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1 Introduction

1.1 Outline

Lattices are discrete subgroups of Rn, which can be represented by linear inde-
pendent vectors {b1, . . . ,bd} ∈ Rn (d ≤ n) such as L = {∑d

i=1 xibi | xi ∈ Z}.
{b1, . . . ,bd} ∈ Rn is called basis and d the dimension of the lattice L. In di-
mension ≥ 2 a lattice has infinitely many bases, but some are more useful than
others.

Lattice reduction is the search for short and orthogonal vectors in a lattice. It
helps to determine the actual hardness of cryptosystems which are based on the
hardness of special lattice-based problems. Lattice-based cryptosystems exhibit
strong security even in the presence of quantum computers.

The shortest vector problem (SVP) is the most famous lattice problem. It searches
for the shortest non-zero vector in the lattice (usually in the Euclidean Norm l2).

Algorithms to solve the SVP can be divided into two different categories: exact
algorithms and algorithms which solve the γ-SVP which is an approximate version
of the SVP. γ-SVP is the problem of finding a vector which is at most γ times
the length of the shortest non-zero lattice vector.

Until today there exist two different types of algorithms to solve the SVP ex-
actly: deterministic enumeration algorithms and probabilistic sieve algorithms.
In [4] Ajtai, Kumar and Sivakumar introduced the first probabilistic algorithm
called AKS Sieve. The latest and best version of AKS Sieve has been presented
by Micciancio and Voulgaris in [17].

Deterministic algorithms were discovered by Kannan [12] and Fincke and
Pohst [7]. In this thesis we will mostly focus on an improvement of these algo-
rithms by Schnorr and Euchner called ENUM [25].
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1 Introduction

In higher dimensions only approximation algorithms are practical. LLL was the
first algorithm to solve the γ-SVP. It was invented by Lenstra, Lenstra,
and Lovász. It computes a 2n/2-SVP in polynomial time. BKZ introduced by
Schnorr and Euchner is mostly used in practise today. It uses ENUM as a
subroutine combined with LLL.

Since BKZ relies on a SVP solver, it is therefore very important to know what is
the best exact SVP solver in low dimensions. ENUM can be interpreted as a depth
first search through a search tree. In this thesis we try to use improvements done
in the field of artificial intelligence to improve the search strategy of ENUM.

Search algorithms are a classic and well-developed part of artificial intelligence.
They are the basis of many problem solving algorithms as many applications need
to search for the best solution.

Game playing is one of the classic problems in artificial intelligence. Non-trivial
games like nine-men’s morris, connect-four and qubic have been solved. But in
games like shogi, bridge and go computers can be easily outplayed by human
experts due to the exponential growth in computational effort with increasing
search depths. Since the 50’s chess remains the most studied game in artificial
intelligence.

Therefore we introduce and explain fundamental search algorithms used in the
field of artificial intelligence and try to adapt each of them to ENUM. One aim
of this paper is to determine if those adaptations are efficient.

We gain a deeper insight into search algorithms used for game playing by con-
centrating on one specific game. Consequently we picked the game chess. Our
purpose is to give a survey of all used search enhancements used to play chess,
following with an analyses about the comparability to ENUM.

Finally, we combine all acquired knowledge as well as a proposal given by Schnorr

in [24] to improve and implement a new ENUM version called New ENUM.

1.2 Road-Map

The thesis is organized as follows. In Section 2.1, we provide neccessary back-
ground onto lattices and lattice reduction. In Section 2.2, we recall SVP solver
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1 Introduction

such as the enumeration of Fincke and Pohst with the improvement by Schnorr

(ENUM) as well as the probahilistic Sieve AKS algorithm.

Section 3.1 gives an overview of search strategies used in the field of artificial
intelligence. Whereas in Section 3.2 we concentrate on one specific game, chess.
We outline used algorithms as well as heuristics.

In Chapter 4 we try to adapt algorithms and heuristic presented in Chapter 3 to
ENUM.

Chapter 5 introduces an algorithm called New ENUM which follows the conclu-
sions made in 4 as well as a proposal given by Schnorr in [24].

3



2 Lattice Reduction

We start with a short survey about the basics of lattices and its known NP-hard
problems. Further on we concentrate on the exact shortest vector problem (SVP)
and algorithms to solve it. These algorithms can be classified into two different
groups: deterministic enumeration and randomized Sieve algorithms. We then
continue by giving a short overview of terms of reduction which can be achieved
by special algorithms solving the γ-SVP (a relaxed version of the SVP).

2.1 Preliminaries

2.1.1 General

For any x ∈ R, dxc = dx− 0.5e ∈ Z denotes the closest integer to x. We use bold
lower case letters (e.g. b) to denote vectors, whereas matrices are denoted by
bold upper case letters (e.g. B). B = {b1, . . . ,bd} ∈ Rn×d stands for a column
matrix with vectors bi ∈ Rn. The ith coordinate of a vector is described as bi.

Let b ∈ Rn we denote ||b|| = (
∑n

i=1 bi
2)1/2 as the Euclidean norm, unless oth-

erwise stated and 〈·, ·〉 : Rn × Rn → R the standard scalar product, 〈bi,bj〉 =

(bi
Tbj). Let us denote by Bt−1(x, r) a t − 1-dimensional sphere around x with

radius r.

2.1.2 Lattices

A lattice L is a discrete additive subgroup of Rn, but for our purpose the following
definition is more illustrating.

4



2 Lattice Reduction

Definition 2.1 (Lattice) Let B =
{
b1, . . . ,bd

}
be a set of linear independent

non-zero vectors in Rn. A lattice of dimension d in Rn is defined as

L(b1, . . . ,bd) :=
{ d∑

i=1

xibi | xi ∈ Z
}
,

where d ≤ n.

The simplest lattice is Zn. B = {b1, . . . ,bd} is called a basis of the lattice L,
which is not unique. If d ≥ 2, a lattice L has infinitely many bases. We can
transform one basis to another representing the same L by unimodular integer
transformations T, which have det(T) = ±1. Figure 2.1 shows two different bases

B =

(
0 1

1 0

)
, and B′ =

(
1 1

1 2

)
, representing the same lattice L in R2.

x

y

b1

b2
x

y

b′1

b′2

Figure 2.1: A lattice spanned by two different bases

One of the main goals of lattice reduction is finding a short basis to a given
one, which represents the same lattice L. A short basis consists of short vectors
relative to a given norm, which is the same as nearly pairwise orthogonal lattice
basis vectors. This is generally called reduced.

Definition 2.2 (Lattice Determinant) The determinant of a lattice L ⊆ Rn

with basis B is defined as

det(L) =
√

det(BtB)

The determinant of a lattice det(L) is invariant of the choice of the lattice basis B,
because basis transformations have det = ±1 and det(AB) = det(A) det(B).
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2 Lattice Reduction

To explain geometrically, det(L) is the volume of the fundamental region, | det(L)| =
vol(P(B)). According to 2.1, Figure 2.2 shows the fundamental region of both
bases. Since the determinant is a lattice invariant vol(P(B)) = vol(P(B′)).

Definition 2.3 (Fundamental Region)

P(B) =
{ d∑

i=1

xibi | xi ∈ R, 0 ≤ xi < 1
}
⊂ span(L),

where span(L) := {Bx | x ∈ Rn}.

x

y

b1

b2
x

y

b′1

b′2

Figure 2.2: This Figure shows that the volume of both fundamental regions is
the same

Definition 2.4 (Successive Minima) Let L ⊆ Rn be a lattice with dim(L) = d.
The successive minima λ1, . . . , λd are defined as

λi = λi(L) := min
{
r > 0 | dim(span(L ∩ Br(0))) ≥ i

}
,

where Br(0) defines a sphere around the origin with radius r. λ1(L) is the length
of the shortest non-zero lattice vector of L.

The first and second successive minimum of a lattice in R2 is shown in Figure
2.3. The successive minima give an evidence to the reduction of the lattice ba-
sis, if ‖bi‖ /λi is small the lattice basis is reduced. Note that λ1 ≤ · · · ≤ λd.
Unfortunately, the existence of a lattice basis {b1, . . . ,bd} with ‖bi‖ = λi (for
i = 1, . . . , d) or orthogonal vector is quite rare.

6



2 Lattice Reduction

x

y

b1

b2

Figure 2.3: First and second successive minimum, represented by the circles

Definition 2.5 (Hermite constant) Let d ∈ N be the dimension of a lattice L.
The Hermite constant is defined as

γd = sup
L

{
λ2

1(L)

(det(L))
2
d

}
.

The Hermite constant γd of dimension d satisfies Minkowski’s second theorem:

d∏

i=1

λi(L) ≤
√
γdd det(L)

The exact value for γd is only known for dimension 1 ≤ d ≤ 8 and d = 24.

2.1.3 Orthogonalisation

As already mentioned, finding short nearly pairwise orthogonal lattice basis vec-
tors is one of the main goals of lattice reduction. Finding an orthogonalization
in a vector space can be done easily using the QR-decomposition, which decom-
poses a basis B into the product QR, where Q is an orthogonal and R an upper
triangular matrix. Unfortunately finding an orthogonalization for a lattice basis
B is not that easy since Q must not be integral. Hence, Q must not be a lattice
basis, even if R can be computed as an unimodular transformation from B into
Q.

However, we will see that the orthogonalization is used in some reduction algo-
rithms, therefore we shortly present an orthogonalization method called Gram-
Schmidt-algorithm:
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2 Lattice Reduction

Let B = {b1, . . . ,bd} be a lattice basis. The orthogonalization B̂ = {b̂1, . . . , b̂d}
can be computed recursively with the Gram-Schmidt-coefficients

µij =
〈bi, b̂j〉
〈b̂j, b̂j〉

, b̂1 = b1, b̂i = bi −
i−1∑

j=1

µijb̂j.

The Gram-Schmidt-orthogonalization of a basis B in R2 is shown in Figure 2.4,
illustrating that B̂ must not span the same lattice.

x

y

b1 = b̂1

b2

b̂2
〈b2,b̂1〉
〈b̂1,b̂1〉

b1

Figure 2.4: Gram-Schmidt orthogonalization of a basis in R2. b̂2 is not a lattice
vector

Let {b̂1, . . . , b̂d} be given to a basis {b1, . . . ,bd}, then det(L({b1, . . . ,bd})) =∏d
i=1 ||b̂i||.

Definition 2.6 (Orthogonal Projection) Given a basis B of L the orthogonal
projection πi is defined as

πi : Rn −→ span(b1, . . . ,bi−1)⊥, i = 1, . . . , d.

Then Li = πi(L) := (L(πi(bi), . . . , πi(bd))) is said to be the projected lattice of
dimension d− i+ 1.

2.1.4 Existing Algorithmic (NP-hard) Problems

- Shortest Vector Problem (SVP)
Given a lattice L the task of SVP is finding a non-zero vector v ∈ L such

8



2 Lattice Reduction

that
‖v‖ = λ1(L)

SVP is known to be NP-hard under randomized reductions. [2]

- Approximate Shortest Vector Problem (γ-SVP)
The approximate version is a relaxed version of the SVP. It looks for non-
zero v with

‖v‖ = γ · λ1(L)

- Closest Vector Problem (CVP)
Given a lattice L and a target vector t ∈ span(L). Finding a non-zero
vector v ∈ L such that

‖v − t‖ = min
u∈L
‖u− t‖

is called CVP. The problem is known to be NP-hard to solve exactly.

- Shortest Basis Problem (SBP)
Given a lattice L with dim(L) = d. Finding a basis

{
b1, . . . ,bd

}
with

‖b1‖ = λ1, . . . , ‖bd‖ = λd

is called SBP.

Beyond that exist approximate versions, γ-CVP, γ-SBP among others. All prob-
lems can be formulated in all norms, the Euclidean norm is the most common
one. For more details see [3,9,15,16]. Further on we will concentrate on the SVP
and γ-SVP, which is the most famous and widely studied one in lattice reduction
so far.

2.1.5 Terms of Reduction and Algorithms

There are two types of algorithms considered here: those who solve the SVP ex-
actly and those who solve the γ-SVP. The best algorithm known for γ-SVP in high
dimension (BKZ) depends on an exact SVP solver in low dimension (ENUM).

If the lattice dimension is sufficiently low, the SVP can be solved exactly using
a complete enumeration. In [12] Kannan introduced an SVP-algorithm which
suffers from its expensive preprocessing. Another SVP solver was invented by

9



2 Lattice Reduction

Fincke and Pohst in [7]. It calculates the shortest vector by minimizing a
quadratic form over an ellipsoid. Schnorr and Eucher invented in [25] some
improvements, e.g. the zig-zag-path. Their method is the most efficient one
known in practice, at least up to dimension ∼ 40. A quite different approach is
taken by Ajtai, Kumar and Sivakumar, who invented the AKS Sieve algorithm
[4]. Each of them will be explained in Section 2.2.
In higher dimension (≥ 100) only approximation algorithms are achievable.

Size-Reduced. A basis {b1, . . . ,bd} is called size-reduced if |µij| ≤ 1/2 for
all 1 ≤ j < i ≤ d. This notation was introduced by Hermite. Size-reduced is
too weak to be used exclusively, but it can be combined as the following terms
show.

Gauss-Reduced. This term only refers to 2-dimensional lattices. A lattice
basis B = (b1,b2) is called Gauss-reduced if

‖b1‖ ≤ ‖b2‖ ≤ ‖b1 ± b2‖ .

For µ21 = 〈b1,b2〉
‖b1‖2

, it follows that

µ21 ≤
1

2
⇐⇒ ‖b1‖ ≤ ‖b1 − b2‖ and

µ21 ≥ 0⇐⇒ ‖b1 − b2‖ ≤ ‖b1 + b2‖ .

According to that, the basis is reduced if and only if ‖b1‖ ≤ ‖b2‖ and 0 ≤ µ21 ≤
1
2
. Let φ denote the angle between b1,b2 then 0 ≤ cosφ ≤ 1

2
(60◦ ≤ φ ≤ 90◦),

as the following picture shows. Note that if a basis is Gauss-reduced then b1 is
the shortest vector in L. Algorithms which output Gauss-reduced bases are SVP
solver in dimension 2.

The next term of reduction is a generalization of Gauss-reduced in higher dimen-
sion.

LLL-Reduced. The LLL-algorithm of Lenstra, Lenstra, and Lovász was
the first polynomial time algorithm to solve the γ-SVP in dim ≥ 2. A basis
{b1, . . . ,bd} is LLL-reduced with factor δ for 1/4 ≤ δ ≤ 1, if it is size-reduced
and

δ
∥∥∥b̂i−1

∥∥∥
2

≤
∥∥∥b̂i

∥∥∥
2

+ µ2
i,i−1

∥∥∥b̂i−1

∥∥∥
2

, i = 2, . . . , d.
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2 Lattice Reduction

φ
x

y

b1

b2

cosφ

0 ≤ µ21 ≤ 0.5

Figure 2.5: A Gauss-reduced basis

The closer δ gets to 1 the more reduced is the basis, but LLL-reduced is a weaker
term of reduction than the following ones. It finds a non-zero lattice vector of
length ≤ 2

d−1
2 λ1 (δ = 3/4), according to that, the quality of the approximation

decreases exponentially in dim(L) = d. In [25] Schnorr and Euchner present
an improvement called deep insertion and a floating point variant L3FP which is
implemented in the NTL. Nguyen and Stehlè present a floating point variant
called L2 which is implemented in the fpLLL library [18], which is faster than the
NTL version [27].

HKZ-Reduced. Hermite, Korkine, and Zolotarev defined a strong term
of reduction called HKZ. A basis {b1, . . . ,bd} is called HKZ-reduced if it is size-
reduced and b̂i is the shortest vector of the projected lattice πi(L), ∀ 1 ≤ i ≤ d.

∥∥∥b̂i

∥∥∥ = λi(Li), i = 1, . . . , d.

HKZ-reduction is very strong, but no polynominal time computation is known.
On the contrary, LLL-reduction is fairly cheap, but an LLL-reduced basis is of
much lower quality. The next term lies in between these two.

BKZ-reduced. Schnorr and Euchner invented the BKZ-algorithm. Up to
now it is the best practical known algorithm to solve the γ-SVP at least for small
β. BKZ (Block Korkine-Zolotarev) combines LLL and HKZ by applying an
HKZ-reduction to a block β of vectors. A basis {b1, . . . ,bd} is called β-reduced

11



2 Lattice Reduction

with β ∈ {2, . . . , d} if the basis is size-reduced and

{πi(bi), πi(bi+1), . . . , πi(bi+β−1)}

is an HKZ-reduced basis for i = 1, . . . , n− β + 1.

The BKZ algorithm uses an enumeration called ENUM which is used as a subrou-
tine to calculate the shortest vector from a block β of vectors. If BKZ terminates
it finds a lattice vector of length ≤ γ

(n−1)/(β−1)
β [23], where γβ ∼ β

πe
. For β = 20

BKZ is about 10 times slower than LLL, for large β the factor increases about
βO(β). This high delay factor results from the complete enumeration of all short
lattice vectors over a block of size β. We see that BKZ relies on an exact SVP
solver over small dimensions β. Hence, we take a deeper look on the SVP solver
in the next section.

2.2 SVP Solver

Since the SVP is NP-hard under randomized reductions [2], algorithms to solve
the SVP exactly are not assumed to work in polynomial time. As already men-
tioned, we describe three different versions of SVP solvers.

The first two algorithms can be classified as deterministic enumeration algorithms.
They are searching through an area around the origin, in which the shortest vector
is guaranteed. The third is a randomized Sieve algorithm.

2.2.1 Enumeration of Fincke and Pohst

The enumeration of Fincke and Pohst described in [7] minimizes a quadratic
form over an ellipsoid. Their version was a huge progress to the enumeration
algorithms at that time, which used a cuboid.

Let L ⊆ Rn be a lattice with a respective basis {b1, . . . ,bd}. Then Q : Rd → R
is called a quadratic form, with

Q(x) := x BBT
︸ ︷︷ ︸

:=A

xT =

∥∥∥∥∥
d∑

i=1

xibi

∥∥∥∥∥

2

.

Note that A is positive definite, if B consists of independent vectors.
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2 Lattice Reduction

{x ∈ Rd | Q(x) ≤ C} describes an ellipsoid in Rd for C ∈ R+. The shortest vector
b can be calculated by min { x | Q(x) < C }, but it gets easier if we transform
the quadratic form by completing the square.

We can simplify Q(x) knowing that A is positive definite (1) and completing the
square (2) to

Q(x)
(1)
=

d∑

i=1

d∑

j=1

aijxixj
(2)
=

d∑

i=1

qii(xi +
d∑

j=i+1

qijxj)
2, (2.1)

with qij ∈ R for 1 ≤ i ≤ j ≤ d and qii > 0 for 1 ≤ i ≤ d.

To calculate the constraints for xd we can transform (2.1) into

d−1∑

i=1

qii(xi +
d∑

j=i+1

qijxj)
2 + qddz

2
d ≤ C ⇒

⌈
−
√

C

qdd

⌉
≤ xd ≤

⌊√
C

qdd

⌋

According to that, one can recursively calculate for given xt+1, . . . ,xd constraints
for xt (1 ≤ t ≤ d).

Backes [6] showed that the version from Fincke and Pohst is equal to the
one from Schnorr and Euchner (without improvements). Hence, we will not
go into detail and concentrate on the version by Schnorr and Euchner. For
more details and the algorithm see [6, 7].

2.2.2 ENUM of Schnorr and Euchner

Schnorr and Euchner introduced their enumeration algorithm called ENUM

in [25] as a subroutine of the BKZ. Instead of minimizing a quadratic form, they
use the following equation 2.2.

Let {b1, . . . ,bd} ∈ Rn be a lattice basis with the related orthogonalization
{b̂1, . . . , b̂d}, ci = ||b̂i||2 and Gram-Schmidt-coefficients µij, such that bi =∑i

j=1 µijb̂j ∀ i = 1, . . . , d. ENUM minimizes for (ũ1, . . . , ũd) ∈ Zd \ {0}

c̃t := ct(ũt, . . . , ũd) :=

∥∥∥∥∥πt(
d∑

i=t

ũibi)

∥∥∥∥∥

2

:=
d∑

i=t

(
i∑

j=t

ũi · µij)2 · cj. (2.2)

13



2 Lattice Reduction

The algorithm searches for a non-zero integer vector ũ of temporary minimal re-
duction coefficients, which satisfies cj(ũ1, . . . , ũd) < A, with the current minimum
stored in A.

Therefore ENUM traverses a search tree in depth first search, as Figure 2.6
shows.

Level d+1
root

Level d

leafs

inner nodes

Level 1

MIN MIN

u = ũu = ũ
c̄ = c̃1 c̄ = c̃1

ũ1

ũd

Figure 2.6: ENUM traversation of a search tree in depth first order. Showing the
values to updated if a local minimum is found

ENUM starts with ũ = (1, 0, . . . , 0), meaning that the first minimum only depends
on c̃1, A = c̃1 = c1, which is the squared norm of the first basis vector.

In each iteration t (1 ≤ t ≤ d) ENUM tests whether the current c̃t is still smaller
than A, whereas ũ looks like

(×, . . . ,×, ũt, . . . , ũd︸ ︷︷ ︸
fixed

).

If c̃t < A the algorithm steps down t→ t− 1 and calculates ũt−1. If the test fails
the algorithm steps up t→ t+ 1, meaning that the examined branch can be cut
off, since c̃t ≤ c̃t−1, ∀ 1 ≤ t ≤ d.

As level 1 is reached the whole ũ is available, if the test is still successful a new
minimum A is found. To avoid redundancy ũi is set > 0 for the largest i with
ũi 6= 0.

zig-zag-path. An improvement compared to the version from Fincke and
Pohst is called zig-zag-path. For fixed (ũt, . . . , ũd) the next value to be calculated

14



2 Lattice Reduction

is ũt±1. Assume without loss of generality that the next level is ũt−1.

Fincke and Pohst looked at it in a straight increasing fashion, the zig-zag-path
chooses ũt−1 from the center of the interval and takes all upper and lower values
into consideration afterwards. This has the same effect as sorting all possible ũt−1

in a non deceasing sequence. We define yt :=
∑s

i=t+1 ũiµit and vt−1 = d−yt−1c.
The first choice of ũt−1 = vt−1, which is the center of the interval to be chosen
from.

Afterwards ENUM generates a sequence vt−1± 1, vt−1± 2, vt−1± 3, . . . until the
end of the interval is reached. The two different possibilities are shown in Figure
2.7.

vt−1vt−1−2 vt−1−1 vt−1+1 vt−1+2 vt−1vt−1−2 vt−1−1 vt−1+1 vt−1+2

Figure 2.7: The two different possibilities of the zig-zag path

Since we know that c̃t−1 < A we can formulate the constraints of the interval.

c̃t + (yt−1 + ũt−1)2 · cj−1 < A

⇐⇒ ũt−1 < ±
√
A− c̃t
cj−1

− yt−1.

This new control sequence chooses the path which guarantees most success first,
so the value of A may be decreased. Thus, more cut offs will occur, which speeds
up the enumeration. However, to implement the zig-zag-path ENUM needs the
following additional variables: v,∆, δ.

Further on we will give a detailed description of the ENUM algorithm and show
a short example. Afterwards we will introduce another improvement called The
Gaussian Volume Heuristic.

The Algorithm uses a start stage j and a end stage k, since ENUM can be used
inside BKZ. Normally BKZ loops ENUM with k − j + 1 = 20.

15



2 Lattice Reduction

Algorithm 1: ENUM algorithm

Input: j, k with 1 ≤ j ≤ k ≤ m and cj, . . . , cm

Result: the minimal place (uj, . . . ,uk) ∈ Zk−j+1 \ {0} and the minimum
A

A := cj, ũj := uj := 1, yj := ∆j := vj := 0, s := t := j, δj := 11

B initialization
for i = j + 1, . . . , k + 1 do c̃i := ui := ũi := yi := ∆i := vi := 0, δi := 12

while t ≤ k do3

c̃t := c̃t+1 + (yt + ũt)
2 · ct B compute 2.24

if c̃t < A then B still smaller than the minimum?5

if t > j then B leaf?6

t := t− 1 B inner node → step down7

yt :=
∑s

i=t+1 ũiµit, ũt := vt := d−ytc, ∆t := 08

if ũt > −yt then δt := −1 else δt := 19

else B leaf and a new minimum10

A := c̃j, u := ũ11

end12

else13

t := t+ 1 B no minimum → make a cut and step up14

s := max(s, t)15

if t < s then ∆t := −∆t; B calculate ∆t for the “zig-zag”-path16

if ∆t · δt ≥ 0 then ∆t := ∆t + δt17

ũt := vt + ∆t B compute the next ũ18

end19

end20

16



2 Lattice Reduction

Example. In Figure 2.8 we list all examined vectors ũ in a search tree. The
table 2.2.2 gives a step-by-step account of the ENUM progress. ENUM outputs
u = (−1 0 0 1) as the global minimum. Hence, the shortest lattice vector is
b = (1 1 1 0) with ||b|| = 3.

Input: Let (j, k) be (1, 4) to enumerate over the whole basis, withB =




2 4 1 3

6 3 8 7

8 0 2 9

1 2 0 1



.

The GSO outputs

µ ≈




1 0 0 0

0, 26̄ 1 0 0

0, 628 0, 482 1 0

1, 152 0, 126 −0, 016 1




and c ≈
(

105 21, 53̄ 22, 491 0, 208
)

0

0

0

1

1

0

2

1

0

-1

-1

0

1

1

2

1

0

0

-1

0

-1

1

2

0

0

-2

0

1

3 4

0

0

1

Figure 2.8: Example of an ENUM search tree. The branch of the global minimum
is drawn bold

Branches which cause a cut off are drawn with a dotted line in Figure 2.8 and
specified with a ↑ in Table 2.2.2. Local minimum nodes are filled black, whereas
they are marked in the table with leaf . The last local minimum is the global
minimum u, which is found in iteration 16. It is drawn bold in Table 2.2.2 and
Figure 2.8.

ENUM terminates because in iteration 30 c̃4 = 3.3 > 3 = A, meaning that for all
ũ4 ≥ 4 (ũ4 · µ44)2 · b̂4 > A.
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2 Lattice Reduction

ENUM iterations:

Iteration t A c̃t c̃t < A ? updates ũd, . . . , ũ1

– – 105 – – 0 0 0 1 –
1 1 105 105 no ↑ t = 2, s = 2,∆t = 1, ũt = 1 0 0 1 ⊥
2 2 105 22 yes ↓ t = 1, yt = 0.27, ũt = 0,∆t = 0 0 0 1 0
3 1 105 29 yes ↓ leaf, A = 29, u = 0100 –
4 1 29 29 no ↑ t = 2, s = 2,∆t = 2, ũt = 2 0 0 2 ⊥
5 2 29 86 no ↑ t = 3, s = 3,∆t = 1, ũt = 1 0 1 ⊥⊥
6 3 29 22 yes ↓ t = 2, yt = 0.48, ũt = 0,∆t = 0 0 1 0 ⊥
7 2 29 28 yes ↓ t = 1, yt = 0.63, ũt = −1,∆t = 0 0 1 0 -1
8 1 29 42 no ↑ t = 2, s = 3,∆t = −1, ũt = −1 0 1 -1 ⊥
9 2 29 28 yes ↓ t = 1, yt = 0.36, ũt = 0,∆t = 0 0 1 -1 0

10 1 29 42 no ↑ t = 2, s = 3,∆t = 1, ũt = 1, 0 1 1 ⊥
11 2 29 70 no ↑ t = 3, s = 3,∆t = 2, ũt = 2, 0 2 ⊥⊥
12 3 29 90 no ↑ t = 4, s = 4,∆t = 1, ũt = 1, 1 ⊥⊥⊥
13 4 29 0.21 yes ↓ t = 3, yt = −0.017, ũt = 0,∆t = 0 1 0 ⊥⊥
14 3 29 0.21 yes ↓ t = 2, yt = 0.13, ũt = 0,∆t = 0 1 0 0 ⊥
15 2 29 0.56 yes ↓ t =, yt = 1.2, ũt = −1,∆t = 0 1 0 0 -1
16 1 29 3 yes ↓ leaf ,A = 3,u = −1001 –
17 1 3 3 no ↑ t = 2, s = 2,∆t = −1, ũt = −1 1 0 -1 ⊥
18 2 3 17 no ↑ t = 3, s = 4,∆t = 1, ũt = 1 1 1 ⊥⊥
19 3 3 22 no ↑ t = 4, s = 4,∆t = 2, ũt = 2 2 ⊥⊥⊥
20 4 3 0.83 yes ↓ t = 3, yt = −0.034, ũt = 0,∆t = 0 2 0 ⊥⊥
21 3 3 0.86 yes ↓ t = 2, yt = 0.25, ũt = 0,∆t = 0 2 0 0 ⊥
22 2 3 2.2 yes ↓ t = 1, yt = 2.3, ũt = −2,∆t = 0 2 0 0 -2
23 1 3 12 no ↑ t = 2, s = 4,∆t = −1, ũt = −1 2 0 -1 ⊥
24 2 3 13 no ↑ t = 3, s = 4,∆t = 1, ũt = 1 2 1 ⊥⊥
25 3 3 22 no ↑ t = 4, s = 4,∆t = 3, ũt = 3 3 ⊥⊥⊥
26 4 3 1.9 yes ↓ t = 3, yt = −0.05, ũt = 0,∆t = 0 3 0 ⊥⊥
27 3 3 1.9 yes ↓ t = 2, yt = 0.38, ũt = 0,∆t = 0 3 0 0 ⊥
28 2 3 5.1 no ↑ t = 3, s = 4,∆t = 1, ũt = 1 3 1 ⊥⊥
29 3 3 22 no ↑ t = 4, s = 4,∆t = 4, ũt = 4 4 ⊥⊥⊥
30 4 3 3.3 no ↑ t = 5, s = 4,∆t = 1, ũt = 1 ⊥⊥⊥⊥
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2 Lattice Reduction

The Gaussian Volume Heuristic. In [11, 26] Schnorr and Hörner

introduced another improvement called the Gaussian Volume Heuristic, which is
a pruning technique most likely finding the shortest vector.

It is based on a general principle introduced by Gauss. Let S ⊂ span(L) than

vol(S)

det(L)
(2.3)

estimates the number of points in S ∩ L.

We are going to apply 2.3 to ENUM. Let L̄ denote the lattice L(b1, . . . ,bt−1).
Assuming ENUM stands on stage t with fixed

(ũt, . . . , ũd) ∈ Zd−t+1 \ {0} and b =
n∑

i=t

ũibi

we search for

(ũ1, . . . , ũt−1) ∈ Zt−1 \ {0} and b̄ =
t−1∑

i=1

ũibi ∈ L̄ (2.4)

satisfying c̃(ũ1, . . . , ũd) < A or
∥∥b + b̄

∥∥2
< A.

We split b into orthogonal parts regarding span(L̄):

b =
t−1∑

j=1

d∑

i=t

ũiµijb̂j

︸ ︷︷ ︸
:=−ζt∈span(L̄)

+
d∑

j=t

d∑

i=t

ũiµijb̂j

︸ ︷︷ ︸
:=y∈span(L̄)⊥

According to that, we can specify 2.4: We are searching for b̄ ∈ L̄ in

(b + L̄) ∩ Bt−1(y,
√
A− c̃t) = L̄ ∩ Bt−1(ζt,

√
A− c̃t).

Since Bt−1(ζt,
√
A− c̃t) ⊂ span(L̄) we can apply 2.3:

βt :=E[ |{(ũ1, . . . , ũt−1)} ∈ Zt−1 : cj(ũ1, . . . , ũn) < A}| ]

=
vol(Bt−1(ζt, ρt))

det L̄ , with ρ2
t = (A− c̃t).
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2 Lattice Reduction

Regarding to this Schnorr and Hörner propose to cut off the enummeration
if βt < 2p, where the parameter 0 ≤ p < 1 can be freely chosen. [11] suggests
p = 13.

Note that the smaller p gets, the more the probability increases that the shortest
vector is the one that is already found.

To adapt the heuristic to ENUM we have to determine the radius of Bt − 1 for a
fixed parameter p and t.

With the help of the Stirling approximation (1) we can approximate:

2−p =
vol(Bt−1(εt,p))

det L̄
(1)
=

(π · εt,p)(t−1)/2

Γ(1 + (t− 1)/2)
· 1
∏t−1

i=1 ||b̂i||

≈
( 2eπ
t−1
· εt,p)(t−1)/2

√
π(t− 1) ·∏t−1

i=1 ||b̂i||
.

Thus εt,p ≈ t−1
2eπ

(
√
π(t− 1) · 2−p ·∏t−1

i=1 ||b̂i||)2/(t−1).

Hence, the following line has to be changed:

Algorithm 2: Gauss-ENUM algorithm

if c̃t < A− εt,p then . . . ; B change in line 5, adding the new heuristic
parameter εt,p

Running time. The actual running time of ENUM depends on the quality
of the input basis, since the running time is roughly proportional to the number
of lattice points of the region to be explored. [9] compared ENUM with differ-
ent reduced basis, like LLL and BKZ. If the input basis is only LLL-reduced
ENUM outputs the shortest vector in 2O(d2) polynomial time operations. They
also showed that a 60-dimensional lattice can be solved within an hour, but di-
mension 100 would take at least 35000 years. A stronger preprocessing, like BKZ,
reduces the running time a bit, but dimension 100 seems out of reach.
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2 Lattice Reduction

2.2.3 AKS Sieve Algorithm

The AKS Sieve algorithm was introduced by Ajtai, Kumar and Sivakumar

in [4]. It uses a randomization instead of a complete enumeration which effects
the running time to a simple exponentional function 2O(d). However, there is
a huge drawback since AKS requires exponential space. In [19] Nguyen and
Vidick suggest a practical variant, but it is not competitive with ENUM at least
up to dimension 50, thus making it already impractical.

The latest version is presented by Micciancio and Voulgaris in [17]. Their
new probabilistic algorithm List Sieve finds the shortest vector in any n dimen-
sional lattice in O(23.199d) time needing O(21.325d) space. The practical variant
Gauss Sieve also introduced in [17] grants much better space bounds and outper-
forms the best previous practical implementation [19] of the AKS Sieve. We will
give a short overview of the AKS variants, List Sieve and Gauss Sieve, presented
by Micciancio and Voulgaris.

The List Sieve Algorithm. The algorithm starts with an empty list
L of lattice points. In each iteration the subfunction Sample generates a new
lattice point v. Before adding v to L another subfunction ListReduce reduces v
if appropriate by repeatedly subtracting all lattice vectors already in L, ensuring
that none of the points in L are close to each other. Finally, v is included in L if
it is not already in L, so no collision exists. Points already in L never change.

The Samples are limited to K rounds (K will be specified below: running time and
space requirement). The algorithm terminates successfully if two lattice vectors
vi, vj within distance µ are found, ||vi − vi|| < µ, otherwise it outputs ⊥. µ is
one of the input variables.

Further, we show how Sample exactly works. It uses the same method as the
original Sieve algorithm [4]. Instead of working with the lattice point v directly,
it uses a perturbed version p = v + e.

Sample algorithm. It samples a pair (p, e). e is chosen uniformly at
random within a sphere of radius ξµ. Setting p = e mod B guarantees that
the sphere Bξµ(p) contains at least one lattice point v = p − e. Note that v

(given p) is uniformly distributed over all lattice points in Bξµ(p). Moreover, the
probability for any ξ > 0.5, Bξµ(p) containing more than one lattice point, is
strictly positive.
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2 Lattice Reduction

[17] showed that for larger values of ξ the size of L increases, whereas the proba-
bility rises that the algorithm produces collisions if ξ gets smaller. Below we will
discuss how to choose ξ.

List Reduction. For each v ∈ L the function ListReduce reduces a vector
p by subtracting v from p if ||p− v|| < δ||p||, where δ < 1 is used as a slackness
parameter to subtract v from p only if this reduces ||p|| at least with a factor
δ.

Note that, the vectors in L can be in any order and reducing p with vi ∈ L and
afterwards with vj ∈ L may affect that p is no longer reduced according to vi.
Therefore all list vectors are considered repeatedly until ||p|| cannot be reduced
any more. Since ListReduce terminates after a finite number of iterations, [17]
suggests to choose δ(n) = 1 − 1/n, so that the number of iterations is bounded
by a polynomial nO(1).

The Gauss Sieve. Micciancio and Voulgaris also introduced a prac-
tical variant called the Gauss Sieve, which is said to have much better space
complexity.

One main difference affects the reduction function: not only the list vector v to
be added is reduced, but also the vectors in the list using v. More precisely, if
min(||v ± u||) < max(||v||, ||u||) then the longer of v,u will be replaced by the
shorter of v ± u. Regarding to that, L will always consist of pairwise reduced
vectors, satisfying min(||v ± u||) ≥ max(||v||, ||u||) which is the definition of a
Gauss reduced basis for two dimensional lattices.

Moreover, Gauss Sieve does not work with error vectors: p = v is chosen ran-
domly. This allows an integer only implementation, since only lattice points are
considered. Unfortunately, no upper bound for the number of samples exists,
so that a heuristic termination condition based on experiments is used, which
terminates after a certain number of collisions.

Running time and space requirement. List Sieve: The running time
depends on the list size and the collision probability. Therefore ξ has to be chosen
as an appropriate trade-off between keeping both the list size and the collision
probability small.
[17] proved the following bounds for space and time complexity: The number of
points in L is limited by N = poly(d) ·2c1d, with c1 = log(ξ+

√
ξ2 + 1) + 0.401.
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2 Lattice Reduction

List Sieve outputs a lattice point s with ||s|| < µ (if it exists) using K =

O(2(c1+c2)d) samples with high probability, where c2 = log(ξ/
√
ξ2 − 0.25).

Gauss Sieve: Since we know that the angle between v,u is at least π/3 (or 60
degree), we can bound the size of L to the kissing number τn. Unfortunately, [17]
cannot prove any interesting bounds on the number of samples, nor on the running
time of Gauss Sieve.

But their experiments show that Gauss Sieve outperforms ENUM for dimension
' 40. This is a huge improvement compared to the version from [19], which was
incommensurable to ENUM.
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3 Artificial Intelligence

There is an immense range of problems solvable through search in artificial intelli-
gence. We can distinguish between so-called toy problems and so-called real-world
problems. Toy problems are used to illustrate or exercise various problem-solving
methods. Whereas real-world problems tend to be more complex and not unique,
for example a robot navigation or route finding for air plains, which does not only
depend on the shortest route. In this paper we will concentrate on toy problems,
since we are only interested in search strategies itself.

Afterwards we will take a look on two-player games, especially chess. ENUM is
not comparable with two-player games in the point of two players, but we will
see that many used techniques (search strategies and heuristics) are transferable
to strategies which ENUM already uses or which can be adapted.

3.1 Search Strategies

In artificial intelligence a game tree is a directed graph whose nodes are positions
in a game and whose edges represent moves. We need to distinguish between
a node and a state. In this section we assume that a node is a data structure
consisting of five components: the state in the state space to which the node
corresponds, the parent node, an operator that was applied to generate the node,
depth of this node, the path cost so far. On the contrary a state represents a
configuration of the "world". For this reason it is possible that two different nodes
contain the same state, if this state is generated via two different sequences.
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3 Artificial Intelligence

For example we look on the following toy problem on Figure 3.1: 8-puzzle, which
belongs to the family of sliding-block-puzzles.

8

56

1

7 3

4

2 32

4

6 5

8

1

7

start state goal state

Figure 3.1: Showing an example of
the 8-Puzzle with start- and end-
stage

States: a state is described by the value of
each inner box.
Operators: movement of the blank box in
one of the following directions: left, right, up,
down.
Path cost: each movement costs 1, so
the path cost is just the length of the
path.

Search strategies can be classified into unin-
formed and informed. Uninformed means that they have no information about
the number of steps or the path cost from the current state to the goal. In-
formed search strategies are often also called heuristic search, since they are
using problem-specific heuristic information. Each algorithm will be analyzed
regarding four categories: Time/ space complexity, completeness, and optimal-
ity. If an algorithm is guaranteed to find a solution (if one exits) it is said to
be complete. Whereas the algorithm is optimal if the highest-quality solution is
found, if several different solutions exist. All strategies start with an initial state
(root node) and end if a solution is found.

3.1.1 Uninformed Strategies

Since most uninformed strategies are well known we will only give a brief descrip-
tion.

BFS. Breath-first search is one of the simpliest strategies. At first all nodes at
depth d will be expanded, afterwards their successors at depth d+1. If a solution
exists BFS is guaranteed to find it. If more solutions exist it finds the shallowest
one. Given a branching factor b and a graph depth d the time complexity bound
is O(bd). The space complexity is the same since all leaf nodes of the tree have
to be maintained in memory at the same time.

UCS. The uniform cost search differs from BFS in always expanding the lowest-
cost (measured by the path cost g(n)) node first rather than the lowest-depth
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node. BFS is UCS with g(n) = depth(n). If g(successor(n)) ≥ g(n) (∀ nodes n)
UCS always finds the cheapest solution, thus being complete and optimal. The
complexity bounds are equal to one from BFS.

DFS. Starting from the root depth first search explores all successors as far
as possible. If a dead end is reached (not the goal state) DFS goes back and
explores nodes at a shallower level. DFS needs to store only one single path from
the root to a leaf node, along with the remaining unexpanded sibling nodes for
each node on the path. The time complexity is O(bm) and only requires storage
of b · m nodes, where m is the maximum depth of the search tree. Since some
problems may have very deep or infinite search trees, DFS gets stuck exploring
the wrong path. Besides it may find a solution path that is longer than the
optimum. Causing DFS to be neither complete nor optimal.

DLS. Depth-limited search avoids the drawback to get stuck going down the
wrong path if searching with DFS. DLS is the same as DFS with a limited depth
l, according to that, it takes O(bl) time and O(bl) space.

IDS. Iterative deepening search is similar to DLS, but it increases the maximal
depth about 1 each round. In effect, IDS combines the benefits of DFS and BFS.
It may seem wasteful because so many states are expanded multiple times, it
expands about 11% more nodes than a single BFS or DFS search. However, IDS
is used when there is a large search space and the depth of the solution is not
known.

Bidirectional search. As the name implies bidirectional search searches
simultaneously forward from the initial state and backward from the goal un-
til both searches meet. If the branching factor b is the same in both directions
bidirectional search can make a huge improvement. Assuming the solution lies
in depth d, the forward and backward search only has to go half way: only
O(2bd/2) = O(bd/2) steps. Nevertheless, this sounds good in theory, but there
are several games specific issues which need to be addressed, for example: oper-
ators have to be reversible, predecessor and successor sets must be identical and
both easily computable. The complexity O(bd/2) also assumes that testing if a
node has already been found by the opposite side can be done in constant time.
Bidirectional search needs O(bd/2) space since at least all nodes from one of the
searches have to stay in memory for comparison.
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3.1.2 Informed Srategies

In contrast to uninformed strategies which systematically generate new states and
therefore mostly inefficient we will look on strategies which use problem-specific
knowledge and thus are more efficient.

For this purpose we need an evaluation function which estimates the goodness of
all nodes to be expanded next. Hence, we can order those nodes and choose the
one with the best evaluation value first. This strategy is called best-first search.

Greedy search. In most situations the cost of reaching the goal from a
particular state cannot be determinated exactly only estimated. We call h(n) an
heuristic function, which estimates the cost of the current node n to the goal.
A best-first search using h(n) is called greedy search. h(n) can be any function
with h(goal) = 0 which depends on the particular problem. The time complexity
is like DFS: O(bm), but a good heuristic can give a dramatic improvement. The
space complexity is O(bm), because all nodes have to be kept. Unfortunately
greedy search is incomplete and not optimal, as it can get stuck in an infinite
path like DFS.

A∗. Another famous best-search algorithm is called A∗. A∗ combines greedy
search and USC, hence it minimizes the total path cost. Therefore both heuristic
functions are combined: f(n) = g(n) + h(n), whereas h(n) has to be admissible
meaning never overestimating the costs to reach the goal formally:

Definition 3.1 (admissible heuristic function) Let h(n) ≥ 0 (∀ nodes n) be a
heuristic function and h∗(n) the true cost from n to the goal h(n) ≤ h∗(n). We
call h(n) admissible if

h(n) ≤ h∗(n).

The key of an A∗ algorithm is to find a good h(n). A∗ search is optimal if h(n) is
consistent and complete for graphs with a finite branching factor provided there
is some positive constant δ such that every operator costs at least δ. The time
complexity depends on the heuristic. Let h∗(n) denote the actual path cost,
the number of nodes grows exponentially unless |h(n) − h∗(n) ≤ O(log(h∗(n))|.
However, the space complexity is the main drawback of A∗ since all nodes have
to be kept in memory.
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3 Artificial Intelligence

By using the prior 8-puzzles example we demonstrate two possible admissible
heuristic functions.

h1 = the number of inner boxes which are in the wrong position.
h2 = the sum of the distance of the inner boxes from their goal state

(Manhattan distance).

8

56

1

7 3

4

2 32

4

6 5

8

1

7

start state goal state

3 1 2

1 2

1 2 2

Figure 3.2: Showing an example of the Manhattan distance in the 8-Puzzle

h1 is admissible since all wrong boxes have to be moved at least once to get into the
goal position. h2 is admissible, because any move can only move one box one step
closer to the goal position. In our case: h1 = 8 and h2 = 3+1+2+2+2+2+1+2 =

15. Figure 3.1.2 illustrates the Manhattan distance for each inner box.

A∗ has a few variants to decrease the space needed, we are going to shortly discuss
one of them.

IDA∗. Iterative deepening A∗ search is a mixture of IDS and A∗. Each iteration
is an IDS search but rather using a depth limit it uses an f -cost limit. Once all
nodes are expanded with f(n) ≤ f , a new iteration starts with a new f -cost
limit. IDA∗ is complete and optimal. Assuming δ is the smallest operator cost
and f ∗ the optimal solution cost then IDA∗ needs to store bf∗

δ
nodes in the worst

case. (On average: bd). The time complexity strongly depends on the number
of iteration. On average IDA∗ needs two or three iterations and since the last
iteration expands roughly the same number of nodes as A∗ its efficiency is similar
to A∗.

3.2 Techniques Used in Chess

This section deals with the most important techniques (algorithms and heuristics)
used in chess. First of all we briefly introduce how to adapt two players in a
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search tree. Further, we concentrate on the algorithms and heuristics used to
play chess.

3.2.1 Preliminaries

Two-player games are divided into different categories. In this thesis we concen-
trate on zero-sum games with perfect information, because they mostly match
on the mechanics of ENUM. Perfect information is reached if both players are
aware of all previous moves. Chess and tic-tac-toe are examples for games with
perfect information, whereas in most card games, like poker, some informations
are hidden. Zero-sum describes a situation in which one player’s gain is the other
player’s loss.

An AND/OR-trees models the behavior of a two-player game. Each node n
represents a position in a game. Starting from the root, all nodes on one depth
are alternately either an AND- or an OR- node, representing Player 1 (MAX-
Player) or Player 2 (MIN-Player). An example is shown in Figure 3.3. MAX is
moving from the white nodes, MIN is moving from the black nodes.

MAX

MIN

MAX

MIN

Figure 3.3: AND-OR Tree modeling the behavior of two different players

Games are about winning and loosing, therefore we need an evaluation function
eval(l) to decide who wins. Each leaf l represents an end-stage of the game, so
that eval(l) can be computed in all leafs. Talking about MAX’s point of view,
he tries to maximize eval(l), whereas MIN tries to minimize it.

Knowing the value of eval(l) for all leafs, we can recursively rate all inner nodes as
well as the root. This rating is called minimax value. It determines the evaluation
which can be archived if the opponent plays perfectly.
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Definition 3.2 (minimax value)

v(n) =





eval(n) if n is leaf

max{v(r) | r ∈ successors(n)} if n is a MAX-node

min{v(r) | r ∈ successors(n)} if n is a MIN-node.

For an example, see Figure 3.4. It shows the minimax value in the game tic-tac-
toe. We used:

eval(l) = {1, 0,−1} =̂ {MAX wins, draw, MAX looses}
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Figure 3.4: An example for minimax values in the game tic-tac-toe

3.2.2 Algorithm

The minimax algorithm is the basis for many search algorithms in zero-sum board
games, especially for chess. The algorithm works recursively, and computes the
minimax value for all inner nodes. It is a brute force, depth-first-search algorithm
starting from the left branch to examine all possible movements.
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The sequence of moves which are considered best and therefore expected to be
played is called the principal variation. Therefore minimax has to store the moves
which return the best minimax value.

Since we are searching in zero-sum games, we can simplify the minimax value.
Knowing that min{a, b} = −max{−a,−b} we can formulate a value called nega-
max value:

Definition 3.3 (negamax value)

n(n) =




f(n) if n is leaf

max{v(r) | r ∈ successors(n)} if n is an inner node
,

with

f(n) =




eval(n) if n is a MAX-leaf

−eval(n) if n is a MIN-leaf

Negamax works just like minimax, but without inner nodes differentiation into
MIN or MAX.

Minimax and negamax play theoretically perfect. If the search tree is small both
algorithms are applicable, for example in tic-tac-toe.

But in games like chess it would take an enormously long time. Assuming that
at each position 35 moves can be done and 40-60 moves are made in one game,
minimax has to estimate about 10123 nodes [8]. For comparison, tic-tac-toe has
about 106 choices until the game ends, checkers has about 1078 and go about
10170.

Because of that, a different approach is taken. Search is done only to a fixed depth.
The evaluation function is exchanged to a heuristic one. Instead of knowing
which player wins, it estimates the position, returning not just win or loose, but
a numerical value.

The basic idea is to search as much as possible in the quickest time. But how can
you improve your search?

The Alpha Beta Algorithm (short αβ) is an extension of the minimax algorithm.
It also calculates the minimax value of an AND/OR-tree, but it prunes the search
tree, if the current value cannot improve the minimax value. To prune the search
tree αβ has to keep two values (α, β). MAX can obtain a value at least bigger
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than α, whereas MIN makes sure he gets a value smaller than β. Each node is
examined with a search window (α, β), initialized at the root with (−∞,∞) and
updated if a better value is found.

Cut offs:

- alpha cut off
standing on a MIN-node, this node has more than one child, one child
returns a value with α ≥ value⇒ cut off all other children

- beta cut off
standing in a MAX-node, this node has more than one child, one child
returns a value with β ≤ value⇒ cut off all other children

MIN13

7
MAX

4

beta cut off

MAX

MIN

MAX

(-inf,inf)

(-inf,inf)

(-inf,inf)

(13,inf)

(-inf,13)

9

13

13

5

5

alpha cut off

14 21

(13,inf)

(13,21)

(13,inf)

21

25

21

21

(-inf,13)
21

5

Figure 3.5: An example for an αβ search tree, representing both possible cut offs:
alpha and beta cut off

Both cut offs are shown in Figure 3.5. First MAX finds a leaf with v(n) = 7 since
α = 13 all other children can be cut off. The second cut off occurs as MIN finds
v(n) = 25 whereas β is only 21. The principal variation is drawn bold, MAX can
obtain 21.

The actual number of cut offs depends on the order of the search tree. But
how can we specify a good move ordering? If αβ finds the principal variation
first, we know that the minimax value does not change, so we can eliminate
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many branches. The subset of a search tree which is required to determine the
minimax value at the root is called the minimal tree. Hence, only nodes from the
minimal tree affect the minimax value at the root, regardless of way the other
nodes are assessed. The minimal tree contains of three types of nodes: PV-,
CUT- and ALL-nodes [14]:

- The root node is defined to be a PV node

- At a PV node all children have to be investigated. At least one child has
the minimax value of the root. Define such child to be a PV node, and the
remaining child nodes to be CUT nodes.

- At a CUT node the child causing a β-cut is an ALL node. In a perfectly
ordered tree only one child of a CUT node has to be explored.

- At an ALL node all the children have to be explored. The successors of an
ALL node are CUT nodes.

PV

PV CUT CUT

PV CUT CUT ALL ALL ALL ALL ALL ALL

MAX

MAX

MIN

Figure 3.6: Minimal tree with 3 types of nodes: PV/ ALL / CUT

Ideas to get such a move ordering are described in 3.2.3.

Assume we have a fixed depth d and a fixed branching factor b. In the best-case
αβ examines bbd/2c+ bdd/2e− 1 nodes. This is the minimum number of nodes that
must be examined by any search algorithm to determine the minimax value. A
proof and more information is given in [13].

Suppose b = 10 and d = 9:

minimax αβ

nodes
109 = 105 + 104 =

1, 000, 000, 000 110, 000
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However, the worst-case of αβ is the same as the minimax algorithm, bd.

In [20] Pearl introduce the SCOUT algorithm. His idea was to decide whether
a branch can improve the minimax value without knowing its exact outcome,
based on the assumption that most of the subtrees will prove inferior to the best
subtree searched so far.

The SCOUT-algorithm requires two boolean testfunctions t1(n) and t2(n) for
MAX and MIN nodes and one evaluation eval(n) function.

Let n be the root of the branch to be discovered and m the current best minimax
value:

- n = MAX-node: t1 returns true if v(n) > m and false otherwise,

- n = MIN-node: t2 returns true if v(n) < m and false otherwise.

The evaluation function conduces to calculate the correct minimax value of a
branch.

The SCOUT-algorithms uses the minimax value of the left branch as a reference
value for further search, as shown in 3.7. Afterwards all following successors are
tested, with t1 or t2. If one of the testfunctions returns true, the branch has to be
examined again. In this re-search eval(n) calculates the exact value. But most
of the time the testfunction fails, so no re-search is needed. Because of that,
the extra costs from the re-search are smaller than the savings of the efficient
testfunction.

m < m?> m? > m?

Figure 3.7: Repesenting the basic idea of the SCOUT algorithm

Reinefeld took on to that idea and invented the NegaScout-algorithm [21],
which takes the ideas from Pearl to the αβ-algorithm, but as the name implies
it uses a negamax-version of αβ. The evaluation function is done with an open
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window: (α, β) = (−∞,∞), whereas a minimal window (α, β) = (v, v+ 1) repre-
sents the testfunctions, with the best available minimax value v so far. Returning
a value ≤ v means the subtree is indeed inferior (fail-low), whereas the test fails
if value > v (fail-high). In this case the branch has to be re-searched with a wider
search window to calculate the correct value.

As described above NegaScout, αβ, minimax are Depth-First-Search algorithms,
a simple backtracking strategy that traverses the search tree in the same order
in which successor nodes are generated. Another strategy is to search promis-
ing parts first by using specific heuristic information, they are called best-first-
algorithms.

SSS* is a non-directional algorithm to search AND-OR-trees similar to the fa-
mous A*, which has been analyzed more precisely in Section 3.1. SSS* never
examines more (or other) nodes than the αβ-algorithm, but usually less [22]. As
’best-first-search’ implies, the algorithm searches the best branch first, therefore
it has to keep node information. SSS* uses a large data structure, an OPEN-list
with descriptors of the active nodes. The algorithm is divided into two phases.
Phase one spans a subtree containing all direct successors of MAX nodes but only
one successor to every MIN node (top down MIN strategy). Phase two is called
solution phase, it’s a bottom up search for the best MAX strategy.
A descriptor (n, s, h) consists of:

- a node identifier n

- status s ∈ {LIV E, SOLV ED}
- a merit h

LIVE: n is still unexpanded and h is an upper bound on the true minimax value.
SOLVED: h is the true minimax value.
Descriptors are sorted in decreasing order of their merit in OPEN.

The search starts with only the root node descriptor (root, LIV E,∞) and ends
if the descriptor (root, SOLV ED, h) appears on the top of OPEN.

SSS* is about five to ten times slower than αβ, this makes it impractical for real
game playing programs, even if it examines only a subset of nodes. At the 8th
Advances in Computer Chess conference 1996, SSS* was finally declared ’dead’.
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3.2.3 Heuristics

Since game tree search can’t be done completely, it has become an error minimiza-
tion problem. First some search extensions are described, which strive to explore
potential good moves deeper. Afterwards we take a look on some pruning tech-
niques, which try to prune off bad-looking moves to avoid searching redundant
branches.

Iterative-Deepening Search (IDS). Heuristic search to a fixed depth,
presents a problem with real time game-playing programs. They require a decision
during an adequate time. If it exceeds the time-limit without returning, the
program is unable to make a move. As mentioned before IDS repeatedly calls a
depth-limited search with increasing depth d. Thus by applying IDS to the root
node, a game-playing program is able to respond once the search returns a result.
But it can search as deeply as possible until a time limit is reached.

Quiescence Search. Searching to only fixed depth without looking forward
may cause the so called horizon effect. Assuming you stop on depth s with a node
n and eval(n) = 15 but at depth s + 5 with node t the move will turn out to
eval(t) = −10. Human players usually have enough intuition to decide whether
to abandon a bad-looking move, or search a promising move to a greater depth.
Quiescence search tries to imitate this intuition. It searches ’interesting’ positions
to a greater depth than ’quiet’ ones to make sure there are no hidden traps.

Move Ordering. As already seen, a good move ordering is essential to
produce more cut offs using αβ and NegaScout. A slightly better move ordering
can improve search performance by 50% up to 100% in a gameplaying program.
Move ordering heuristics allow modern chess programs to search game-trees which
have only 20% - 30% more nodes than the minimal αβ game tree [10]. According
to that, move ordering heuristics are usually used in practical implementations.

Dynamic Move-Ordering.
Dynamic move ordering heuristics collect information about moves during
search. This information is used to order subsequent moves, e.g. killer and
history heuristic. The killer heuristic is described below, for more information
see [5, 28].

Static Move-Ordering.
Static move ordering heuristics do not depend on information of previous
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searches, but there are several domain-independent techniques that work
well in games such as MVV/LVA (Most Valuable Victim - Least Valuable
Aggressor/Attacker), SEE (Static Exchange Evaluation) and SOMA.

Killer Heuristic. A move is called a killer, if it produces a cut off. Killers
are assumed to cause a cut off again, in a different situation. Those moves are
considered first, if they are excepted by the rules.

Aspiration search. αβ or NegaScout starts with a (−∞,∞) search win-
dow. The idea is to reduce the initial window, if there is a clue in which range
the minimax window will fall. This may speed up the search, because more cuts
will occur at the beginning. If the range is too tight the tree must be re-searched.
Aspiration search is about 15% faster than the original αβ, if there exists a good
range.

Transposition Table. In some games it is possible to reach the same
position several times, those positions are called transpositions. To avoid ana-
lyzing the same position several times, hashtables store information from pre-
view searches. One common technique for creating hash codes in game-playing
programs is zobrist hashing. The advantages of the zobrist key are: simple to
implement, incremental and fairly collision resistant.

Forward Pruning. Pruning is a name for every heuristic that completely
removes certain branches of the search tree, assuming they have no influence to
the search result. αβ may be considered as backward pruning, because we found
a refutation after searching.

Forward pruning always involves some risks to overlook something, because a
node is discarded without searching beyond that node if it is believed that the
node will not affect the final minimax value of the node. Thus forward pruning
requires a compromise between accepting some risk of error and pruning more.
Pruning more includes making more errors potentially, but also allows deeper
searches in other branches.

As these techniques are developed for chess only, we only give a short listing:

- at expected CUT nodes: Multi-Cut, ProbCut, Null Move Pruning, which
is described below

- at expected ALL nodes: Razoring, Sibling Prediction Pruning, ProbCut
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Null Move Pruning. Null Move pruning assumes that if a player can make
two movements in a row, even if passing is illegal, it is always an outstanding
improvement. So the heuristic makes a null move, as if the opponent passes, by
simply changing the turn to move to the opponent and performs a reduced-depth
search. If the reduced-depth search returns a score greater than β, then the node
is likely to be a strong position. Otherwise it is pruned.
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4 Chess Reduction

In this chapter we want to give an overview which search strategies and heuristics
used in Artificial Intelligence are comparable with ENUM.

One main difference between game search and searching for the shortest vector
(SVP) is the formulation of the goal state. In game search we can give an exact
goal state formulation, hence we know when to abort. If the algorithm is complete
and optimal we find the highest-quality solution. For example we look at the 8-
puzzle again. We have an exact goal state formulation: for each inner box one
fixed position - so if we found it (with IDA∗) we can stop and the problem is
solved. In contrast, we cannot formulate a specific goal state for the SVP. The
only goal formulation we can make is: find the shortest one, without knowing
the value of it. Transfered to the 8-puzzle the goal formulation would be called:
Find the “best” status which is d steps ahead, where “best” means nearest to the
actual goal state which is > d steps away. Hence, ENUM cannot terminate if one
good solution is found, it has to check all other solutions until one is left over in
the end, which is the optimal solution.

According to this aspect, we will discuss which strategies can be adapted effi-
ciently.

4.1 Adapting Search Strategies

ENUM uses a DFS search, first of all we want to discuss which search strategies
introduced in Chapter 3.1 could be adapted to advance ENUM.

4.1.1 Uninformed Search

The drawbacks of DFS such as getting stuck in a wrong path do not effect ENUM.
Since the search tree is limited to the depth d with an input basis B ∈ Zn×d
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ENUM performs already a DLS search. Since the depth d is known IDS would be
wasteful.

BFS would not be efficient because the space complexity is in O(bd). Another
disadvantage adapting BFS to ENUM would be minor cut offs. A cut off only oc-
curs if a complete path with length d has already been discovered, which happens
not until the last round is reached with depth d, as the Figure 4.1 shows.

Min

(a) DFS

Min

(b) BSF

Figure 4.1: Possible cut offs using DSF and BSF

The same reasons as for BFS count against UCS, even if it would be better
to perform the nodes with the lowest cost first. UCS uses a queue Q to store
all successor nodes. Each round the node with the smallest path cost so far is
examined and all successors are stored in Q. Transfered to ENUM the node with
the smallest c̃t would be discovered first, but Q would increase enormously for
each depth.

Unfortunately, it is not easy to use a bidirectional search for the SVP like in
some problems in artificial intelligence. If we adapt the bidirectional search the
algorithm will search from both ends t1 = d and t2 = 1 simultaneously until they
reach d/2. But even if both searches use DFS the branching factor will be too

large, because the original starting bound A =
∥∥∥b̂1

∥∥∥
2

is too large. Therefore we
need two different bounds for t1 and t2, since the input basis is reduced with LLL

or BKZ and thus sorted ascending by length. However, even if we get a result from
both searches and complete ũ to get A, we have to search with ENUM again. It
is questionable if the advantage of searching to depth d/2 still holds if we have to
do a re-search even though we have a good bound A from the searches before.
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4.1.2 Informed Search

The only heuristic known so far to decide whether a path is promising or not is
the Gaussian volume heuristic explained in Section 2.2.

Let b =
∑n

i=t ũibi. The heuristic estimates

βt := E[ |{(ũ1, . . . , ũt−1)} ∈ Zt−1 : cj(ũ1, . . . , ũn) < A}| ] =
vol(Bt−1(ζt, ρt))

det L̄ ,

with ζt = b− πt(b) and ρ2
t = (A− ‖πt(b)‖2).

Given (ũt, . . . , ũd) ∈ Zd−t, βt denotes the expected number of vectors (ũ1, . . . , ũt−1) ∈
Zt−1 satisfying cj(ũ1, . . . , ũn) < A.

Even though βt depends on the steps already made as well as on the steps to the
goal, it only estimates the path from a node at stage t to the goal:

(ũt, . . . , ũd)︸ ︷︷ ︸
nodes already discovered

+ (ũ1, . . . , ũt−1)︸ ︷︷ ︸
steps till the “goal“

.

If βt is “big” the path seems promising. In Chapter 5 we will concretise what
“big” stands for.

Transfered to informed search strategies the heuristic function h(n) =̂ βt, so we
may adapt the greedy search. As explained in Section 3.1 the greedy search
algorithm uses h(n) to select the node to be expanded next. Therefore a queue Q
is used. Starting with Q ∈ {startNode} each round the node n with the smallest
h(n) is examined and all successor nodes are stored in Q. The algorithm ends
if the goalState is taken out from Q. Greedy search also uses a closed list L to
check for cycles.

Transfered to the SVP we could say that in each round the node is selected with
the highest βt. In contrast of the problems in artificial intelligence the algorithm
for the SVP has to search until Q is empty. Unfortunately this may have the same
drawbacks as UCS, since the branching factor can be extremely high. ENUM

would suggest all successors ũt−1 with ũt−1 < ±
√

A−c̃t
cj−1
−yt−1, as shown in Figure

4.2 for the first two rounds. This may be enormous for depth t < d/2, since A− c̃t
will be too large at this stages because we do not have a good bound A at the
beginning.
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ũd−1 < ±
√√√√√
A−c̃d
cd−1

− yd−1

ũd−2 < ±
√√√√√√
A−c̃d−1
cd−2

− yd−2

Figure 4.2: Possible number of successors of ENUM using best-first search algo-
rithms

So if we already have a good bound A the idea of the greedy search - to sort
nodes according to h(n) and perform the promising ones first - can be adapted.

Schnorr suggests in [24] a new version of ENUM called New ENUM which follows
the ideas of the greedy search. We will go into detail in Chapter 5 and also show
some experiments comparing ENUM and New ENUM.

Finally, we want to discuss if A∗ could be adapted to solve the SVP. As mentioned
in Section 3.1, A∗ is optimally efficient, meaning it is guaranteed that there is
no other optimal algorithm expanding fewer nodes than A∗. Transfered to the
SVP it would mean that the shortest vector would be found earlier as the greedy
search does, causing more cut offs for the rest of the search. But how can we
get f(n) = g(n) + h(n) for the SVP? The problem of combining g(n) =̂ c̃t and
h(n) =̂ βt is that there are two different measures. Again looking at the 8-puzzle:
g(n) = applied moves so far and h(n) = sum of the distances of the inner boxes
from the goal. Both functions measure the number of moves. How to combine c̃t
(path cost) and βt (expected number of vectors) is one of the open questions.

4.2 Comparing with Chess

As already mentioned, the search tree in chess is too huge to be discovered com-
pletely in the short period of time in which a move has to be made. Therefore the
search is limited to a fixed depth and thus more comparable to ENUM, insofar as
both have to search to a fixed depth and return the best solution over all solutions
found.
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4.2.1 Algorithms

As we saw in Chapter 3.2 αβ is the most popular algorithm to play chess. Besides
the fact of two-players αβ and ENUM are mostly alike. Both traverse the search
tree in depth first order and cut off branches which return an inferior value.
Unfortunately the improvement of Negascout cannot be adapted, since it relies
on the fact of different bounds for each player.

The same holds for the classification of nodes. In a search tree of ENUM we
cannot distinguish between nodes which can be cut off and nodes which have to
be searched through anyway. Except the root, all nodes can be cut off if they
return an inferior value.

The last algorithm described in 3.2 named SSS* which follows the same principle
as A* transfered to two-player games. SSS* cannot be used in chess efficiently.
However, we have given a brief introduction how to adapt greedy search above,
which will be concretised in the following chapter.

Since αβ follows the same principle as ENUM, we will examine the heuristics αβ
uses for chess and how far the transferability is given to ENUM, if it is not already
used there.

4.2.2 Heuristics

One of the most important heuristics is the order of moves. In game playing there
exist two different types: dynamic and static move-ordering. ENUM already uses
a dynamic move-ordering, namely the zig-zag-path. The next possible value for
ũt depends on the value of the previous round. The preprocessing of LLL or
BKZ can be seen as a static move-ordering, since the input basis is reduced and
ordered.

Another important heuristic uses transposition tables to detect cycles. Fortu-
nately, ENUM does not need to store all positions to avoid analyzing the same
position twice. If we claim ũi > 0 for the largest i with ũi 6= 0 all possible
redundancies are excluded.

Quienscene search cannot be adapted directly, since ENUM has to search to depth
d for all nodes, not only a fixed depth � d. The idea of quienscene search is to
search promising branches deeper, which we try to adapt by combining greedy

43



4 Chess Reduction

search, DFS and quienscene search, as shown in Figure 4.3. We perform a DFS to
a depth 1 < m < d, if DFS reaches a level ≥ m nodes are distinguished between
good and bad as described above. Bad nodes are stored in queue. Good nodes are
performed directly using DFS, if successors turn out to be bad they are stored in
queue as well. If DFS finishes, the queue is performed using greedy search until
all nodes are examined.

depth m

DFS

greedy

depth d

queue

good bad

DFS

bad

Figure 4.3: Combining DFS and A* with the idea of quienscene search

Aspiration search, which reduces the initial search window, is one of the heuristics

which ENUM already uses. ENUM starts with A =
∥∥∥b̂i

∥∥∥
2

. Schnorr suggests

in [24] an even better bound: A := d
4
(det(BTB))2/d. The new A > λ2

1 holds for
d ≥ 10 as γd < d

4
for d ≥ 10.

In game playing especially in chess many techniques to prune the search tree exist.
As mentioned before, αβ and ENUM can be seen as backward pruning. Forward
pruning works quite differently, it prunes a branch without calculating the exact
outcome, if it is believed that the node is unlikely to affect the result. These
methods depend on the defined problem. In Section 3.1 we briefly described
some common techniques which are used in chess, but there are not portable
one-to-one for other problem classes like the SVP.
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5.1 Overview

In [24] Schnorr introduced a new version of ENUM called New ENUM. New ENUM

uses the Gaussian volume heuristic to categorise “good” and “bad” nodes. Good
ones are performed first to set a good bound, whereas bad ones are stored in a list
L and performed afterwards, because they are expected to be mostly cut off.

5.1.1 Node-Evaluation

To show how New ENUM rates a node we shortly recall ENUM and the Gaussian
volume heuristic. Standing on stage t with chosen (ũt, . . . , ũd) ∈ Zd−t+1 \ {0}
ENUM searches for (ũ1, . . . , ũt−1) as to satisfy c̃(ũ1, . . . , ũd) < A. More pre-
cisely, given a vector b =

∑n
i=t ũibi we want to add b̄ =

∑t−1
i=1 ũibi ∈ L̄ as to

satisfy
∥∥b + b̄

∥∥2
< A. As already mentioned in Section 2.2 the Gaussian vol-

ume heuristic estimates |Bt−1(ζt, ρt) ∩ L̄| for t > 1 to βt := vol(Bt−1(ζt,ρt))

det L̄ , with
ζt = b − πt(b) and ρ2

t = (A − ‖πt(b)‖2). Gauss-ENUM uses the success rate
βt as a pruning technique, since all stages with a small success rate (βt < 2−p)

are cut off.

New ENUM uses βt differently, namely to rate nodes. All stages with βt ≥ 2−r

are performed first, whereas stages βt < 2−r are collected in a list Lr and per-
formed afterwards in increasing order of t and for fixed t in order of decreasing
βt. Parameter r describes the number of rounds, which starts with r = 1 and
increases (r = r + 1) each round.

This classification holds, because very short lattice vectors b :=
∑d

i=1 ũibi have
large values βt at the stages (ũt, . . . , ũd). On average ‖πt(b)‖2 ≈ d−t+1

d
‖b‖2, so

if b is short so are the πt(b). Hence ρ2
t = A− ‖πt(b)‖2 is large and so is βt.
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5.1.2 Algorithm

New ENUM can be divided into two different parts. First a modified version of
ENUM is performed: Start with r = 1, perform ENUM with only one modification:
store the node in Lr if c̃t < A and βt < 2−r.

The second part performs all nodes from the current list Lr with level r + 1 and
collects delayed stages with βt < 2−r−1 in Lr+1. New ENUM loops part two until
Lr+1 = ∅, meaning until all nodes are analysed.

Since the first part of New ENUM is nearly the same as ENUM we will concentrate
on the second part, which is not seriously discussed in [24] so we will give a detailed
description.

Suppose New ENUM finishes the first phase and starts the second one with the
list L1 at least consisting of one node. The list is sorted in decreasing order of t
and for fixed t in increasing order of βt. According to that, the first node n1 is
taken out.

One of the following three cases may occur:

- If c̃t ≥ A the node will not lead to a new minimum as its value is already
greater than the minimum, a new node will be taken.

- If c̃t < A and βt ≥ 2−r−1 the stage increases (t = t− 1),

- otherwise the node is stored and a new node is taken from the list.

We take a look at the second possibility. Thus, we can specify which variables
need to be stored if c̃t ≤ A and βt < 2−r−1. Schnorr makes no suggestions in
which order the successors are taken into consideration. We outline two different
approaches:

If the algorithm steps down, all possible successors are appended to Lr+1. This has
the advantage that all successors are considered at once and lesser variables
have to be stored for a node, but it blows up the list size needlessly.

The second possibility only considers the best successor according to the zig-zag-
path. The next successor is calculated if the prior is finished. It has the
drawback of storing more informations for each node but keeps the size of
the list as small as possible.
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5 New ENUM

We will apply the second one. Even if we append all successors at once, New ENUM

considers the best successors according to the zig-zag-path first. Most beneficial
is the size of L, which is one of the critical factors as we will see later.

Node is finished. To understand how all successors are taken into consider-
ation, we make a short example: Assume a node n is taken out of Lr which stands
on stage t with (ũt, . . . , ũd). Afterwards the algorithm has made a (a < d−t) steps
down - standing on stage t− a with (ũa, . . . , ũd). If ca > A, c̃t < A and βt < 2−r

or t = 1 the algorithm has to step up. Each time the algorithm steps up the next
possible successor ũi is calculated. The algorithm may go down again if the c̃ is
still smaller than A. To take all possible successors from n into consideration the
algorithm has to step up until stage t with c̃t > A is reached.

Which variables need to be stored. The actual cost c̃t is calculated
from c̃t+1, yt, ũt and ct, where yt depends on all prior ũ and ũt depends on vt,∆t

and δt. According to that, a node has to contain the following variables:

t, c̃t+1, (ũt, . . . , ũd),∆t, δt, vt, (c̃t and s to protect duplicate computations)

The algorithm of the second part of New ENUM is shown in Algorithm 3.

47



5 New ENUM

Algorithm 3: New ENUM List-algorithm

Input: List Lr, µ ∈ Rd×d, c1, . . . , cd, current minimum A

Result: the minimal place (u1, . . . , ud) ∈ Zd \ {0} and the
minimum A

if Lr not empty then sort Lr, n← Lr[0], tmax = n(t), l=size L else1

return
while true do2

c̃t := c̃t+1 + (yt + ũt)
2 · ct3

if c̃t < A then4

if t == 0 then B minimum found5

A := c̃j, u := ũ6

else7

calculate βt8

if βt ≥ 2−r−1 or l == 0 or t == 1 then B good node9

t := t− 1, yt :=
∑s

i=t+1 ũiµit, ũt := vt := d−ytc,10

∆t := 0

if ũt > −yt then δt := −1 else δt := 111

continue B step up12

else B bad node13

Lr+1.push_back(n), l + +14

end15

end16

end17

if l == 0 and tmax == t then break; B all possible nodes18

discoverd
if tmax == t then19

if Lr is empty then r + 1, sort Lr, Lr+1 = ∅ B r finished20

l − 1, n← Lr[0] B take a new node21

else B update22

t := t+ 1, s := max(s, t)23

if t < s then ∆t := −∆t24

if ∆t · δt ≥ 0 then ∆t := ∆t + δt25

ũt := vt + ∆t26

end27

end28
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5 New ENUM

5.2 Implementation and Results

5.2.1 Overview

We implemented the New ENUM algorithm using C++. All tests were run on
Linux (openSuse 11.1) using gcc version 4.3.2. with a 32-bit Intel(R) Core 2
CPU (2.00 GHz) and 2.0 GB RAM. We used an already existing matrices class
representation for floating point and integer matrices. All floating point variables
such as c̃, µ are stored as double (precision: 53 bits). Our implementation also
provides multiple-precision floating-point computations using the MPFR Library
[1], but double seems sufficient if the input basis is at least LLL-reduced. We
used LLL-reduced random lattices with bitsize = 10 ∗ dimension for all tests.

5.2.2 Using One List

We first tried to reduce the two lists Lr and Lr+1 into one: the next node is taken
from the front whereas new nodes are stored at the end.

Pop

Push

listSize

Figure 5.1: New ENUM using
only one list

We used a counter listSize to recognize
when the current round r is finished, as
shown in Figure 5.1. Therefore we used
std::deque<Node*>,which is a double-ended
queue. Tests showed that std::deque<Node*>

is about 99% faster than std::vector<Node*>

and about 20% faster than std::list<Node*>.

This results from the only removal/ adding of
elements from the beginning or the end.

They all provide Random Access Iterators, as we
used

void sort ( RandomAccessIterator first, RandomAccessIterator last );

from STL Algorithms to sort our list.

Our first tests over dimension 42 failed, as the program terminated after throwing
an instance of std::bad_alloc.
Since the elements in a deque are stored in several smaller chunks to provide
massive reallocations they are a little more complex internally. We try to use
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5 New ENUM

std::vector<Node*> instead. Vectors are very similar to plain arrays. They
grow by reallocating all of their elements in an unique block when their capacity
is exhausted. Because of that we can only provide access at the ending of a
vector.

5.2.3 Using Two Lists

Instead of using one list we use two different lists L1 and L2. In a round r

we use L1 to pop nodes from the end and L2 to store nodes at the end. If a
round r ends meaning L1 is empty we sort L2 and switch parts: L1 is filled and
L2 emptied. Since we only perform operations at the end of both lists we use
std::vector<Node*>.

As illustrated in Figure 5.2 New ENUM uses two pointers prtPush and ptrPop

to adress the respective list L1/2.

Pop Push

first list second list

ptrPop

first List empty

new round

Push Pop

first list second list

ptrPush ptrPop ptrPush

Figure 5.2: New ENUM using two different lists

5.2.4 NewEnum Class

We are going to give a brief description of the New ENUM class. As already
mentioned we use two different pointers ptrPop and ptrPush which point to the
respective list list1 or list2. FacBeta is the edge between good and bad nodes,
each round we decrease FacBeta=FacBeta/2. The current minimum is stored in
A and listSize contains the sum of the size from both lists.

Listing 5.1: private class members
const Matrix <double >& mu;
const double* c;
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const int cols;
double FacBeta;
unsigned int listSize;
double A;
std:: vector <Node*> list1;
std:: vector <Node*> list2;
std:: vector <Node*>* ptrPop;
std:: vector <Node*>* ptrPush;

We used a function called getNext listed in 5.2 which prevents deleting and
creating the same node in one iteration. The function finds the next node in the
list which is > 2−r−1, if all nodes < 2−r−1 r increases.

Listing 5.2: function to get the next possible node
getNext(Node* &ptrNode ){

if (ptrPop ->empty ()){
FacBeta /=2;
// switch pointer
swap(ptrPush ,ptrPop );
std::sort(ptrPop ->begin(),ptrPop ->end(),& nodeSortEnd );

}
ptrNode = ptrPop ->back ();
if(listSize >1 && ptrNode ->t>1){

//while node is too bad
while(ptrNode ->coeff_betat < FacBeta && ptrNode ->t>1){

// push_back node
ptrPush ->push_back(ptrNode );
ptrPop ->pop_back ();
ptrNode=ptrPop ->back ();

if (ptrPop ->empty ()){
FacBeta /=2; // rounds r++
// switch pointers
swap(ptrPush ,ptrPop );
sort(ptrPop ->begin(),ptrPop ->end(),& nodeSortEnd );
ptrNode=ptrPop ->back ();

}
}

}
}
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5.2.5 Results

Testing New ENUM against ENUM showed that New ENUM is uncompetitive to
ENUM for dimensions greater than 35.
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Figure 5.3: Running time of New ENUM and ENUM

In dimensions ≥ 40 New ENUM stores more than 5.000.000 nodes which reduces
the speed immensely. Figure 5.4 shows the maximal storage of nodes up to
dimension 40. On that account we take a look on the process of node storage in
dimension 40. Figure 5.5 shows that by the time the minimum is found the size
of the list is acceptable, but afterwards it grows massively.
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Figure 5.5: The average node storage
of New ENUM in dim 40

It seems that after the minimum is found all remaining bad nodes are hold back
and stored instead of performing cut offs.
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5.2.6 Variations

On account of the massive boost of nodes, New ENUM can only be performed up
to dimension 40, but is still incomparable with ENUM. Next we will discuss some
variations to get rid of the huge storage problem.

Reduce List. As seen in Figure 5.5 the minimum in dimension 40 is found
on average in round 20, 5. Our new idea is to skip storing after the minimum
has been found and perform all nodes in the list. Therefore we use a function
called JustList which performs all nodes (and successors) in the list without
calculating βt nor storing any node. According to the average round in which the
minimum is found, we skip storing and perform JustList, the result is shown in
Figure 5.6.
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Figure 5.6: Running time of New ENUM (CUT) and ENUM

As mentioned before it is very ineffective if New ENUM needs to store more than
5.000.000 nodes, but for dimension ≥ 42 the minimum is not found within this
barrier. Thus we reduce New ENUM to the minimum of storage. The first part is
performed as usual: if βt < 2−1 the node is stored otherwise all possible successor
nodes are discovered. In the second part we only perform JustList. Figure 5.2.6
shows that for dimension ≥ 44 New ENUM JustListis faster than ENUM.
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Pruning branches. Another approach to get rid of storing too many nodes
is pruning stages with the original Gaussian volume heuristi c. We set a variable
MIN_BETA= 2−p, where p denotes the pruning factor. Hörner suggested p = 13,
which holds for all our tests. Figure 5.8 shows that New ENUM (JustList) using
the Gauss-pruning makes a small speed-up, except for dimensions 45 and 52.
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Figure 5.8: Running time of New ENUM (JustList) with pruning (Gauss Heuris-
tic: p=13)

Quienscene New ENUM. As suggested in Chapter 4 we try to set a barrier
b for storage, meaning only nodes with t < b can be stored. We tested bases in
dimensions 44− 50 using b = 10 and b = 15. In average the time changes for the
worse.

We also tried different barriers for node storages or stopping at various stages r,
but these techniques could not hold for all bases at one dimension and none of
them could reach the time of JustList(with pruning). The heuristic β does not
seem to compensate the drawback of the storage of nodes.
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6 Conclusion

6.1 Chess Reduction

In this thesis we tried to adapt search strategies used in the field of artificial
intelligence to the ENUM algorithm as well as common techniques used in chess.

We showed that the goal formulation is one of the major differences, which causes
a low disadvantage. We pointed out that adapting search strategies like BFS and
UCS is not effective. An adaption of bidirectional search sounded promising
insofar as depth d would be reduced to d/2. However, all external circumstances
seemed to ruin the advantage, so we abandon this option.

Best first search seems to be more promising. Since the only known heuristic for
ENUM estimates the path cost from a node to the goal we adapted the greedy
search. In order to reduce the problem of high branching factors we made some
improvements concerning the successor nodes generation. We pointed out that
A∗ is the most auspicious search strategy, since it takes the total path cost into
consideration. Combining the path cost already made with an adequate heuristic
would be interesting for further research.

We worked out that most transferable techniques used in chess are already used by
ENUM. Nevertheless, the number of pruning techniques is of decisive importance.
In game playing especially in chess various forward and backward pruning tech-
niques exist which cause an enormous speed-up. Those techniques compensate
the drawbacks of the used search strategies. Up to date, the only known heuristic
which prunes the search tree of ENUM is the Gaussian volume heuristic.

6.2 New ENUM

In the last part of our thesis we implemented the New ENUM algorithm. We
combined ideas of greedy search as well as ideas of Schnorr in [24]. Therefore
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we rated notes into “good” and “bad” using the Gaussian heuristic. “Good” ones
were performed directly, whereas “bad” ones were kept in a list. Each round we
decreased the limit between “good” and “bad”, which turned out to be disad-
vantageous. New ENUM could only be performed up to dimension ≥ 40. After
finding the optimal solution the storage of nodes rose massively. Therefore we
tried another approach (JustList): we performed only one round of node clas-
sification, afterwards we reduced the remaining list in decreasing order of the
heuristic. In average New ENUM (JustList) is faster than ENUM. We also
implemented New ENUM (JustList) using the Gaussian volume heuristic as a
pruning technique, which also causes a small speed-up for most our tests.

We observed that the discrepancy of the running time (between ENUM and
New ENUM (JustList)) for specific input basis can be quite high. This phe-
nomenon might be of interest for further work. Discovering the reason for this
phenomenon would probably simplify the work on new heuristics as well as an
improvement of both algorithms. Given an input basis it would be even possible
to decide which algorithm is more sufficient.

Another approach for further research might be the detection of an optimal stor-
age container, because this has turned out to be one of the crucial factors affecting
the running time.
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