury can most easily be chosen as the set

of either all receiver or sender root nodes. In principle, this eliminates the need

for majority vote to find consensus among the members of the Jury in the average

caes, as all root nodes are assumed to be honest and will therefore always reach the

same conclusions. Nevertheless, we will describe the protocol with the indication as

to where majority votes are necessary. Note, that it is also possible to choose the

Jury as either the old or new shareholders since both contain an honest majority by

assumption. It is nevertheless more reasonable to select a Jury of root nodes over one

of shareholders since they are generally fewer and therefore less parties are involved

in the process. Furthermore, as mentioned before, root nodes have in general more

computation power at their disposal which additionally aids the execution speed

(and therefore overall efficiency).

45

Extension: EPSS Complaint Resolution Protocol (Avg. Case)

1. The coordinator Coord initiates the complaint resolution protocol by broad-

casting an initResolv message.

2. Coord then selects one of the recorded complaints at random, say rejectSigj by

node j, and asks the complaining node to publish its received encrypted share

pair (Ej(s′j), Ej(t′j))SigJ carrying the receiver root node J ’s signature. Further-

more, node j must provide the decrypted share pair (s′j, t
′
j) along with a proof

of correct decryption on the bulletin board.

3. The Jury can now use this information to execute the following verification

checks:

(i) (Ej(s′j), Ej(t′j))SigJ carries a valid signature of node J .

(ii) Node j correctly decrypted the share pair (Ej(s′j), Ej(t′j)) to (s′j, t
′
j).

(iii) Equation (12) is not satisfied by (s′j, t
′
j).

If any of the conditions fail, then node j was acting dishonestly (under the

assumption that root nodes are honest). Node j is then marked as VC by any

member of the Jury that cannot verify all three conditions.

4. A majority vote will now determine if the complaint by j was justified.

• If a majority of the Jury marked j as VC the complaint is disregarded

and the protocol is re-initiated excluding j.

• If the complaint cannot be rejected the resolution protocol proceeds.

5. The coordinator now asks all involved root nodes I (i.e., those with children

i ∈ Bũ), to reveal the encrypted sub-share pairs (Ej(ŝij), Ej(t̂ij))Sigi for node j,

which they received from their children i on the bulletin board .

6. Subsequently, node j is asked to decrypt the published sub-share pairs and to

then verify their validity by checking if

gŝijht̂ij ≡ gsihti

m′−1∏
l=1

(ga
′
ilhb′il)

jl

(13)

holds. This allows an honest node j to identify dishonest child nodes without

miss.

46

7. Node j then reports the dishonest nodes in an authenticated manner on the

bulletin board along with the decrypted sub-shares and a proof of correct

decryption. This ensures that a dishonest j cannot accuse honest sender nodes

of cheating without being detected by the Jury.

8. Each Jury member then verifies the following conditions:

(i) The bulletin board entry was published by node j.

(ii) Each accused sub-share pair (Ej(ŝij), Ej(t̂ij)) carries node i’s valid signa-

ture.

(iii) Node j correctly decrypted the sub-share pairs (Ej(ŝij), Ej(t̂ij)) to (ŝij, t̂ij).

(iv) Equation (13) is not satisfied.

If all conditions are fulfilled for a sub-share pair, the respective sender node

is marked as VC by the member of the Jury which confirmed the verification.

If any of the conditions (ii) to (iv) fail for any accused sub-share pair, j is

marked as VC.

9. A majority vote among the Jury then determines the compromised nodes.

10. The coordinator Coord aborts the current instance of the redistribution pro-

tocol by broadcasting an abortRedist message. Upon receiving an abortRedist
message, all involved nodes securely delete any data used in the redistribu-

tion and resolution process. The coordinator then re-initiates the process and

excludes all identified compromised nodes.

Remark 6.2. It should be noted that not all cheating parties are revealed after an

execution of the complaint resolution protocol. This is for once due to the fact that

only a single complaint is resolved. Furthermore, a dishonest j can refrain from

reporting sub-shares that failed the verification of equation (13).

6.1.4 Extension to Basic Redistribution Protocol: Worst Case Complaint

Resolution

We now want to investigate the case which allows for dishonest participants both on

the shareholder level (old and new) as well as on the root level. We see that apart

from signature and format validations executed by root nodes, the main responsi-

bility for the verification of the redistribution process lies with the receiving nodes

in [n′,m′, N ′].

47

General Idea

Now receiver nodes in [n′,m′, N ′] must also take into account that their own root

node is behaving arbitrarily badly. Since we want to avoid that dishonest receiver

root nodes can force new shareholders to reject an otherwise valid share pair and to

reveal it in the ensuing complaint resolution, receiver nodes handle invalid signatures

by their roots gracefully. More specifically, this means that if a receiver obtains a

share pair which verifies correctly, but carries an invalid signature, the receiver will

store this correct share pair anyway. This also prohibits dishonest receiver children

from discrediting an otherwise correct chain of share computation.

Again, in case of a non-terminated redistribution process, a single complaint will

be dealt with during each redistribution process. The complaint which was chosen

at random is resolved by tracing the computation of the refused share pair from

the receiver to the sender in a step-by-step fashion as now there are also potentially

dishonest root nodes involved. This process will be described in the following. But

first a few additional assumptions need to made to accommodate the new situation:

Additional Assumptions

(i) Assume that M − 1 is the number of maximally dishonest root nodes in an ac-

cess structure [n,m,N]. Then the clustering is organized such that the sum of

shareholders in any M − 1-subset of clusters does not exceed the threshold m.

I.e., any M − 1-subset of clusters contains at most m− 1 shareholders (analo-

gously for [n′,m′, N ′] etc.).. The threshold M is determined analogously to the

threshold m, i.e., the estimated lower bound on which number of compromises

an adversary is not able to achieve within a given time period.

(ii) The distributing and reconstructing set Bũ is chosen such that the number of

involved sending root nodes, i.e., I such that NI ∈ Bũ, is not smaller or equal

the number of maximally compromised root nodes M−1. In short: there exists

at leasts one honest sender root node Ĩ which is involved in the redistribution

process.

Extension: EPSS Complaint Resolution Protocol (Worst Case)

1. The coordinator Coord initiates the complaint resolution protocol by broad-

casting an initResolv message.

2. Coord then selects a recorded complaint at random, say rejectSigjby node j,

and asks the complaining node to publish its received encrypted share pair

48

(Ej(s′j), Ej(t′j))SigJ which carries the receiver root node J ’s signature. Further-

more, node j must provide the decrypted share pair (s′j, t
′
j) along with a proof

of correct decryption on the bulletin board.

3. The Jury can now use this information to execute the following verification

checks:

(i) (Ej(s′j), Ej(t′j))SigJ carries a valid signature of node J .

(ii) Node j correctly decrypted the share pair (Ej(s′j), Ej(t′j)) to (s′j, t
′
j).

(iii) Equation (12) is not satisfied by (s′j, t
′
j).

4. Each Jury member evaluates the three conditions, and a majority vote deter-

mines the outcome of the verification process. Depending on the outcome, the

following actions are taken:

• If neither of the conditions fail, the accusation by j is valid and the

complaint resolution protocol resumes.

• If conditions (i) and (ii) are correct, but condition (iii) fails or if condition

(ii) fails (regardless of the outcome of condition (i) and (iii)), j lodged an

unwarranted accusation. The complaint by j is disregarded and the coor-

dinator Coord aborts the current instance of the redistribution protocol.

It is re-initiated excluding node j.

• If condition (i) fails, but (ii) and (iii) are correct, then at least either j

or its root J was acting dishonestly. Both are marked as VC and the

complaint is seen as resolved. The protocol is re-initiated as soon as J

has been rebooted and excludes node j.

5. If the complaint by j was found to be valid, the coordinator asks its root node

J to publish all encrypted partial share pairs (Ej(sNI
j), Ej(tNI

j))SigI it used to

compute the share pair that was sent to node j and the correctness of which

is questioned.

6. The Jury executes the following verification checks:

(i) Each encrypted partial share pair carries the correct signature of the

respective sender root and is correctly formatted.

(ii) Root node J combined the encrypted partial share pairs correctly to the

new encrypted share pair for node j which was disclosed earlier.

49

7. Each Jury member evaluates the two conditions, and a majority vote deter-

mines the outcome of the verification process. Depending on the outcome, the

following actions are taken:

• If both conditions are seen as fulfilled by a majority of Jury members,

the discrepancy must have its cause earlier in the chain and therefore the

complaint resolution protocol resumes.

• If condition (i) is revealed to fail for some I by a majority of Jury members,

J is marked as VC because it should have detected the invalid signature

or the incorrect format and aborted the protocol with a cannotResume

message. The complaint is seen as resolved and the protocol is re-initiated

as soon as J has been rebooted.

• If condition (ii) is found to fail by a majority of Jury members, the root

node J is marked as VC because it did not carry out the computa-

tions correctly. The complaint is seen as resolved and the protocol is

re-initiated as soon as J has been rebooted.

8. Each sending root I with nodes in Bũ is now asked by the coordinator to

reveal the signed and encrypted sub-shares (Ej(ŝij), Ej(t̂ij))Sigi it received from

its children i for the computation of the partial shares (Ej(sNI
j), Ej(tNI

j)) of

node j.

9. The Jury can now use this information to execute the following verification

checks:

(i) The sub-share pairs carry valid signatures of the respective sender nodes

and are correctly formatted.

(ii) Root node I combined the encrypted sub-share pairs correctly to the new

encrypted partial share pair (Ej(sNI
j), Ej(tNI

j)) for node j.

10. Each Jury member evaluates the two conditions, and a majority vote deter-

mines the outcome of the verification process. Depending on the outcome, the

following actions are taken:

• If both conditions are seen as fulfilled by a majority of Jury members,

the discrepancy must have its cause among the sending nodes in Bũ and

therefore the complaint resolution protocol resumes.

• If condition (i) is revealed to fail for some i by a majority of Jury members,

the respective root is marked as VC because it should have detected

the invalid signature or the incorrect format and aborted the protocol

50

with a cannotResume message. The complaint is seen as resolved and

the protocol is re-initiated as soon as all misbehaving roots have been

rebooted.

• If condition (ii) is found to fail by a majority of Jury members, the re-

spective root node is marked as VC because it did not carry out the

computations correctly. The complaint is seen as resolved and the pro-

tocol is re-initiated as soon as all misbehaving roots have been rebooted.

11. If no fault has been found with the root nodes, node j is asked to decrypt the

published sub-share pairs and to then verify their validity by checking if

gŝijht̂ij ≡ gsihti

m′−1∏
l=1

(ga
′
ilhb′il)

jl

(14)

holds. This allows an honest node j to identify dishonest child nodes without

miss.

12. Node j then reports the dishonest nodes in an authenticated manner on the

bulletin board along with the decrypted sub-shares and a proof of correct

decryption. This ensures that a dishonest j cannot accuse honest sender nodes

of cheating without being detected by the Jury.

13. Each Jury member then verifies the following conditions:

(i) The bulletin board entry was published by node j.

(ii) Each accused sub-share pair (Ej(ŝij), Ej(t̂ij)) carries node i’s valid signa-

ture.

(iii) Node j correctly decrypted the sub-share pairs (Ej(ŝij), Ej(t̂ij)) to (ŝij, t̂ij).

(iv) Equation (14) is not satisfied.

If all conditions are fulfilled for a sub-share pair, the respective sender node

is marked as VC by the member of the Jury which confirmed the verification.

If any of the conditions (ii) to (iv) fail for any accused sub-share pair, j is

marked as VC.

14. A majority vote among the Jury then determines the compromised nodes.

15. The coordinator Coord aborts the current instance of the redistribution pro-

tocol by broadcasting an abortRedist message. Upon receiving an abortRedist
message, all involved nodes securely delete any data used in the redistribu-

tion and resolution process. The coordinator then re-initiates the process by

excluding all identified compromised nodes.

51

6.1.5 Malicious Coordinator

Of course it is possible that the coordinator Coord acts dishonestly during the pro-

tocol execution. The coordinator directs the activities of the group during the

redistribution process by initiating the process and selecting the set of redistribut-

ing shareholders. Furthermore, Coord either terminates the protocol officially or

can start the complaint resolution with subsequent aborts. Since the coordinator is

making all of its choices due to publicly available information, a misbehaving coordi-

nator can easily be identified. In particular, no sensitive information is shared with

the coordinator that is not publicly available. Once participating nodes suspect a

dishonest coordinator, they can request a coordinator change. A new coordinator

will then be chosen in a deterministic round robin fashion such that an adversary

cannot influence the choice of the coordinator. However, we will not describe in

detail how the identification and subsequent change of a malicious coordinator is

handled, for details we refer to the asynchronous PSS scheme by e.g. Schultz and

Liskov[25].

6.1.6 EPSS Reconstruction Protocol

If the reconstruction of the original secret k from the access structure [n∗,m∗, N∗]

is wished by the client the following steps need to be taken:

1. The client C initiates the reconstruction process by sending an authenticated

initReconst message over the broadcast medium.

2. All nodes i ∈ [n∗,m∗, N∗] publish the commitment to their currently stored

share pair (si, ti) of the form gsihti on the bulletin board.

3. The client executes the algorithmA on [n∗,m∗, N∗] to obtain a sequence of m∗-

subsets {Bu}1≤u≤L where L =
(
n∗

m∗

)
. The client then selects the first element

in the sequence B1 to check if all of its members have stored shares which are

consistent to the original secret. This can be seen by evaluating if the following

equation holds:

gkht ≡
∏
i∈B1

(gsihti)bi where bi =
∏
l∈Bu,
l 6=i

l

l − i
(15)

(i) If equation (15) holds, the client publishes a selectB1 message on the bullet

board.

52

(ii) If equation (15) does not hold, the client chooses the second element B2
in the sequence generated by A and evaluates the verification for this

set. This process repeats until the first Bũ is found for which equation

(15) holds.5

4. Let Bũ denote the m∗-subset that was established in Step 3. All i ∈ Bũ then

encrypt their stored share pair with the public key of the client and sign. Then

the signed cipher (EC(si), EC(ti))Sigi is sent OTP-encrypted to the respective

root node.

5. Each root I collects all shares by i ∈ NI and verifies the sender’s signatures.

It then aggregates the received data by computing the encrypted partial secret

pair for the client given by:

EC(sNI) =
∑
i∈NI

bi · EC(si)

EC(tNI) =
∑
i∈NI

bi · EC(ti)

where

bi =
∏
l∈NI ,
l 6=i

l

l − i
.

Each partial secret pair (EC(sNI), EC(tNI)), is then signed and transmitted via

the OTP-encrypted channel to the client C.

6. The client verifies the root’s signatures and decrypts the received partial se-

crets. It then checks if the secret computed from these partial secrets is in ac-

cordance with the commitment to the stored secret. I.e., for k̃ :=
∑
NI∈Bũ s

NI

and t̃ :=
∑
NI∈Bũ t

NI the following must hold:

gkht ≡ gk̃ht̃ (16)

• If eq. (16) holds, the client C accepts k̃ as the reconstructed secret and

broadcasts a doneReconst message. Upon receiving a doneReconst message, all

involved nodes securely delete any internal data used in the reconstruction

process such that the only stored data are the share pairs stored with the

shareholders.

5Note, that such a Bũ does always exist even in the presence of up to m∗ − 1 dishonest nodes in

[n∗,m∗, N∗].

53

• Otherwise, the client C aborts the current instance of the reconstruc-

tion protocol by broadcasting an abortReconst message. Upon receiving

an abortReconst message, all involved nodes securely delete any temporary

data used in the reconstruction such that the only stored data are the

share pairs stored with the shareholders. The client then re-initiates the

process.

Remark 6.3. As with the initial distribution, if the reconstruction fails to be suc-

cessful within a pre-defined time frame, further investigations into the client and

the involved root nodes are necessary. A reboot of suspiciously behaving nodes

(especially root nodes or the client) will ultimately resolve the issue.

54

7 Security Analysis of EPSS

The goal of proactive secret sharing schemes is to maintain the integrity and confi-

dentiality of the secret k for long periods of time or even indefinitely. Furthermore,

given that the (re)distribution is carried out successfully, the secret should be re-

constructible at any point in time (availability). In this chapter, we will clarify

the notion of integrity, availability and confidentiality and it will be presented under

which assumptions and to what extent the EPSS protocol can provide security assur-

ances relative to an active and mobile adversary (cf. Section 3.1.2 for a recollection

of the definition).

7.1 General Assumptions and Definition

Additionally to the assumptions made in Section 5.2, we recall the following general

requirements:

• The secure deletion of data by honest nodes is ensured.

• A dishonest coordinator Coord is always detected and replaced in the re-

initiated redistribution process (cf. Section 6.1.5).

• All dishonest nodes act in collusion under active and mobile adversaries.

• The partially homomorphic encryption scheme E is considered secure at time

of encryption and transmission.

During the analysis of the initial distribution, the following definition will be

needed:

Definition 7.1 (Semi-honest Client). A semi-honest client C that is ordered to

secret share k or reconstruct the secret, is a client that will not

• share a secret s 6= k, or

• expose the secret k or any of the computed or received shares.

However, the client may try to distribute invalid shares to shareholders.

55

7.2 Integrity and Availability

Integrity assurances are an important aspect of long-term storage of any data. In

PSS, integrity assurances ensure that even after many runs of the redistribution pro-

tocol, the secret to which the renewed shares correspond remains the same. Closely

related to this is the notion of availability which asserts that the client (or any other

authorized party) cannot be prevented from reconstructing the secret.

We recall that the secret k was set to be the constant factor of a polynomial a(x)

of degree m − 1. The shares correspond to unique points on this polynomial and

Lagrangian interpolation guarantees that any m of the shares uniquely reconstructed

the original polynomial a(x) and thus, the secret k.

The integrity and availability of the secret are therefore endangered as soon as

less than m valid shares remain within the current access structure, since this means

that there are no longer sufficiently many consistent shares available to reconstruct

the original secret. Availability is further endangered if it is possible to prevent the

client from receiving at least m valid shares of the secret during the reconstruction

process.

7.2.1 Initial Distribution

Theorem 7.2. The EPSS Initial Distribution protocol assures the integrity and

availability of the secret k in the presence of a semi-honest client C and at most

m− 1 dishonest shareholders.

Proof (Sketch). The secret k is first distributed during the initial distribution by

a semi-honest client C. In the integrity and availability context, this means that

the client would not enter an entirely different secret s 6= k into the secret sharing

process, as this could not be detected and integrity and availability assurances for

the original secret k would be lost. The client may nonetheless try to distribute

invalid shares (i.e., shares that are inconsistent with the secret k).

The root nodes receive their children’s shares from the client. Honest root nodes

will only forward correct shares to their children. Note, that the root nodes cannot

verify the actual validity of the shares they received from the client, but honest roots

will not forward ill-formatted, invalidly signed or altered shares to their children.

Dishonest root nodes, however, could try to distribute invalid shares. This will not

go undetected as they are not able to forge the client’s signature and the shares would

fail the verification with the published commitments and be henceforth rejected by

honest shareholders.

56

In conclusion, once the protocol terminated successfully, at least m nodes hold

shares corresponding to the secret k since at most m− 1 out of n shareholders are

dishonest and may store invalid shares (while reporting to have finished successfully).

Therefore, enough valid shares are present to guarantee correct reconstructability.

Remark 7.3. Note, that there is no assumption about the honesty of root nodes

here. Arbitrary malicious behaviour or unresponsiveness will lead to the repeated

abortion of the protocol. As mentioned earlier, if the protocol is not able to terminate

successfully within a reasonable time frame, investigations to the causes will be taken

up, leading to the detection of the misbehaving root nodes. After rebooting them,

i.e., after starting with a set of fresh root nodes, the initial distribution process will

be re-initiated and then terminate eventually.

7.2.2 Redistribution

Theorem 7.4. The EPSS Redistribution protocol assures the integrity and avail-

ability of the secret k in the presence of fewer than threshold dishonest shareholders

in [n,m,N] and [n′,m′, N ′], respectively.

Proof (Sketch). The protocol does only terminate successfully if at least m′ valid

new shares are generated and stored. Furthermore, no more than m′ − 1 invalid

sub-shares can be stored as it is impossible for dishonest parties to convince honest

receivers to store invalid shares. Any such attempts will be detected and the respec-

tive shares will be rejected. In between share redistributions the upper bound on the

number of compromised current shareholders assures that there remain a threshold

number of valid shares for redistribution and reconstruction, therefore assuring the

availability and integrity of the secret k.

7.2.3 Reconstruction

Theorem 7.5. The EPSS Reconstruction protocol assures the integrity and avail-

ability of the secret k in the presence of fewer than threshold dishonest shareholders

in the current access structure, say [n∗,m∗,M∗].

Proof (Sketch). Finally, during reconstruction, the client requests the shares from

m∗ members of [n∗,m∗,M∗] whose stored shares were proven to be consistent with

the secret k. The root nodes of each cluster NI ∈ Bũ are then responsible for

combining their children’s shares to a partial secret pair (EC(sNI), EC(tNI)) and

57

forwarding it to the client. Root nodes under adversarial control cannot coerce

an honest client to accept invalid partial secrets. Should the reconstruction fail

repeatedly, all involved parties will be investigated and if necessary rebooted or

replaced. If only up to m∗ − 1 invalid shares are present among all shareholders

during reconstruction, the secret remains reconstructible as there are always at least

m∗ valid ones left to find an authorized subset Bũ. A dishonest client which e.g.

reports the successful reconstruction of the secret in the case of failure, or claims to

have failed although the reconstruction was successful, does not impact the integrity

and availability of the secret for other reconstruction or redistribution processes.

58

7.3 Confidentiality

The protection goal confidentiality requires that no information about the secret is

revealed. In order to break the confidentiality of the scheme, i.e., to reconstruct the

original secret k, an adversary must learn the shares of at least m nodes within a

single time period, i.e., in between share redistributions.

Since proactive secret sharing schemes ordinarily handle long-lived secrets, a fur-

ther refinement to the notion of confidentiality needs to be introduced. On the

one hand we have the traditional sense of confidentiality which forbids an adver-

sary to learn the secret - but often only under certain computational assumptions

and therefore within a limited time frame. Due to the homomorphically encrypted

(sub-)shares, it is also potentially desirable for an adversary to collect at least m

homomorphically encrypted shares from within the same time period by compro-

mising receiver root nodes during the redistribution process (as opposed to learning

the shares directly by compromising shareholders). Once the computational prob-

lem underlying the homomorphic encryption scheme is solvable, the adversary can

then decrypt the stored shares and reconstruct the secret. As we are concerned with

long-lived secrets, this is a practicable and reasonable approach for an adversary.

Thus, there is the protection goal of long-term confidentiality on the other hand.

We want to see if the EPSS protocol can guarantee long-term confidentiality of the

secret in the presence of an active and mobile adversary. To do this, we must show,

that throughout the protocol the adversary can obtain only less than the threshold

number of shares. We assume that all dishonest nodes act in collusion. Thus, if

shareholders are compromised, their shares are compromised too and known to the

adversary. Since we assumed that only fewer than threshold number of shareholders

are compromised within a single time period, the adversary will - in the worst case

- only have to gain knowledge of a single additional valid share from the same time

period to break the confidentiality of the scheme.

We will see under which assumptions long-term confidentiality and short term

confidentiality are assured. Due to the special construction of our access structures

with root nodes and child nodes, the breaking of long-term confidentiality becomes

easier to achieve for the adversary, as it is no longer necessary to compromise the

threshold number of shareholders in total if certain root nodes can be compromised

during protocol execution (i.e., either during the initial distribution, redistribution

or reconstruction). Short-term confidentiality is not impacted by this since only

59

encrypted shares are passed through and processed by root nodes.

Additional Assumptions Additional to the assumptions made in Section 7.1, we

would like to recall the following assumptions that were presented in the description

of the EPSS protocol in Chapter 6:

• Assume that if M − 1 is the number of maximally dishonest root nodes in

[n,m,N]. Then the clustering is organized such that the sum of shareholders

in any M − 1-subset of clusters does not exceed the threshold m. I.e., any

M − 1-subset of clusters contains at most m− 1 shareholders (analogously for

[n′,m′, N ′] etc.).

• The distributing and reconstructing set Bũ is chosen such that the number of

involved sending root nodes, i.e., I such that NI ∈ Bũ, is not smaller or equal

the number of maximally compromised root nodes M . In short: there exists

at leasts one honest sender root node Ĩ which is involved in the redistribution

process.6

7.3.1 Initial Distribution

Theorem 7.6. Let the client C be semi-honest. Assume that at most m− 1 share-

holders in [n,m,N] are dishonest and assume the root nodes to be honest. Then

long-term confidentiality is assured during the initial distribution process.

Proof (Sketch). Since no complaint resolution is executed during the initial distri-

bution, no critical data is exposed on the broadcast channel. The only data available

to the adversary are the maximally m−1 shares of the possibly dishonest sharehold-

ers. Since this does not exceed the threshold m, the secret cannot be reconstructed.

It is clear that if only a single root node were dishonest whose cluster contains at

least one honest shareholder, the adversary could gain knowledge of the threshold

number of shares to reconstruct the secret as the missing share would be known in

encrypted form. Therefore long-term security is only guaranteed under the assump-

tion of honest root nodes during the time of initial distribution protocol execution.

Corollary 7.7. Let the client C be semi-honest. Assume that at most m− 1 share-

holders in [n,m,N] are dishonest. Then short-term confidentiality is assured during

the initial distribution process.
6Otherwise all shares would be known to the adversary in encrypted form and therefore the secret

could be reconstructed once the computational assumption gets broken.

60

Proof (Sketch). Short-term confidentiality is endangered by an adversary learning

the threshold number of shares unencryptedly. Since only the shareholders have

access to the decrypted shares (apart from the client), the short-term confidentiality

of the secret is guaranteed even in the presence of dishonest root nodes. Even if all

malicious shareholders collude, they only have at most m−1 shares at their disposal

and can therefore not reconstruct the secret k.

7.3.2 Redistribution

In between share redistributions (i.e., in the time intervals after a successful redistri-

bution and before the next initialisation of the redistribution process), no threats to

confidentiality are posed since the current shareholders in say [n,m,N], contain at

most m−1 dishonest shareholders and no knowledge of further shares can be gained

by the adversary. A critical point for the assurance of confidentiality occurs during

the redistribution process. For once, (sub)-shares are routed in their encrypted form

through root nodes. On the other during complaint resolution exposes shares and

sub-shares (occasionally unencrypted) on the broadcast channel in order to identify

the misbehaving parties. In the following we will state under which conditions, the

EPSS redistribution protocol guarantees long-term confidentiality of the secret k.

At this point we wish to stress that knowledge gained in previous time periods is

not advantageous to an adversary after a redistribution took place. In particular,

Wong et al.[32] proved, that a combination of shares from different time periods

(i.e., at least one redistribution process was executed in between) cannot be used to

reconstruct the secret.

Theorem 7.8. Let at most m− 1 shareholders in Bũ and up to m′− 2 shareholders

in [n′,m′, N ′] be dishonest. Furthermore, assume that any cluster with 2 honest

receiver nodes is under the control of an honest receiver root node. Then long-term

confidentiality of the secret k is assured during redistribution.

Proof (Sketch).

• Assume there are m′ − 1 dishonest receiver nodes in [n′,m′, N ′]. Then,

under the assumption that all receiver roots are honest and up to m− 1 redis-

tributing shareholders are compromised, the long-term confidentiality of the

secret can be broken as follows: The adversary is already in the possession of

m′−1 (unencrypted) shares. To break the confidentiality of the secret, another

share needs to be gained. The goal is then to reveal the encrypted share of an

honest receiver j̃ by the execution of the complaint resolution extension. Since

61

only one complaint is resolved per redistribution instance, no dishonest node

j ∈ [n′,m′, N ′] will lodge a complaint to avoid that its complaint is chosen

for resolution, as this would not yield the wished-for knowledge gain to the

adversary.

Let ī ∈ Bũ be dishonest and let ī distribute invalid sub-shares for all j ∈
[n′,m′, N ′] \ {dishonest receiver shareholders}. Then the dishonest receiving

shareholders obtain valid shares while all other new shareholders will reject

their received share pair. Since fewer than 2m′ − 1 nodes were able to finish

the protocol, the complaint resolution is initiated and one of the complaints,

say of node j̃ is chosen for resolution.

Node j̃ will henceforth reveal its received share pair in encrypted and unen-

crypted form along with a proof of correct decryption. The Jury will find the

complaint to be valid, as the share pair will not satisfy the verification equa-

tion. The encrypted partial shares revealed by its root node J̃ will show that J̃

has computed the share pair values correctly and therefore the mistake must

have happened earlier. Next, all sender roots NI ∈ Bũ will reveal the sub-

shares (Ej̃(ŝij̃), Ej̃(ŝij̃)) on the broadcast channel. Node j̃ will then identify ī

as dishonest and the redistribution protocol will be initiated excluding ī from

the selection process of Bũ.

We see the adversary has gained knowledge of the encrypted sub-shares of

honest i ∈ Bũ which it was missing to compute the encrypted share s′
j̃

of j̃.

The adversary now holds m′ − 1 unencrypted share plus one encrypted valid

share. As soon as the computational assumption is broken, the adversary

can decrypt the missing share and then reconstruct the secret k. Therefore,

long-term confidentiality of the secret k is not ensured.

• Now assume that there exists a dishonest receiver root J̄ with at least two

child nodes j̃1 and j̃2 in its cluster. Then the long-term confidentiality of the

secret k is broken in the presence of m′− 2 dishonest receiver nodes. Since all

dishonest nodes are assumed to act in collusion, all nodes j ∈ [n′,m′, N ′] can

receive valid shares and the redistribution process will terminate successfully.

Since j̄ computes the encrypted valid shares of j̃1 and j̃2, it can decrypt these

two values once the computational assumption is broken. Combined with

the m′ − 2 invalid shares it already has at its disposal, the secret can be

reconstructed.

62

Theorem 7.9. Let the total number of (encrypted) shares known to dishonest re-

ceiver roots not exceed m′ − 2.7 Let the number of dishonest redistributing share-

holders i ∈ Bũ not exceed m− 1. Then the long-term confidentiality of the secret k

is assured during redistribution.

Proof (Sketch).

Assume that the number of encrypted shares known to dishonest receiver

root nodes is m′ − 1. Then the long-term confidentiality of the secret is broken

since e.g. a dishonest sender ī ∈ Bũ could manipulate enough new shares such that

the complaint resolution for the share of an honest node j̃ kicks in. The ensuing

resolution lets the adversary obtain the missing encrypted valid share of j̃. Cf. the

proof of Theorem 7.8 for details.

Corollary 7.10. Let the total number of (encrypted) shares known to dishonest

receiver roots not exceed m′ − 1. Then - if both all i ∈ Bũ and all involved sending

root nodes NI ∈ Bũ are honest - the long-term confidentiality of the scheme is assured

during redistribution.

Proof (Sketch). The proof of Theorem 7.9 showed that dishonest receiver roots

can only gain additional knowledge if the complaint resolution can be invoked for

an honest node j̃ whose share is not yet known to the adversary. This can only be

achieved by either dishonest sending shareholders or dishonest sending roots. Since

both of these parties are assumed to be honest in this case, the adversary can not

learn the threshold number of shares to break the long-term confidentiality of the

secret.

Theorem 7.11. Assume that at most m− 1 shareholders in [n,m,N] and at most

m′− 2 in [n′,m′, N ′] are dishonest. Then the short-term confidentiality of the secret

k is assured during redistribution.

Proof (Sketch). Under the made assumptions, the adversary has knowledge of

m − 1 and m′ − 2 shares in the plain text. It must be shown that the adversary

cannot gain knowledge of an additional unencrypted share of either the old access

structure or two unencrypted shares of the new access structure. Since all data going

through the root nodes is encrypted for the respective receiver node in [n′,m′, N ′],

7Receiver roots know all encrypted shares within their cluster. Furthermore, more shares can be

available to the roots through up to m′ − 1 compromised shareholders in [n′,m′, N ′].

63

this information is of no use to a computationally bounded adversary. Neither is

a forced complaint resolution of a rejected share by an honest j̃ helpful as only

maximally one complaint is resolved. Therefore, the adversary cannot gain the

missing shares for immediate reconstruction of the secret k.

7.3.3 Reconstruction

Theorem 7.12. Let the client C be semi-honest. Given honest root nodes and at

most m∗−1 dishonest shareholders in the reconstructing access structure [n∗,m∗, N∗],

long-term confidentiality of the secret is assured during reconstruction.

Proof (Sketch). Since no complaint resolution is executed, no critical data is

exposed on the broadcast channel. During the reconstruction of the secret, root

nodes learn the encrypted shares of their children i if they are contained in the set

Bũ. Since we assume that (at most) m∗ − 1 shareholders may reveal their shares

due to malicious behaviour it is clear that all root nodes must be honest to assure

the long-term confidentiality of the secret k.

Corollary 7.13. Let the client C be semi-honest. Given at most m∗ − 1 dishonest

shareholders in the reconstructing access structure [n∗,m∗, N∗], short-term confiden-

tiality of the secret is assured during reconstruction.

Proof. The argumentation is analogous to the initial distribution case in Corollary

7.7. During reconstruction, root nodes only learn encrypted share pairs of a subset

of the shareholders, while the dishonest shareholders cannot obtain sufficiently many

unencrypted shares to reconstruct the secret. Therefore, short-term confidentiality

is assured during the reconstruction of the secret k.

64

8 Communication Analysis

In the following we wish to conduct a small analysis concerning the communication

complexity of the previously presented PSS schemes G2
its VSR[16] and EPSS during

the redistribution process. Furthermore, the communication complexity of simply

applying G2
its VSR on top of the clustered structure introduced in Chapter 5 will

be determined. This is necessary as it is in general not possible to directly compare

G2
its VSR with the EPSS scheme, since they differ in the crucial assumption about

which channels are secure to use for transmission of shares.

The analysis will examine the case in which all participants are honest as dishonest

parties can generate an arbitrary amount of traffic. In particular, we will focus

exclusively on traffic sent on private channels as the broadcast channels are mainly

used to resolve complaints and we are primarily interested in the amount of traffic

generated by the transmission of sub-shares from old to new shareholders such that

they can compute their new shares. Furthermore, signature sizes are omitted as

they can be seen as a constant factor in the analysis conducted below.

8.1 Parameters

We look at the redistribution from shares of a secret k from an [n,m] access structure

to an [n′,m′] access structure in the case of the original G2
its VSR scheme. In the

clustered scenario, the redistribution takes place between [n,m,N] and [n′,m′, N ′].

Although it is reasonable to choose n = 3m − 1 in the EPSS case due to the

asynchronity assumption involved, we take n = 2m−1 to enable a more meaningful

comparison with the protocol by Gupta and Gopinath.

We recall, that the original secret k was an element of Zp. As a result of the

properties of Shamir’s secret sharing, all shares and (sub)shares are also in Zp.

Let E : Zp → Z∗p1 be the homomorphic encryption scheme used throughout EPSS

to protect the confidentiality of (sub-)shares that are passed to and through root

nodes. Due to ciphertext expansion caused by probabilistic encryption schemes,

it holds that p1 > p necessarily. For example, for the state-of-the-art additive

homomorphic Paillier encryption scheme[21] it holds that p1 = p2. We remind that

messages are further encrypted with OTP to secure the (sub-)shares for transport

and that the length of an OTP-cipher is equal to the plain text length.

65

8.2 Comparison

8.2.1 G2
its VSR

In the protocol by Gupta and Gopinath, the assumption is made that there are

private point-to-point channels between any two shareholders. We assume that these

channels are secured by OTP encryption to guarantee long-term confidentiality.

Therefore, during redistribution, each old shareholder i ∈ [n,m] can send its sub-

share pair (ŝij, t̂ij) ∈ (Z∗p)2 directly to every j ∈ [n′,m′]. Therefore, n · n′ sub-share

pairs in (Z∗p)2 are sent during redistributon.

8.2.2 G2
its VSR in Enterprise Scenario

Next, we want to see how G2
its VSR performs if the sub-shares cannot be sent directly

from old shareholders in [n,m,N] to new shareholder in [n′,m′, N ′] but have to be

routed through a root node on each side. Since only the communication channels

from shareholder to root and in between roots are secured by OTP-encryption,

it now becomes necessary for the old shareholders to encrypt their shares with a

public key encryption scheme, say E for simplicity. Note that here, any public key

encryption scheme would be sufficient, as the additive homomorphic property is not

needed due to the missing data aggregation which is performed in EPSS.

Each i ∈ [n,m,N] sends n′ encrypted sub-share pairs (Ej(ŝij), Ej(t̂ij)) ∈ (Z∗p1)
2

to their root nodes which then distribute the sub-shares to the according receiver

roots. The receiver roots then send n sub-share pairs to each of their children j.

Therefore, in total 3 · n · n′ sub-share pairs in (Z∗p1)
2 are sent during redistribution.

8.2.3 EPSS

Let ñ be the number of sender root nodes which have children i ∈ Bũ, i.e., the

number of sender root nodes involved in the redistribution process. In the EPSS

redistribution protocol, root nodes on the sender side aggregate m · n′ received sub-

shares into ñ · n′ partial shares and the receiving root nodes further combine these

to n′ shares. Note, that encrypted sub-shares, partial shares and shares are of the

same size. Consequently there are (m + ñ + 1) · n′ (sub-)share and partial share

pairs in (Z∗p1)
2 sent in total.

8.3 Result

Unsurprisingly, G2
its VSR in its original setting outperforms EPSS, but this is mean-

ingless since the assumption of private point-to-point channels between any two

66

participating nodes made in G2
its VSR is stronger than the one made in EPSS.

When looking at the redistribution of sub-shares within the clustered scenario, the

presented EPSS is more efficient than the simple routing of sub-shares along the

given communication path. We recall that ñ ≤ N << n. If one takes n to be chosen

such that n = 2m− 1, then m ≈ n
2
, and if say ñ ≈ n

5
then m + ñ + 1 ≈ 1.7n < 3n.

67

9 Conclusion

9.1 Summary

In this thesis, a proactive secret sharing protocol named EPSS was designed which

works under the condition that there need not exist secure point-to-point channels

between any two participants in the proactive secret sharing process. We found

that both this situation as well as the need for proactive data storage can be found

especially within companies. Therefore the presented EPSS scheme was modelled

to this specific environment. We gave a brief indication that EPSS outperforms the

PSS protocol by Gupta and Gopinath[16] under the given modified assumptions.

Furthermore, a small comparison of long-term secure primitives such as encrypted

channels and commitment schemes, which are commonly used within PSS schemes,

with respect to their applicability was presented.

9.2 Future Work

Efficiency improvement is key in long-term confidentiality research, especially for

proactive secret sharing schemes. There still remains a vast body of work to be done

to make proactive secret sharing schemes efficient and useable for the wide public.

The EPSS scheme can generally be used in the asynchronous network setting, but

the details and intricacies of this were left out in this first version which aimed at

presenting the general idea.

69

References

[1] Y. Aumann, Y.Z. Ding, and M.O. Rabin. Everlasting security in the bounded

storage model. Information Theory, IEEE Transactions on, 48(6):1668–1680,

Jun 2002. Cited on page 26.

[2] Y. Aumann and M.O. Rabin. Information theoretically secure communication

in the limited storage space model. In Michael Wiener, editor, Advances in

Cryptology — CRYPTO’ 99, volume 1666 of Lecture Notes in Computer Sci-

ence, pages 65–79. Springer Berlin Heidelberg, 1999. Cited on page 26.

[3] C. H. Bennett and G. Brassard. Quantum Cryptography: Public Key Distri-

bution and Coin Tossing. In Proceedings of the IEEE International Conference

on Computers, Systems and Signal Processing, pages 175–179, New York, 1984.

IEEE Press. Cited on page 26.

[4] G.R. Blakley. Safeguarding cryptographic keys. In Proceedings of the 1979

AFIPS National Computer Conference, pages 313–317, Monval, NJ, USA, 1979.

AFIPS Press. Cited on page 9.

[5] J. Braun, J. Buchmann, C. Mullan, and A. Wiesmaier. Long term confidential-

ity: a survey. Designs, Codes and Cryptography, 71(3):459–478, 2014. Cited

on page 24.

[6] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl. Asynchronous verifiable

secret sharing and proactive cryptosystems. In Proceedings of the 9th ACM

Conference on Computer and Communications Security, CCS ’02, pages 88–97,

New York, NY, USA, 2002. ACM. Cited on pages 13 and 14.

[7] C. Cachin and U. Maurer. Unconditional security against memory-bounded ad-

versaries. In Jr. Kaliski, BurtonS., editor, Advances in Cryptology — CRYPTO

’97, volume 1294 of Lecture Notes in Computer Science, pages 292–306. Springer

Berlin Heidelberg, 1997. Cited on page 26.

[8] M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive

recovery. ACM Trans. Comput. Syst., 20(4):398–461, November 2002. Cited

on page 14.

[9] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing

and achieving simultaneity in the presence of faults. In Foundations of Com-

puter Science, 1985., 26th Annual Symposium on, pages 383–395, Oct 1985.

Cited on page 10.

70

[10] I. Csiszar and J. Körner. Broadcast channels with confidential messages. In-

formation Theory, IEEE Transactions on, 24(3):339–348, May 1978. Cited on

page 25.

[11] D. Demirel and J. Lancrenon. How to securely prolong the computational bind-

ingness of pedersen commitments. Cryptology ePrint Archive, Report 2015/584,

2015. Cited on page 21.

[12] Y. Desmedt and S. Jajodia. Redistributing secret shares to new access struc-

tures and its applications. Technical Report ISSE-TR-97-01, Department of

Information and Software Engineering, George Mason University, 1997. Cited

on pages 13 and 14.

[13] A. K. Ekert. Quantum cryptography based on bell’s theorem. Phys. Rev. Lett.,

67:661–663, Aug 1991. Cited on page 26.

[14] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In

Proceedings of the 28th Annual Symposium on Foundations of Computer Sci-

ence, SFCS ’87, pages 427–438, Washington, DC, USA, 1987. IEEE Computer

Society. Cited on pages 10, 11, and 12.

[15] V. H. Gupta and K. Gopinath. An extended verifiable secret redistribution pro-

tocol for archival systems. In ARES, pages 100–107. IEEE Computer Society,

2006. Cited on page 13.

[16] V. H. Gupta and K. Gopinath. g2its vsr: An information theoretical secure

verifiable secret redistribution protocol for long-term archival storage. Security

in Storage Workshop, International IEEE, 0:22–33, 2007. Cited on pages 8,

13, 14, 16, 21, 29, 30, 32, 64, and 67.

[17] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or:

How to cope with perpetual leakage. In Don Coppersmith, editor, CRYPTO,

volume 963 of Lecture Notes in Computer Science, pages 339–352. Springer,

1995. Cited on pages 12 and 14.

[18] U. Maurer. Conditionally-perfect secrecy and a provably-secure randomized

cipher. Journal of Cryptology, 5(1):53–66, 1992. Cited on page 25.

[19] U. Maurer. Secret key agreement by public discussion from common informa-

tion. Information Theory, IEEE Transactions on, 39(3):733–742, May 1993.

Cited on page 25.

71

[20] U. Maurer, R. Renner, and S. Wolf. Unbreakable keys from random noise. In

P. Tuyls, B. Skoric, and T. Kevenaar, editors, Security with Noisy Data, pages

21–44. Springer-Verlag, 2007. Cited on page 25.

[21] P. Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In Jacques Stern, editor, Advances in Cryptology — EUROCRYPT ’99,

volume 1592 of Lecture Notes in Computer Science, pages 223–238. Springer

Berlin Heidelberg, 1999. Cited on page 64.

[22] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable se-

cret sharing. In Proceedings of the 11th Annual International Cryptology Con-

ference on Advances in Cryptology, CRYPTO ’91, pages 129–140, London, UK,

1992. Springer-Verlag. Cited on pages 10, 11, 12, and 21.

[23] M.O. Rabin. Provably unbreakable hyper-encryption in the limited access

model. In Theory and Practice in Information-Theoretic Security, 2005. IEEE

Information Theory Workshop on, pages 34–37, Oct 2005. Cited on page 26.

[24] R. Renner and S. Wolf. Simple and tight bounds for information reconciliation

and privacy amplification. In Bimal Roy, editor, Advances in Cryptology -

ASIACRYPT 2005, volume 3788 of Lecture Notes in Computer Science, pages

199–216. Springer Berlin Heidelberg, 2005. Cited on page 25.

[25] D. Schultz, B. Liskov, and M. Liskov. Mpss: Mobile proactive secret sharing.

ACM Trans. Inf. Syst. Secur., 13(4):34:1–34:32, December 2010. Cited on

pages 13, 14, and 51.

[26] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November

1979. Cited on pages 7 and 9.

[27] C.E. Shannon. Communication theory and secrecy systems. Bell Systems Tech-

nical Journal, 28-4:656–715, Oct 1949. Cited on page 23.

[28] T. Tassa. Hierarchical threshold secret sharing. In Moni Naor, editor, Theory

of Cryptography, volume 2951 of Lecture Notes in Computer Science, pages

473–490. Springer Berlin Heidelberg, 2004. Cited on page 29.

[29] G.S. Vernam. Cipher printing telegraph systems for secret wire and radio tele-

graphic communications. American Institute of Electrical Engineers, Transac-

tions of the, XLV:295–301, Jan 1926. Cited on page 23.

72

[30] M. Vigil, J. Buchmann, D. Cabarcas, C. Weinert, and A. Wiesmaier. Integrity,

authenticity, non-repudiation, and proof of existence for long-term archiving.

Comput. Secur., 50(C):16–32, May 2015. Cited on page 7.

[31] S. Wolf. Unconditional security in cryptography. In Lectures on Data Security,

Modern Cryptology in Theory and Practice, Summer School, Aarhus, Denmark,

July 1998, pages 217–250, London, UK, 1999. Springer-Verlag. Cited on page

23.

[32] T.M. Wong, C Wang, and J.M. Wing. Verifiable secret redistribution for archive

systems. Security in Storage Workshop, International IEEE, 0:94, 2002. Cited

on pages 13, 14, and 60.

[33] A.D. Wyner. The wire-tap channel. Bell System Technical Journal, The,

54(8):1355–1387, Oct 1975. Cited on page 24.

[34] V. Yakovlev, V. Korzhik, and G. Morales-Luna. Key distribution protocols

based on noisy channels in presence of an active adversary: Conventional and

new versions with parameter optimization. Information Theory, IEEE Trans-

actions on, 54(6):2535–2549, June 2008. Cited on page 25.

[35] L. Zhou, F. B. Schneider, and R. Van Renesse. Apss: Proactive secret sharing

in asynchronous systems. ACM Trans. Inf. Syst. Secur., 8(3):259–286, August

2005. Cited on page 13.

	Contents
	Introduction
	Short Introduction
	Problem Statement and Contribution
	Thesis Outline

	Foundations of Proactive Secret Sharing
	Shamir's Secret Sharing
	Verifiable Secret Sharing
	Feldman VSS
	Pedersen VSS

	Proactive Secret Sharing
	Synchronous Proactive Secret Sharing
	Asynchronous Proactive Secret Sharing

	Gits2 Verifiable Proactive Secret Sharing Protocol
	Description
	Setup and Terminology
	Assumptions and Requirements
	Protocol Description

	Remark

	Long-term Secure Implementation of G2its
	The Commitment Scheme
	The Communication System
	Reliable Communications
	The Broadcast Channel
	Perfectly Secret Encryption
	Information-theoretic Secure Key Agreement

	Summary

	The Enterprise Scenario
	Scenario Description
	Terminology and General Assumptions
	Shareholder Structure
	Network
	Adversary

	A First Approach
	Shortcomings
	Key Ideas

	The Enterprise PSS Scheme (EPSS)
	The EPSS Scheme
	EPSS Initial Distribution Protocol
	Basic Redistribution Protocol
	Extension to Basic Redistribution Protocol: Average Case Complaint Resolution
	Extension to Basic Redistribution Protocol: Worst Case Complaint Resolution
	Malicious Coordinator
	EPSS Reconstruction Protocol

	Security Analysis of EPSS
	General Assumptions and Definition
	Integrity and Availability
	Initial Distribution
	Redistribution
	Reconstruction

	Confidentiality
	Initial Distribution
	Redistribution
	Reconstruction

	Communication Analysis
	Parameters
	Comparison
	Gits2 VSR
	Gits2 VSR in Enterprise Scenario
	EPSS

	Result

	Conclusion
	Summary
	Future Work

	Bibliography

