
SAT-Solving in Algebraic
Cryptanalysis
Bachelor-Thesis von Ahmed Charfi
Juni 2014

Computer Science
CDC

SAT-Solving in Algebraic Cryptanalysis

Vorgelegte Bachelor-Thesis von Ahmed Charfi

1. Gutachten: Prof. Dr. Johannes Buchmann
2. Gutachten: Dr. Mohamed Saied Emam Mohamed

Tag der Einreichung:

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-12345

URL: http://tuprints.ulb.tu-darmstadt.de/1234

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de

tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 2.0 Deutschland
http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Erklärung zur Bachelor-Thesis

Hiermit versichere ich, die vorliegende Bachelor-Thesis ohne Hilfe Dritter nur mit den an-

gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen

entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder

ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den June 26, 2014

(A. Char�)

1

Abstract

The satisfiability (SAT) problem is one of the most important problems in theoretical computer science.
This problem is about determining whether there exists an assignment of variables in a logical formula so
that the formula evaluates to true. It is relevant in several application domains such as IT security and
algebraic cryptanalysis.

In this bachelor project we used 8 different sat solvers, which are the best available ones according
to the International Sat Competition1 to analyze the security of three block ciphers against algebraic
cryptanalysis. More specifically we analyzed AES, CSA and LED.

Regarding AES, we solved systems that represent small scale variants of the AES polynomial system
namely (1,4,4,4). Regarding LED, we solved the first round fully.

Furthermore, we were able to break 20 rounds of the CSA block cipher. For our information this is the
best algebraic attack on CSA.

Our experiments are based on a very large number of test cases. Consequently, we provide recommen-
dations for selecting the best sat solver for a specific case.

1 http://www.satcompetition.org/

2

Contents

List of Figures 4

List of Tables 5

1. Introduction 9

2. Preliminaries 11
2.1. Algebraic Cryptanalysis . 11
2.2. The Sat Problem . 11

2.2.1. Definition . 12
2.2.2. Sat Solvers . 13

2.3. Block Ciphers . 15
2.3.1. Advanced Encryption Standard (AES) . 16
2.3.2. Light Encryption Device (LED) . 16
2.3.3. Common Scrambling Algorithm (CSA) . 16

2.4. Tools and Hardware . 17

3. Advanced Encryption Standard (AES) 19
3.1. Tools for AES tests . 19

3.1.1. AES Equation Generator . 19
3.1.2. Bash Script Example . 20
3.1.3. Java Class LingelingOutput . 20
3.1.4. Java Class Javerage . 21
3.1.5. Java Class ClauseCounter . 21

3.2. Tests and Results . 21
3.2.1. Test 1: R=C=1 . 21
3.2.2. Stability Case 13 . 24
3.2.3. Test 2: R= 2 , C=1 . 24
3.2.4. Stability Case 31 . 26
3.2.5. Test 3: R=C=2 , R=4,C=2 and R=C=4 . 26
3.2.6. Stability Cases 42 and 53 . 28

4. Light Encryption Device (LED) 31
4.1. Tools for LED Tests . 31
4.2. Tests and Results . 31

4.2.1. Test 1: R =1 . 32
4.2.2. Stability Case 1160 . 33
4.2.3. Test 2: R=2 . 33

3

4.2.4. Test 3: R=3 . 34
4.2.5. Stability Case 3400 . 35
4.2.6. Test 4: R= 4 and R=5 . 36
4.2.7. Test 5: R= 6 to 10 . 37
4.2.8. Test 6: R= 16, 32 and 48 . 38

5. Common Scrambling Algorithm (CSA) 41
5.1. Tools for CSA tests . 41

5.1.1. CSA Equation Generator . 41
5.1.2. Converter of Non-linear Equations to Linear Equations 42
5.1.3. Other Tools . 43

5.2. Tests and Results: CSA round 1 to 20 . 43
5.3. Stability Cases 12 and 15 . 44

6. Conclusion and General Discussion 47
6.1. Summary . 47
6.2. General Discussion and Recommendations . 47

A. Appendix 49
A.1. Java Class LingelingOutput . 50
A.2. Java Class Javerage . 51
A.3. Java Class ClauseCounter . 52

4

List of Figures

1. Visualization of the DPLL algorithm [21] . 13

2. AES Stability Case 13 . 24
3. AES Stability Case 31 . 26
4. AES Stability Case 42 . 28
5. AES Stability Case 53 . 28

6. LED Stability Case 1160 . 33
7. LED Stability Case 3400 . 35

8. CSA Stability Case 12 . 45
9. CSA Stability Case 15 . 45

5

List of Tables

3.1. AES Test 1: R=C=1 . 22
3.2. AES Test 2: R=2 , C=1 . 25
3.3. AES Test 3: R=C=2 , R=4,C=2, R=C=4 . 27

4.1. LED Test 1: R=1 . 32
4.2. LED Test 2: R=2 . 33
4.3. LED Test 3: R=3 . 34
4.4. LED Test 4: R=4 and R=5 . 36
4.5. LED Test 5: R= 6 to 10 . 37
4.6. LED Test 6: R= 16, 32 and 48 . 38

5.1. CSA Test: Round 1 to 20 . 43

7

1 Introduction

Cryptography is the science of secure communication over public channels. More specifically, this science
develops techniques and protocols to secure data and protect it from third parties. Cryptanalysis aims
at breaking information systems that use cryptography and gaining access to contents of encrypted data.
Over the last few years algebraic cryptanalysis has become an extremely important topic especially with
the growth of communication applications and networked applications such as mobile telecommunication
and online banking applications. Algebraic Cryptanalysis is a cryptanalysis technique, which tries to break
codes by solving systems of multivariate polynomial equations. Another relevant concept in this context
is the concept of block ciphers, which are encryption algorithms that operate on data blocks of a fixed
size. Block ciphers are an important tool in the design of protocols for shared-key cryptography. On the
other hand, there is a need for appropriate tools to test and assess the security level and the power of
encryption mechanisms in general such as block ciphers. Sat solvers are such tools and they are often
used for algebraic cryptanalysis. Sat solvers take a Boolean formula in CNF as an input and try to find a
variable assignment so that the formula evaluates to true.

In this thesis, we focus on algebraic cryptanalysis and study the behaviour of algebraic attacks using the
best available sat solvers [8] on three block ciphers: AES, LED, and CSA.

With respect to AES, we solved a small scale variant of the AES polynomial system (1, 4, 4, 4). With
regard to LED, we solved a full round and some rounds by correctly guessing a certain number of bits of
the key. Concerning CSA, we were able to break 20 rounds of totally 55 rounds in less than 20 hours. To
the best of our knowledge, this is the best algebraic attack on CSA.

The remainder of this thesis is organized as follows. Chapter 2 introduces some background knowledge
and some preliminaries that are relevant for understanding this work. Chapters 3, 4, 5 respectively present
the test results for the block ciphers AES, CSA and LED. Based on the results of these tests recommen-
dations are given for choosing the most suitable sat solver for a given use case. Chapter 6 sums up the
results of this work and outline possible directions for future work.

9

2 Preliminaries

This chapter gives an overview of the preliminaries of this thesis and introduces the relevant concepts for
this work. Section 2.1 defines algebraic cryptanalysis. Section 2.2 introduces the sat problem and some
related concepts such as the sat algorithm DPLL and eight sat solvers that were used in the tests. Section
2.3 gives an introduction to the block ciphers in general and then presents the three block ciphers that
were used in this work. Section 2.4 reports on the tools and hardware used to perform the tests.

2.1 Algebraic Cryptanalysis

According to the Oxford dictionary 1, cryptanalysis is defined as the art or process of deciphering coded
messages without being told the key. The idea behind algebraic cryptanalysis [3] is to find a relation between
the inputs and outputs of a cryptographic functional using a set of polynomial equations. These equations
are usually constructed over a finite field GF (2), which is the Galois Field containing two elements (0
and 1). This field is the smallest possible finite field. Algebraic cryptanalysis can be applied in different
areas as each cryptographic function can be described by a set of polynomial equations. However, solving
a polynomial system is an NP-hard problem that requires a lot of time and resources because the used
polynomial systems usually contain many equations and many variables. In many cases attacking such
cryptographic functions using brute force is easier than using algebraic cryptanalysis. Brute force is a
technique that enumerates all possible solution candidates and checks for each candidate if it satisfies the
problem. On the other hand, algebraic cryptanalysis uses techniques, which have an exponential complexity
in the worst case. There are several tools that are used for algebraic cryptanalysis such as Gröbner basis
computation and sat solvers. A Gröbner basis for a polynomial system is an equivalence systems that has
several useful properties. Gröbner basiscomputation is an important practical tool for solving systems of
polynomial equations. In addition, sat solvers provide another tool for solving the same problem.

In this work, we use sat solvers to algebraically attack three block ciphers: AES, LED, and CSA. There
are other similar works that use sat solvers to attack other cipher such as Bivium [12], Courtois Toy Cipher
(CTC) [15], and Data Encryption Standard (DES) [15]. In addition, there are some well-known attack
models on block ciphers, which models describe what and how much information the attacker may be
able to get. As examples for such models we mention known plain text attack [20] and chosen plain text
attack [2].

2.2 The Sat Problem

In this section we first define the Sat problem. Then we present the eight sat solvers that were used in this
work to test the hardness of the selected block ciphers. After that we report on the tools and hardware
that were used for running the tests.

1 http : //www.oxforddictionaries.com/

11

2.2.1 Definition

In computer science , the Sat problem consists of determining whether there exists an assignment for logical
variables that are used in a given formula so that it evaluates to true. If no such assignment exists, the
formula is unsatisfiable, otherwise satisifiable. One unique characteristic of Sat is the following: Sat was
the first known example of an NP complete problem. This means that there is no known algorithm which
solves all instances of sat (i.e., in polynomial time or better). Sat solvers are algorithms that take a formula
as an input and try to solve the sat problem for that Formula. Most Sat solvers expect the formula to
be in conjunctive normal form (CNF). This normal form is a way of writing logical formulas using only a
conjunction of clauses. For example, we consider the following formula in CNF:

(v1 ∨ ¬v2) ∧ (v2 ∨ v3) ∧ (v1 ∨ v3 ∨ v4)

This formula is usually encoded in the following matrix format by most sat solvers:

c t h i s i s a comment
p cnf 4 3
1 −2 0
2 3 0
1 3 4 0

The first line in this format is a comment. The second line indicates the form of the logical formula
(in this case CNF). The following two integer values indicate the number of variables (here 4) and the
number of clauses (here 3). Each variable is encoded as a number (1 for v1, 2 for v2, 3 for v3, and 4 for
v4). Negative numbers encoded negation (e.g., -2 means not v2). Each clause is encoded as a line in the
matrix and the 0 value at the end of each line means that the clause is finished.

In addition to CNF, there is another form of representing logical formulas called the Algebraic Normal
Form (ANF). This form is a special way of writing a logical formula. Either the entire formula is purely
true or false or the formula consists of a set of terms that use only the AND operated and these terms are
combined by the XOR operator. However, all sat solvers that are used in this work are based on CNF.

Most sat solvers that are used in this work are called conflict-driven solvers. These solves are based
on the Davus putnam Logemann Loveland (DPLL) algorithm [21]. This algorithm is a backtracking [17]
based search algorithm for deciding the satisfiability of propositional logic formulae in CNF. It first chooses
a literal and assigns a boolean value to it, which leads to simplifying the formula. Then, this algorithm
recursively checks if the simplified formula is satisfiable. Once this is the case the original formula is
satisfiable. Otherwise, the literal is assigned the opposite boolean value and the recursive check is done
again.

Figure 1 illustrates how the DPLL algorithm works. The algorithm started working and used different
assignment values until it came to the first conflict. It then returned using backtracking - [17] to the start
position. After that, the algorithm tried with the right side of the tree until a solution was found.

12

Figure 1.: Visualization of the DPLL algorithm [21]

2.2.2 Sat Solvers

A sat solver [13] is an algorithm or a program that takes a logical formula as an input and returns an
assignment so that the formula evaluates to true or it says that no such assignment exists. Sat solvers are
being used in several areas such as software and hardware verification, automatic test pattern generation,
algebraic planning and scheduling problems, and also in algebraic cryptanalysis. One disadvantage of
almost all sat algorithms is their complexity which can be in the worst case exponential. However, in the
last few years the performance of sat solvers has improved a lot.

In the following, we present briefly the eight sat solvers that were used in this bachelor work. These are
Minisat 2.0, Cryptominist 2.9.5 , Cryptominisat 3.3.0, Lingeling aqw, Glucose 2.3, Riss3g cert, Doug Hains
1.1, and Zenn 0.1.0. These sat solvers were selected based on their excellent results in the international sat
competition in 2013 [8]. All of them are implemented either in C or in C++.

Minisat

Minisat [11] is one of the first sat solvers. The other seven sat solvers that we use are improvements and
extensions of minisat. According to [11], MiniSat is a minimalistic, open-source SAT solver, developed to
help researchers and developers alike to get started on SAT. Minisat is a minimalistic implementation of
a CHAFF-like solver based on the two literal watch schemes for fast boolean constraint propagation (BCP)
and clause learning by conflict analysis. Minisat has several advantages: It is open source, easy to modify,
and well-documented. The key features of Minisat are listed in the following:

13

• unite propagation

• backtracking with restarts

• clause learning through analyze of conflicts

• delete unneeded clauses

In this work we use version 2.0 of Minisat.

Cryptominisat

Cryptominisat [16] is a modern SAT Solver that aims at combining the benefits of four other sat solvers:
SATELITE, Precosat, Glucose, and Minisat in order to solve a formula in reasonable time. It was developed
by Soos Mate. In this work two versions of cryptominisat are used in the experiments: 2.9.5 and version
3.3.0.

Cryptominisat2 [21] is a DPLL-based sat solver. Some key features of cryptominisat2 are:

• Usage of xor clauses

• Usage of two techniques: phase calculation, saving and random flipping

• Clause cleaning

• Support for 32-bit pointers on 64-bit architectures under Linux

There have been many improvements in version 3 of Cryptominisat compared to version 2. These
improvements mainly affect memory use and timeouts in addition to system-wide structural improvements
and code cleaning. Another improvement is that Cryptominsiat 3 uses Gaussian Elimination by default
whereas Cryptominisat2 uses this elimination at every level of the decision tree.

Lingeling

The Lingeling [5] is a sat solver that was developed at Johannes Kepler University in Linz, Austria. It uses
interleaving search and preprocessing to simplify the initial formula. It also uses a garbage collection algo-
rithm to reduce the number of learned clauses. At runtime, this algorithm determines if classic heuristics
or glues should be used.

Zenn

Zenn [22] is a sat solver that is based on Minisat 2.2 and which was developed at Kyushu University
in Japan. Zenn employs a technique calls Phase Shift, which integrates different search methods. The
underlying algorithm performs two or more search phases. Each phase has a predefined and fixed duration.
If a certain number of restarts is reached the algorithm switches phases.

14

Riss3g

Riss3g [19] is a sat solver that is based on Minisat 2.2 and glucose 2.1. This solver was developed at
Technical University Dresden. It is used as a research platform and thus provides many parameters and
features to enable further techniques that are not present in other general sat Solvers. Some of these
features are list below

• enumeration of all solutions of the input formula,

• loading and storing learned clauses of a run,

• searching for a solution with a set of assumed literals,

• passing an initial model to the solver that should be tested first

Glucose

Glucose [1] is a sat solver that is built on top of Minisat 2.2. It was developed at University Bordeaux
in France. This solver uses an algorithm called Conflict Driven Clause Learning (CDCL) [6], which is
inspired from DPLL algorithms. This algorithm first selects a variable and assigns a boolean value to it.
Then it applies boolean constraint propagation. After that it builds the implication graph. If there is
a conflict the algorithm analyzes it and jumps back non-chronologically. Otherwise it restarts with the
variable assignment until all variables are assigned. The name of glucose comes from the importance of
glue clauses, which are clauses that allow to sticking a new literal to a book of propagation literals.

Doug (Minisat Static)

The Doug sat solver [10] was developed at Colorado State University in the USA. This sat solver uses a
new preprocessing technique called reduction to simplify the initial formula by fixing truth assignments.
Then, it passes the reduced formula to the minisat sat solver.

2.3 Block Ciphers

Block ciphers [18] are encryption algorithms that operate on data blocks of a fixed size. Block ciphers are
an important tool in the design of protocols for shared-key cryptography. A block cipher can be represented
as a mathematical function E that takes two inputs: the first one is the key which has the length k and the
second one is the plain text which has the length n. The output is the cipher text, which also the length
n. The key length and the block size vary from one block cipher to another.

In the following, we present the three block ciphers that were tested in this work.

15

2.3.1 Advanced Encryption Standard (AES)

AES [15] is an encryption standard that is based on a design principle known as substitution permutation
network. AES was introduced as a replacement for the Data Encryption Standard (DES), which is slow
and has a short key. AES can be implemented in a fast manner in both software and hardware. AES is a
variant of the Rijndael algorithm, which has a fixed block size of 128 bits and a key size of either 128,192,
or 256 bits. AES takes the following four arguments:

• n ∈ {1,..,10} is the number of encryption rounds

• r ∈ {1,2,4} is the number of rows in the input matrix

• c ∈ {1,2,4} is the number of columns in the input matrix

• e ∈ {4,8} is the degree of the underlying field

AES is totally attacked when n = 10, r = 4, c = 4, e = 8. We were able in this work to break AES till
the following values: n = 10, r = 1, c = 1, e = 4.

2.3.2 Light Encryption Device (LED)

LED [14] is a block cipher that has a small footprint and it is dedicated to being implemented in compact
hardware. There were three further goals in the design of that tool: the usage of an ultra-light key schedule,
the consideration of resistance against key attacks, and a reasonable performance when implemented in
software. This block cipher can handle key sizes from 64 bits up to 128 bits. The key can be changed
without modification of the algorithm.

LED provides provable security against classical linear/differential cryptanalysis both in the single-key
and related-key models. In this work we were able to break the first round of LED fully and some other
rounds (round 2 to 48) by guessing bits less than 16 bits of the key.

2.3.3 Common Scrambling Algorithm (CSA)

CSA [24] is an encryption algorithm which is used in digital video broadcasting (DVB). It is composed of
two distinct ciphers: a block cipher and a stream cipher. The Data are first encrypted using the 64 bits
block cipher in Cipher Block Chaining (CBC) mode [4]. The stream cipher is applied from packet start.
Due to the fact that DVB is commonly used by pay TV, a need to protect transmitted data against not
paying viewers is required so that not everybody can receive the broadcasted data. The CSA block cipher
operates with 64 input bits, 64output bits, and 64 key bits. This cipher consists of 56 identical rounds.
The key is expanded to 448 bits and every round uses 8 bits of this expanded key.

We were able in this work to break CAS till the round 20 in less than 20 hours.

16

2.4 Tools and Hardware

Several tools were used in this work. To test the different block ciphers we need an equations generator.
For that purpose we used the open source mathematics software SAGE [9] version 6.0. The polynomial
systems were converted to SAT instances using the implmented class by Michael Birckenstein PolyBoRi
CNF converter [7]. Solving the SAT instances was done using the sat solvers presented above.

In addition, several programs and scripts were written in Java, Python, and Shell Script to run the test
100 times, to convert the input files in the required format, to process the output files and extract results
and solutions of each run, and to calculate the average time needed.

We run the experiments on a Computer with 4 Six-Core AMD Opteron Processors 8435 operating at
2.6 GHZ. This Computer has 64 GB RAM and runs a 64 bit Linux (Ubuntu 13.10) as operating system.

17

3 Advanced Encryption Standard (AES)

In this chapter, we first report on the different programs and scripts that were developed to support the
different tests of the AES block cipher. Then, we present the results of these tests in several tables and
provide a discussion. Finally some curves are presented, which show graphically the stability of the eight
different sat solvers that were used.

3.1 Tools for AES tests

Several programs and scripts were necessary to automate the AES tests. First, a sage class will be presented
which generates the CNF file that acts as input for the sat solvers. Then, we present as an example the
bash script used to call the Lingeling sat solver 100 times. Similar scripts were written for the other sat
solvers but for brevity we present only one representative script. After that, we present the Java class
Lingelingoutput, which extracts the following data from the output of the sat solver: the results (i.e., the
information on whether a formula is satisfiable or not) and the execution time. Finally, we present the
Java class Javerage, which calculates the average execution time as each test is run 100 times.

3.1.1 AES Equation Generator

Listing 3.1 shows the source code of the SAGE class that creates the input for the sat solver in CNF out of
a polynomial system. In this listing the number of rounds is 3, the number of rows and columns is 2, and
the value of the underlying field is 8. This class uses an ANFsat solver, which takes the polynomial system
as parameter. Then, the CNF representation of that system is written to a file called AESCNF.txt.

load an f2cn f . py
from po lybo r i import ∗
s r = mq.SR(3 , 2 , 2 , 8 , a l l ow_zero_invers ions=True , g f2=True) # n=3 , r=c=2 , e=8
pr int s r .R. repr_long ()
F , s = s r . polynomial_system ()
B = BooleanPolynomialRing (F . r i ng () . ngens () , F . r i ng () . variable_names ())
F = [B(f) f o r f in F i f B(f)]
s o l v e r = ANFSatSolver (B)
c f = s o l v e r . cn f (F)
c = open (’AES_cnf . txt ’ , ’w ’)
c . wr i t e (c f) # wr i t e the equa t i ons in a f i l e c a l l e d AES_cnf . t x t
c . c l o s e ()

Listing 3.1: SAGE class for generting the CNF file

19

3.1.2 Bash Script Example

#!/ bin / bash

rm t e s t_ l i n g e l i n g . out # remove t e s t_ l i n g e l i n g . out
rm te s t 20 . tmp # remove t e s t 2 0 . tmp
f o r i in ‘ seq 1 100 ; ‘ # for loop 100 t imes
do
rm te s t 20 . tmp # remove t e s t 2 0 . tmp

l i n g e l i n g AES_CNF. txt > te s t 20 . tmp # c a l l l i n g e l i n g us ing
F i l e AES_CNF. t x t as input and wr i t e i t in t e s t 2 0 . tmp
java Lingel ingOutput t e s t 20 . tmp >> t e s t_ l i n g e l i n g . out
Cal l L inge l ingOutput on f i l e t e s t 2 0 . tmp to p i ck up the
#time and s a t i s f i a f i a b i l e a t t r i b u t

done
java Javerage t e s t_ l i n g e l i n g . out # c a l l Javerage to g e t average
echo ’done ’

Listing 3.2: Bash script for running a test 100 times

Listing 3.2 shows a bash script that is used to call the sat solver Lingeling 100 times. This is motivated
by the instability of sat solvers. For example Minisat could take 2 second for a test case run and then
take 2 minutes for the same test case in another run. Similar scripts were written for the other sat solvers.
At the beginning this script removes any existing output files from previous tests. Then, a for loop is
used to call the sat solver 100 times taking the CNF file generated by the AES equation generator as
input. The output of the sat solver is then written to the temporary file test20.tmp. After that, a java
class LingelingOutput is called to extract a data set consisting of the result (i.e., formula satisfiable or
not) and the solver execution time from the solver output file. This data set is then written to the file
testlingeling.out (one data set for each iteration). After finishing the for loop the Java class Javerage is
called to compute the average execution time based on the results of the 100 tests.

3.1.3 Java Class LingelingOutput

Listing A.1 in the appendix shows the source code of the Java class LingelingOutput. The sat solver pro-
duces a comprehensive and long output including program information, information on the input equation
(e.g., number of variables, numbers of clauses), etc. The purpose of this class is to extract two specific
values out of that output, which are important for our tests. The first value is the execution time and the
second value is the satisfiabilty result (i.e., the information on whether the formula is satisfiable or not).

20

3.1.4 Java Class Javerage

Listing A.2 in the appendix shows the source code of the Java class Javerage. This class takes as input a
text file including a line for each run of the test. The line includes the execution time and the satisfiability
result for each run. If we run a test 100 times the input file would have 100 lines. This class extracts the
execution times values and calculates their average, which will then be printed out.

3.1.5 Java Class ClauseCounter

Listing A.3 in the appendix shows the source code of the Java class ClauseCounter. This class takes as
input the CNF file and calculates the length and the number of clauses. These values are needed for
presenting the test results in the next section.

3.2 Tests and Results

In this section, we present the results of the tests that were conducted on the AES block cipher. In each
subsection the number of rows R and the number of columns C are fixed to some value and we vary the
number of rounds N (from 1 to 10) as well as the value of the underlying field E (which can be either 4
or 8). The number or rows and columns take the following values: R=C=1, R=C=2, R=C=4, R=1 and
C=2, R=2 and C=4. Next, we present the results of each test.

3.2.1 Test 1: R=C=1

Table 3.1 shows the results of this test, which contains 20 cases. The number of rows and columns was
fixed to 1 whereas the number of rounds N varies from 1 to 10 and the value of the underlying field E is
either 4 (in the first 10 cases) or 8 (in the last 10 cases).

Columns 1 to 5 respectively show the case number I, the number of rounds N, the number of rows R,
the number of columns C, and the underlying field E. Columns 6 to 13 show the time in seconds that is
taken by the respective solver for each test case. Column 14 shows the number of variables used to solve
the equation system. Columns 25 to 27 show respectively the number of clauses with length 2,3, and 4.
Column 28 shows the total number of clauses. The last column states if the equation system was satisfiable
or not. In this table the best values are shown in green whereas the worst values are shown in red.

As the number of rows and columns equals one the plain text to be encrypted by AES contains only
1 element. This explains the relatively low time amount taken by the test cases. All tests take less than
one hour. Furthermore, the maximum length of clauses is equal to 4. That means that each clause has
at most 4 variables and thus it can be solved relatively fast. We notice that 3 cases (7,8 and 20) were
unsatisfiable. In these cases, Minisat was the fastest sat solver to tell that the respective equation systems
are unsatisfiable.

In the first 5 cases, Minisat static was the fastest sat solver and it immediately tell that the system is
satisfiable (in some milliseconds). In contrast, Cryptominast3 was the slowest sat solver in these cases.
The other sat solvers had comparable performance. Consequently, if number of rounds is less than 6 it

21

Table 3.1.: AES Test 1: R=C=1
I N R C E Mini Cr3 Cr2 Ling Zenn Riss Gluc Doug #pr #cl=2 #cl=3 #cl=4 #cl Sat?
1 1 1 1 4 0.004 0.017 0.0045 0.011 0.0027 0.0023 0.0028 0.0003 118 96 160 432 688 Yes
2 2 1 1 4 0.003 0.033 0.007 0.016 0.005 0.003 0.004 0.003 240 192 336 864 1392 Yes
3 3 1 1 4 0.004 0.041 0.018 0.031 0.005 0.006 0.004 0.002 362 288 512 1296 2096 Yes
4 4 1 1 4 0.007 0.06 0.02 0.044 0.018 0.018 0.017 0.003 484 384 688 1728 2800 Yes
5 5 1 1 4 0.01 0.094 0.39 0.042 0.018 0.017 0.024 0.02 606 480 864 2160 3504 Yes
6 6 1 1 4 0.018 0.085 0.031 0.1 0.015 0.029 0.028 0.011 728 576 1040 2592 4208 Yes
7 7 1 1 4 0.016 0.12 0.06 0.1 0.04 0.04 0.048 0.024 850 672 1216 3024 4912 No
8 8 1 1 4 0.026 0.17 0.09 0.2 0.052 0.048 0.048 0.036 972 768 1392 3456 5616 No
9 9 1 1 4 0.03 0.12 0.06 0.21 0.03 0.02 0.02 0.03 1094 864 1568 3888 6320 Yes
10 10 1 1 4 0.037 0.14 0.06 0.1 0.06 0.02 0.03 0.04 1216 960 1744 4320 7024 Yes
11 1 1 1 8 0.15 0.47 0.12 0.68 0.37 0.35 0.10 0.36 750 308 568 4144 5020 Yes
12 2 1 1 8 1.52 0.45 0.08 3.28 0.18 0.22 0.19 0.82 1500 616 1104 8352 10072 Yes
13 3 1 1 8 5.44 12.44 19.57 16.38 11.38 0.385 12.73 14.35 2250 924 1640 12560 15124 Yes
14 4 1 1 8 10.64 14.79 32.07 49.42 10.46 12.75 15.04 21.97 3000 1232 2176 16768 20176 Yes
15 5 1 1 8 25.24 23.56 14.04 4.75 8.45 7.67 4.39 14.42 3750 1540 2712 20976 25228 Yes
16 6 1 1 8 43.17 67.67 35.35 135.9 53.04 61.86 6.51 13.55 4500 1848 3248 25184 30280 Yes
17 7 1 1 8 69.08 25.25 42.85 59.0 150.48 58.53 4.01 8.05 5250 2156 3784 29392 35332 Yes
18 8 1 1 8 89.22 111.18 232.18 116.92 44.42 93.1 3.75 97.63 6000 2464 4320 33600 40384 Yes
19 9 1 1 8 128.19 185.78 122.29 310.43 86.37 77.22 43 12.85 6750 2772 4856 37808 45436 Yes
20 10 1 1 8 177.03 859.04 501.55 446.7 527.83 483.61 705.49 2443.6 7500 3080 5092 42016 50488 No

is recommended to use Minisat static. In the test cases 6 to 10, we notice that Minisat static is not the
fastest sat solver any more. Based on the results we recommend to either use Riss3g or Minisat. The test
cases shows that Cryptominisat3 and Lingeling have the worst performance (color red and orange in the
table 3.1).

We also notice that at each iteration the number of variables increases by 122, the number of clauses
with length 2 increases by 96 , the number of clauses with length 3 increases by 176, the number of clauses
with length 4 increases by 432, and the total number of clauses increases by 704. Based on the results of
the first 10 cases (E=4) the number of parameters of a system of polynomial equations can be calculated
using the following relations:

• number of variables = 118 +122* (number of rounds - 1)

• number of clauses with length 2 = 96 * number of rounds

• number of clauses with length 3 = 160 +176 * (number of rounds - 1)

• number of clauses with length 4 = 432 * number of rounds

• number of total clauses = 688 + 704 * (number of rounds - 1)

In the test cases 11 to 20 E is equal to 8, which means that the key size is 8 bit. This explains why the
time required to solve the equation system in this case is more than in the 10 first cases where E is equal
to 4.

Concerning test cases 11 to 20 we notice that Lingeling is the slowest sat solver. In the first five cases
(N = 11 to 15 and E=8) we recommend to use Glucose. In the next five cases (N=16 to 20 and E=8) we
recommend using Glucose and notice that the performance of Lingeling and Cryptominisat3 and Lingeling
get worse.

22

Based on the data of the last 10 test cases we derive the following relations between number of rounds
and the number of variables and the number of clauses of a given length.

• number of variables = 750 * number of rounds.

• number of clauses length 2 = 308 * number of rounds.

• number of clauses length 3 = 568 +236 * (number of rounds - 1)

• number of clauses length 4 = 4144 + 4208 (number of rounds - 1)

• number of total clauses = 5020 + 5052 * (number of rounds -1)

23

3.2.2 Stability Case 13

Figure 2 shows the stability curve of the used eight sat solvers when R=C=1, N=3, and E=8. This figure
shows that Minisat is very unstable. In addition, Cryptominisat2 and Lingeling are unstable. In opposite,
the Riss3g was the most stable sat solver. The respective curve is almost a horizontal line as shown on the
bottom (color blue sky).

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9
3
0
3
1
3
2
3
3
3
4
3
5
3
6
3
7
3
8
3
9
4
0
4
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
4
9
5
0
5
1
5
2
5
3
5
4
5
5
5
6
5
7
5
8
5
9
6
0
6
1
6
2
6
3
6
4
6
5
6
6
6
7
6
8
6
9
7
0
7
1
7
2
7
3
7
4
7
5
7
6
7
7
7
8
7
9
8
0
8
1
8
2
8
3
8
4
8
5
8
6
8
7
8
8
8
9
9
0
9
1
9
2
9
3
9
4
9
5
9
6
9
7
9
8
9
9

1
0
0

Ti
m

e
 (

s)

Test Number

Test Case 3118

Crypto2

Crypto3

Glucose

Lingling

Riss

Zenn

Minisat

Doug

Figure 2.: AES Stability Case 13

3.2.3 Test 2: R= 2 , C=1

Table 3.2 shows the results of the second test, which also contains 20 cases. The number of rows was fixed
to 2 and the number of columns was fixed to 1. Like in the previous test the number of rounds N varies
from 1 to 10 and the value of the underlying field E is either 4 (in the cases 21 to 30) or 8 (in the cases 31
to 40). The maximum length of clauses remained 4 as in the previous test. In this table the best values
are shown in green whereas the worst values are shown in red.

As the number of rows equals two and the number of columns equals one the plain text to be encrypted
by AES in this case contains 2 elements. This explains the relatively higher time amount taken by the test
cases compared to the previous test, in which we had only one element. In this second test, the longest
test case takes 378 hours. In addition, we notice that for some of the last cases, sat solvers took more than
2 weeks and were still unable to deliver a solution. This applies for Minisat (N=10 to 10), Cryptominisat2
(N=7 to 10), Lingeling (N= 8 and 10), Zenn (N= 9 and 10), Minisat Static(N= 8 to 10).

We notice that 6 test cases (24,25,27,28,29 and 30) were unsatisfiable. In the test cases 21 to 30 Glucose
and Riss3g are the fastest sat solvers as they require less than 1 second to deliver their result. On the
other hand Minisat static and Lingeling were the slowest and took 8 seconds to solve the equation system.
Based on that we recommend using either Glucose or Riss3g when N=1 to 10, E=4 , r=2 and c=1.

24

Table 3.2.: AES Test 2: R=2 , C=1
I N R C E Minisat Cr3 Cr2 Ling Zenn Riss Gluc Doug # pr #cl=2 #cl=3 #cl=4 #cl Sat?

21 1 2 1 4 0.003 0.027 0.009 0 .021 0.005 0.003 0.004 0.002 248 192 368 864 1424 Yes
22 2 2 1 4 0.041 0.061 0.037 0.097 0.031 0.011 0.022 0.031 498 384 720 1776 2880 Yes
23 3 2 1 4 0.109 0.179 0.119 0.3 0.12 0.188 0.084 0.063 748 576 1072 2688 4336 Yes
24 4 2 1 4 0.128 0.26 0.26 0.4 0.16 0.192 0.172 0.18 998 768 1424 3600 5792 No
25 5 2 1 4 0.276 0.38 0.37 0.6 0.312 0.184 0.18 0.268 1248 960 1776 4512 7248 No
26 6 2 1 4 0.595 0.454 0.363 1.215 0.295 0.225 0.281 0.323 1498 1152 2128 5424 8704 Yes
27 7 2 1 4 1.468 0.73 1.13 1.0 0.752 0.4 0.448 0.516 1748 1344 2480 6336 10160 No
28 8 2 1 4 0.872 1.12 1.24 1.9 0.724 0.722 0.62 3.14 1998 1536 2832 7248 11616 No
29 9 2 1 4 1.02 1.18 4.38 1.4 1.348 1.088 0.46 5.02 2248 1728 3184 8160 13072 No
30 10 2 1 4 5.77 2.08 3.23 3.2 1.332 0.564 0.42 8.2 2498 1920 3536 9072 14528 No
31 1 2 1 8 2.11 0.43 8.01 11.29 1.05 1.0 9.09 3.33 1520 616 1136 8448 10200 Yes
32 2 2 1 8 126.24 128.36 215.25 41.93 11.98 168.45 52.80 91.2 3040 1232 2208 17024 20464 Yes
33 3 2 1 8 0.79h 0.18h 0.92h 0.08h 0.88h 0.59h 0.86h 1.12h 4560 1848 3280 25600 30728 Yes
34 4 2 1 8 2.52h 0.39h 6.82h 0.55h 9.04h 2.63h 0.51h 4.22h 6080 2464 4352 34176 40992 Yes
35 5 2 1 8 9.15h 0.5h 378.7h 7.6h 1.87h 0.45h 3.35h 2.71h 7600 3080 5424 42752 51256 Yes
36 6 2 1 8 - 0.94h 23.77h 6.91h 6.74h 1.62h 1.7h 33.56h 9120 3696 6496 51328 61520 Yes
37 7 2 1 8 - 1.83h - 15.24h 20.97h 1.45h 1.0h 97.98h 10640 4312 7568 59904 71784 Yes
38 8 2 1 8 - 2.87h - 54.02h 19.29h 1.67h 3.34h - 12160 4928 8640 68480 82048 Yes
39 9 2 1 8 - 2.74h - - - 3.52h 3.19h - 13680 5544 9712 77056 92312 Yes
40 10 2 1 8 - 4.24h - - - 3.62h 2.93h - 15200 6160 10784 85632 102576 Yes

Like in the previous test we derived the following relations between the number of variables and the
length of clauses and the number of rounds:

• number of parameters = 248 + 250 * (number of rounds -1)

• number of clauses length 2 = 192 * number of rounds.

• number of clauses length 3 = 368 +352*(number of rounds - 1)

• number of clauses length 4 = 864 + 912 (number of rounds - 1)

• number of total clauses = 1424+ 1456 * (number of rounds -1)

Concerning test cases 31 to 40 (E=8) we notice that Riss3g and Glucose are still the fastest sat solvers.
They were able to solve all systems in less than 4 hours. Furthermore, we notice that the performance of
Cryptominisat3 improved a lot compared to the test cases 21 to 20. In fact, Cryptominisat3 was the third
fastest sat solver and it was able to solve all systems unlike the other five sat solvers.

In the test cases 31 to 36 Cryptominisat2 and Minisat−Static are the worst sat solvers from the perfor-
mance point of view. For instance, in test case 35 Cryptominisat2 took 378 hours which is more than 2
weeks whereas Riss3g took less than half an hour for solving the same system.

From test case 37, Minisat , Cryptominisat2, Lingeling, Zenn and Minisat−Static may require up to
several weeks. Therefore, we set a time limit of 4 days for each test case. When a sat solver is not able to
deliver a result within that period we put the symbol − in the respective entry in the table.

Based on the results of the test cases 31 to 40 (E=8), we recommend using Cryptominisat2, Riss3g or
Glucose. In general, when R=2 and C=1 we recommend using either Glucose or Riss3g.

Next, we present the mathematical relations between the number of variables and the length of clauses
and the number of rounds:

25

• number of parameters = 1520 * (number of rounds)

• number of clauses length 2 = 616 * number of rounds

• number of clauses length 3 = 1136 +1072*(number of rounds - 1)

• number of clauses length 4 = 8448 + 8576 (number of rounds - 1)

• number of total clauses = 10200+ 10264 * (number of rounds - 1)

3.2.4 Stability Case 31

Figure 3 shows the stability curve of the used eight sat solvers when R=2, C=1, N=1, and E=8. This
figure shows that Minisat is very unstable as also in Figure 2. As shown in this figure the most stable sat
solvers are Riss3g (as also in Figure 2) , Minisat−static and Zenn.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9
3
0
3
1
3
2
3
3
3
4
3
5
3
6
3
7
3
8
3
9
4
0
4
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
4
9
5
0
5
1
5
2
5
3
5
4
5
5
5
6
5
7
5
8
5
9
6
0
6
1
6
2
6
3
6
4
6
5
6
6
6
7
6
8
6
9
7
0
7
1
7
2
7
3
7
4
7
5
7
6
7
7
7
8
7
9
8
0
8
1
8
2
8
3
8
4
8
5
8
6
8
7
8
8
8
9
9
0
9
1
9
2
9
3
9
4
9
5
9
6
9
7
9
8
9
9

10
0

Ti
m

e
 (

s)

Test Number

Test Case 1218

Crypto2

Crypto3

Glucose

Lingling

Riss

Zenn

Minisat

Doug

Figure 3.: AES Stability Case 31

3.2.5 Test 3: R=C=2 , R=4,C=2 and R=C=4

Table 3.3 shows the results of the third test, which contains 16 cases. The maximum length of clauses
remained 4 as in the previous two tests. In this table the best values are shown in green whereas the worst
values are shown in red. The blue color is used to highlights the values of the second best sat solver as
blocks.

In the test cases 41 to 50 the number of rows R is set to 2 as well as the number of columns C. This
means that we now have 4 elements in the matrix. Furthermore, the underlying field E is set to 4. Only
the first two test cases are satisfiable. The other eight test cases are unsatisfiable.

We notice that Cryptominisat3 and Lingeling have a relatively bad performance as they require up to
70 seconds. On the other hand, Glucose , Minisat and Zenn are the fastest sat solvers and they require

26

Table 3.3.: AES Test 3: R=C=2 , R=4,C=2, R=C=4
I N R C E Minisat Cr3 Cr2 Ling Zenn Riss Gluc Doug #pr #cl=2 #cl=3 #cl=4 #cl Sat?

41 1 2 2 4 0.011 0.052 0.038 0.049 0.017 0.04 0.035 0.019 422 312 672 1360 2344 Yes
42 2 2 2 4 1.737 5.052 4.373 1.034 1.486 3.304 3.869 2.345 848 624 1312 2816 4752 Yes
43 3 2 2 4 10.08 20.22 6.63 11.7 8.048 8.484 10.856 10.492 1274 936 1952 4272 7160 No
44 4 2 2 4 14.736 25.77 10.03 34.8 19.973 12.828 12.876 11.692 1700 1248 2592 5728 9568 No
45 5 2 2 4 13.008 36.06 11.49 21.1 15.233 14.648 14.460 10.824 2126 1560 3232 7184 11976 No
46 6 2 2 4 15.773 30.05 20.09 40.0 16.533 20.989 15.213 16.613 2552 1872 3872 7184 14384 No
47 7 2 2 4 17.03 34.48 26.67 34.8 23.03 21.58 17.69 20.05 2978 2184 4512 10096 16792 No
48 8 2 2 4 23.645 30.6 16.04 69.8 22.889 21.797 20.037 25.501 3404 2496 5152 11552 19200 No
49 9 2 2 4 53.955 39.81 63.28 74.3 41.722 20.241 21.041 46.130 3830 2808 5792 13008 21680 No
50 10 2 2 4 50.383 34.33 71.92 67.2 67.236 22.253 24.109 84.393 4256 3120 6432 14464 24016 No
51 1 2 2 8 145.06 260.65 87.55 214.5 27.71 36.124 124.53 242.61 2378 972 1768 13136 15876 Yes
52 2 2 2 8 10.43h 41.48h 179.13h 6.35h 9.91h 1.34h 7.56h 72.94h 4756 1944 3408 26528 31880 Yes
53 1 4 2 4 15.98 10.047 5.266 9.88 1.181 0.625 2.183 0.06 948 624 1408 3424 5456 Yes
54 2 4 2 4 1.38h 1.62h 0.72h 1.19h 0.51h 0.54 1.6h 0.4h 1896 1248 2688 7104 11040 Yes
55 1 4 2 8 - - - - - 33.17h - - 5076 1944 3536 28832 34312 Yes
56 1 4 4 4 4.1h 5.92h 8.17h 1.68h 19.54h 4.24h >1 week 2.46h 1716 1072 2496 6368 9936 Yes

less than 25 seconds. When considering these 10 cases, Cryptominsat3 was at the last place (8 times) and
then Lingeling (7 times).

Based on the data of these 10 test cases we derive the following relations between number of rounds and
the number of variables and the number of clauses of a given length.

• number of variables = 422 + 426 * (number of rounds - 1)

• number of clauses length 2 = 312 * number of rounds

• number of clauses length 3 = 672 + 640 * (number of rounds - 1)

• number of clauses length 4 = 1360 + 1456 (number of rounds - 1)

• number of total clauses = 2344 + 2408 * (number of rounds -1)

In the test cases 51 and 52 E is equal to 8. Based on the result data it is recommended to use Riss3g.
Minisat−Static and Cryptominisat2 are not recommended.

We also run test cases with N=3, R=C=2, and E=8. However, after 10 days, all sat solvers were unable
to deliver a result.

In the test cases 53 and 54 E=4 , R=4 , C= 2. This means that we now have eight elements to be en-
crypted by AES. We notice that Minisat-Static is the fastest sat solver whereas Minisat and Cryptominisat3
have the worst performance.

In test case 55 E is set to 8. Only Riss3g was able to solve the equation system. It took 33 hours for
delivering a solution. All other sat solvers were not able to deliver a result within 1 week.

We also run test cases with N=2, R=4, C=2, and E=8. However, after 10 days, all sat solvers were
unable to deliver a result.

In the last test case N=1 and R=C=E=4 Lingeling was the fastest solver and it delivered a solution in
1,68 hour followed by Minisat-Static that delivered a solution in 2,46 hours. Even after 10 days Glucose
was not able to deliver a solution.

27

We also run test cases with N=1, R=C=4, and E=8. Even after 14 days, all sat solvers were unable to
deliver a result.

Based on these results we can state that AES (N=10, R=C=4, E=8) is unbreakable with the state of
art computing resources.

3.2.6 Stability Cases 42 and 53

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

4.25

4.5

4.75

5

5.25

5.5

5.75

6

1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
14 15 16 17 18 1
9
2
0
2
1
22 23 24 25 26 2
7
2
8
2
9
3
0
31 32 33 34 35 3
6
3
7
3
8
39 40 41 42 43 4
4
4
5
4
6
4
7
48 49 50 51 52 5
3
5
4
5
5
56 57 58 59 60 6
1
6
2
6
3
6
4
65 66 67 68 69 7
0
7
1
7
2
73 74 75 76 77 7
8
7
9
8
0
8
1
82 83 84 85 86 8
7
8
8
8
9
90 91 92 93 94 9
5
9
6
9
7
9
8
99
10
0

Ti
m

e
 (

s)

Test Number

Test Case 2224

Crypto2

Crypto3

Glucose

Lingling

Riss

Zenn

Minisat

Doug

Figure 4.: AES Stability Case 42

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9
3
0
3
1
3
2
3
3
3
4
3
5
3
6
3
7
3
8
3
9
4
0
4
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
4
9
5
0
5
1
5
2
5
3
5
4
5
5
5
6
5
7
5
8
5
9
6
0
6
1
6
2
6
3
6
4
6
5
6
6
6
7
6
8
6
9
7
0
7
1
7
2
7
3
7
4
7
5
7
6
7
7
7
8
7
9
8
0
8
1
8
2
8
3
8
4
8
5
8
6
8
7
8
8
8
9
9
0
9
1
9
2
9
3
9
4
9
5
9
6
9
7
9
8
9
9

10
0

Ti
m

e
(s

)

Test Number

Test Case 1424

Crypto2

Crypto3

Glucose

Lingling

Riss

Zenn

Minisat

Doug

Figure 5.: AES Stability Case 53

28

Figure 4 shows the stability curve of the used eight sat solvers when R=C=N=2 and E=4. This figure
shows that Minisat is very unstable as already shown in Figures 2 and 3. The curve shows that Lingeling
and Zenn are quite stable.

Figure 5 shows the stability curve of the used eight sat solvers when N=1,R=4,C=2 and E=4. As usual,
Minisat is very unstable whereas all other seven sat solvers are stable. Furthermore, for delivering the same
solution Minisat may take up to 85 seconds, Lingeling may take up to 10 seconds, and the other deliver a
result in less than 5 seconds.

29

4 Light Encryption Device (LED)

In this chapter, we first report on the different programs and scripts that were developed to perform the
tests of the LED block cipher. Then, we present the results of these tests using several tables and we
discuss these results. Finally some curves are presented, which show graphically the stability of the eight
different sat solvers that were used.

4.1 Tools for LED Tests

As for the AES and CSA tests we had to write several programs to automate and support the LED tests.
For the LED equation generator we reused the code developed in the context of Julian Wälde bachelor

thesis [23] with some minor modifications to the method getPolynomialSystem as shown in Listing 4.1.

r = in t (sys . argv [1])
key = random . rand int (0 ,1<<64)
p = random . randint (0 ,1<<64)
c = encrypt (p , key , rounds=r)
i f i n t (sys . argv [3]) != 0 :
key = random . rand int (0 ,1<<64)

system = getPolynomialSystem (p , c , r , key , i n t (sys . argv [2]))
s o l v e r = an f2cn f . ANFSatSolver (R, 6)
pr int (s o l v e r . cn f (system))

Listing 4.1: Changes to the LED Equation generator

In addition, we used the eight bash scripts to run the experiments 100 times as in the previous two
chapters. Furthermore, we used the java class ClauseCounter to get the length of each clause and the java
class Javerage to get the average time taken by each sat solver.

4.2 Tests and Results

In this section, we present the results of the tests that were conducted on the LED block cipher. In each
subsection we vary the number of rounds R (from 1 to 48), the number of guessed bits (60 to 0) as well
as the value of truly or randomly guessing bits G (which can be either 0 or 1). The results of all tests are
shown in five tables, which all have the following column structure.

Columns 1 to 3 respectively show the number of rounds R, the number of guessed bits N, and if the
guessing was correct or randomly. Columns 4 to 11 show the time in seconds that is taken by the respective
solver for each test case. Column 12 shows the complexity of the equation system based on the number of
guessed bits multiplied by the least needed time amount for the test case. Column 13 states if the equation
system is satisfiable or not. Column 14 (#v ars) shows the number of variables used to solve the equation
system. Column 15 shows the total number of clauses. Columns 16 to 20 show respectively the number

31

of clauses with length 1, 2,3,4,5 and 6. In this table the best values are shown in green whereas the worst
values are shown in red.

4.2.1 Test 1: R =1

Table 4.1 shows the results of this test, which contains 13 test cases. The number of rounds R was fixed
to 1 whereas the number of guessed bits N varies from 0 to 48 and the value of the correct guessing G is
either 0 (in the first 6 cases) or 1 (in the last 7 cases). All sat solvers were able to solve the first round
fully.

Table 4.1.: LED Test 1: R=1
I R N G Mini Cr3 Cr2 Li Ze Glu doug Riss C S? #pr #cl l1 l2 l3 l4 l5 l6
1 1 48 0 0.06 0.05 0.03 0.003 0.06 0.09 0.03 0.03 240 Y 1514 19266 176 1906 360 760 2176 13888
2 1 32 0 0.06 0.044 0.045 0.021 0.063 0.093 0.011 0.019 225 Y 1514 19250 160 1906 360 760 2176 13888
3 1 16 0 0.065 0.076 0.005 0.029 0.068 0.096 0.014 0.02 28 Y 1514 19234 144 1906 360 760 2176 13888
4 1 4 0 2.268 2.522 3.726 10.4 3.516 8.295 10.91 1.657 25 Y 1514 19222 132 1906 360 760 2176 13888
5 1 1 0 3.81 6.95 134.27 5.362 0.414 1.611 6.685 0.702 -2.5 Y 1514 19219 129 1906 360 760 2176 13888
6 1 0 0 53.77 48.59 76.54 31.075 33.76 36.74 54.71 33.5 31 Y 1514 19218 128 1906 360 760 2176 13888
7 1 48 1 0.02 0.03 0.02 0.001 0.017 0.03 0.02 0.03 238 N 1514 19282 192 1906 360 760 2176 13888
8 1 8 1 1.39 1.54 0.83 3.0 1.57 1.15 1.1 1.35 212.5 N 1514 19226 136 1906 360 760 2176 13888
9 1 4 1 23.35 14.11 16.7 11.1 16.67 15.07 35.17 27.5 177.6 N 1514 19222 132 1906 360 760 2176 13888
10 1 3 1 21.25 24.16 17.25 26.8 24.8 25 36.9 10.67 85.36 N 1514 19221 131 1906 360 760 2176 13888
11 1 2 1 2.3 10.61 76.4 5.2 36.4 1.66 10.11 34 6.64 Y 1514 19220 130 1906 360 760 2176 13888
12 1 1 1 38.81 62.81 175.02 77.2 27.41 81.7 49 9.2 54.8 Y 1514 19219 129 1906 360 760 2176 13888
13 1 0 1 2.24 0.41 4.26 42.7 17.83 111 60 51 0.41 Y 1514 19218 128 1906 360 760 2176 13888

The first 6 test cases were always satisfiable by all used sat solvers. Based on the time required by each
sat solver we recommend using Lingeling and Riss3g, which were the fastest sat solver to solve the problem.
In contrast, Glucose and Cryptominisat2 were the slowest sat solvers and therefore we recommend avoiding
them in situations such as those in test cases 1 to 6.

In the last 6 cases guessing was done randomly (G=1). The first four cases were unsatisfiable, which
can be explained by the high number of randomly guessed bit. The last three cases were satisfiable, which
can be explained by the small number of guessed bits (0 to 2). Based on this we recommend to guess at
most 2 bits of the key randomly in order to get a satisfiable system.

In the last 6 test cases, the slowest sat solvers are Cryptominisat2 and Minisat Static. In contrast, Riss3g
and Minisat are the fastest ones.

Concerning the length of clauses, we noticed that only the number of clauses with length 1 changes in
each iteration. For example, in the first test case N is equal to 48 and in the second case N is equal to
32. The difference in the total number of clauses (column 16) between the values for these two cases is
equal to 16. This rule applies in all five tables. However, the number of clauses with length 2, 3,4,5,6 and
the number of variables do not change. Concerning the complexity which in presented in Column 11, it is
rather constant Θ(1) (in the last 6 cases).

All eight used sat solvers were able to solve the first round fully (i.e., the number of guessed bits equals
zero).

32

4.2.2 Stability Case 1160

Figure 6 shows the stability curve of the used eight sat solvers when R=1, N=16 and G=0. This figure
shows that Glucose is very unstable whereas Lingeling is quite stable.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

Ti
m

e
 (

s)

Test Number

LED Case 1160

Crypto2

Crypto3

Glucose

Lingling

Riss

Zenn

Minisat

Doug

Figure 6.: LED Stability Case 1160

In the next test, we increment the number of rounds to 2 and repeat the same tests.

4.2.3 Test 2: R=2

Table 4.2 shows the results of this second test, which contains 9 test cases. The number of rounds R was
fixed to 2 whereas the number of guessed bits N varies from 12 to 48 and the value of the correct guessing
G is either 0 (in the first 5 cases) or 1 (in the last 4 cases). All eight sat solvers were not able to solve fully
this round (N=0).

Table 4.2.: LED Test 2: R=2
I R N G Mini Cr3 Cr2 Li Ze Glu doug Riss C S? #pr #cl l1 l2 l3 l4 l5 l6
1 2 48 0 0.6 1.46 0.95 0.32 0.61 0.84 0.11 0.13 241 Y 7939 147034 176 9466 880 3152 3472 129888
2 2 32 0 1.085 4.134 1.9 2.6 1.45 1.88 1.19 1.01 232 Y 7939 147018 160 9466 880 3152 3472 129888
3 2 28 0 1.43 6.75 2.13 11.9 4.49 1.15 1.15 2.54 228 Y 7939 147014 156 9466 880 3152 3472 129888
4 2 16 0 217.5 946.7 217.5 219.1 1436.2 258.4 1458.6 193 223 Y 7939 147002 144 9466 880 3152 3472 129888
5 2 12 0 4.18h 11.36h 8.75h 6.2h 4.05h 2.11h 1.88h 2.82h 225 Y 7939 146998 140 9466 880 3152 3472 129888
6 2 48 1 0.6 1.15 0.85 0.32 0.62 0.92 0.08 0.12 244 N 7939 147034 176 9466 880 3152 3472 129888
7 2 32 1 2.75 7.21 4.28 6 3.04 3.46 2.15 3.23 233 N 7939 147018 160 9466 880 3152 3472 129888
8 2 16 1 619.5 0.55h 240.6 0.33h 582 266 0.74h 312 224 N 7939 147002 144 9466 880 3152 3472 129888
9 2 15 1 7.56h 5.69h - 2.71h 4.3h - 7.9h 8.55h 228 N 7939 147001 143 9466 880 3152 3472 129888

The first 5 cases are satisfiable. We used the strategy bottom down, which means that we start with
guessing 64 bits and then decrease at each case the number of guessed bits till the sat solver is unable to

33

solve the problem within 1 week. The minimal number of guessing bits is equal to 12, i.e., a solution was
found when guessing 12 bits in 2 to 11 hours.

Based on the results of the first 5 cases it is recommended to use Riss3g and Minisat static, which were
the fastest when R=2 and G=0. In addition, one should avoid using Cryptominisat3 and Cryptominisat2
due to their bad performance.

The last 4 test cases were not satisfiable, which can be explained by the high number of randomly guessed
bits). We tried the case R=2,N=0,G=1 but even after 2 weeks the eight sat solvers were not able to deliver
a result. Based on that we recommended using Minisat static or Lingeling and avoiding Cryoptominisat3
. In addition, it is noteworthy that Cryptominisat2 and Glucose were not able to solve the last case.

We notice also that the complexity in the last 4 test cases is very big 232, which may explain why we
are not able to solve round 2 fully. Concerning the number of parameters and clauses, the rules mentioned
for Table 4.1 are still true.

We also run test cases with R=2, N=0, and G=0. However, after 14 days, all sat solvers were unable to
deliver a result.

Next, we will increment number of rounds to 3.

4.2.4 Test 3: R=3

Table 4.3 shows the results of this third test, which contains 9 test cases. The number of rounds R was
fixed to 3 whereas the number of guessed bits N varies from 32 to 56 and the value of the correct guessing
G is either 0 (in the first 5 cases) or 1 (in the last 4 cases).

Table 4.3.: LED Test 3: R=3
I R N G Mini Cr3 Cr2 Li Ze Glu doug Riss C S? #pr #cl l1 l2 l3 l4 l5 l6
1 3 56 0 1.23 3.64 1.6 0.6 1.27 1.66 0.22 0.25 252 Y 14365 274826 184 17030 1404 5520 4768 245920
2 3 48 0 6.52 11.47 4.32 27.01 7.24 23.4 4.442 3.03 249 Y 14365 274818 176 17030 1404 5520 4768 245920
3 3 40 0 127.35 301.53 101.24 359.3 194 186.05 136.7 235.6 247 Y 14365 274810 168 17030 1404 5520 4768 245920
4 3 36 0 2824.9 2170.6 493.7 2213.2 433.8 546.7 959.7 2822.5 245 Y 14365 274806 164 17030 1404 5520 4768 245920
5 3 32 0 3.73h 6.74h 5.04h 11.87h 2.07h 8.67h 1.19h 1.72h 244 Y 14365 274802 160 17030 1404 5520 4768 245920
6 3 56 1 1.24 3.64 1.72 1.4 1.28 1.74 0.22 0.34 254 N 14365 274826 184 17030 1404 5520 4768 245920
7 3 48 1 13.71 64.9 25.13 49.1 22.9 37.4 17.6 33.6 252 N 14365 274818 176 17030 1404 5520 4768 245920
8 3 36 1 1.47h 3.45h 0.16h 0.57h 1.21h 0.67h 2.67h 0.44h 245 N 14365 274806 164 17030 1404 5520 4768 245920
9 3 34 1 4.4h 2.06h 0.82h 1.37h 1.16h 2.05h 8.65h 1.85h 246 N 14365 274804 162 17030 1404 5520 4768 245920

The 5 first test cases were satisfiable due to the high number of correctly guessed bits. On the other
hand, the last 4 test cases were unsatisfiable due to the high number of randomly guessed bits. In addition,
we notice that Cryptominisat2, Minisat Static and Riss3g are the fastest sat solvers whereas Lingeling and
Glucose are the slowest ones. Concerning the complexity, when the number of guessing bits is too high,
the complexity is huge Θ(2n). For example, when N equals to 56 the complexity is 252.

The last 4 test cases are all unsatisfiable. Cryptominisat3 is the slowest one. Based on that, we suggest
using Cryptominisat2 and Riss3g. The same rule for complexity is still applicable: When the number of
guessed bits is huge, the complexity is very big. Nevertheless, it is noteworthy that when N is set to 0 or
1 the sat solvers need more than one month to find the solution.

34

In this test we were able to guess half of the key bits and find a solution for the formula. In fact, in test
case 5, we guessed 32 bits out of 64 bits of the key. Compared to the previous test, in which we guessed
only 12 bits to find a solution (cf. test case 5 in Section 4.2.3).

We also run test cases with R=3, N=0, and G=0. However, even after 14 days all sat solvers were
still unable to deliver a result. Hence, round 3 of CSA is not fully breakable with the currently available
computing resources.

Next, we increment the number of rounds to 4 and 5 because the number of rounds increases and
therefore it is difficult to find solution. In fact, we were not able to fully solve rounds 2 and 3. Therefore,
it is unlikely that rounds 4 and 5 can be broken fully.

4.2.5 Stability Case 3400

Figure 7 shows the stability curve of the used eight sat solvers when R=3, N=34 and G=0. This figure
shows that Riss3g is quite stable. On the other hand Lingeling is not stable any more. Also the other six
sat solvers are not stable.

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

Ti
m

e
 (

s)

Test Number

LED Case 3400

Crypto2

Crypto3

Glucose

Lingling

Riss

Zenn

Minisat

Doug

Figure 7.: LED Stability Case 3400

35

4.2.6 Test 4: R= 4 and R=5

Table 4.4 shows the results of this test, which contains 15 test cases. The number of rounds R was fixed
to 4 and then 5 whereas the number of guessed bits R varies from 44 to 56 and the value of the correct
guessing G is either 0 (in the first 4 cases and in cases 9 to 12) or 1 (in the cases 5 to 8 and in the last 3
cases).

Table 4.4.: LED Test 4: R=4 and R=5
I R N G Mini Cr3 Cr2 Li Ze Glu doug Riss C S? #pr #cl l1 l2 l3 l4 l5 l6
1 4 56 0 24.5 15.83 3.17 17.7 19.23 15.36 4.38 7.7 258 Y 20786 402436 184 24596 1928 7888 6048 361792
2 4 52 0 68.38 56.74 7.22 64.5 12.73 23.21 119.05 12.51 255 Y 20786 402432 180 24596 1928 7888 6048 361792
3 4 48 0 433.5 569.4 199 325.2 93.25 442.5 2121.3 306.84 255 Y 20786 402428 176 24596 1928 7888 6048 361792
4 4 44 0 1.54h 6.04h 4.15h 2.33h 0.65h 2.02h 3.13h 4.56h 255 Y 20786 402424 172 24596 1928 7888 6048 361792
5 4 56 1 8.18 15.23 3.95 6 9.11 14.2 18.41 3.4 258 N 20786 402436 184 24596 1928 7888 6048 361792
6 4 48 1 522 638 197 357 638 320 3456 379 255 N 20786 402428 176 24596 1928 7888 6048 361792
7 4 46 1 807.6 2543.2 1081.4 20255 1838 2534.6 4863.7 2297 256 N 20786 402426 174 24596 1928 7888 6048 361792
8 4 44 1 - - 2.3 8.01h - - - 21.75h 257 N 20786 402424 172 24596 1928 7888 6048 361792
9 5 56 0 53.78 26.66 10.7 2.8 89.34 20.16 25.27 20.1 257 Y 36707 664415 184 49388 3299 15448 7424 588672
10 5 52 0 49.79 152.4 28.79 385.8 280.24 92.59 119.2 187.5 257 Y 36707 664411 180 49388 3299 15448 7424 588672
11 5 48 0 205.3 598.3 88.5 1142.7 142.48 546.7 661.1 234.7 254 Y 36707 664407 176 49388 3299 15448 7424 588672
12 5 44 0 2.59h 9.03h 6.08h 1.57h 2.23h 7.84h 3.4h 9.77h 256 Y 36707 664403 172 49388 3299 15448 7424 588672
13 5 56 1 30.89 32.62 7.77 154.2 35.86 11.14 489.9 38.24 259 N 36707 664415 184 49388 3299 15448 7424 588672
14 5 48 1 0.19h 0.55h 0.2h 0.47h 0.29h 0.38h 3.05h 0.39h 257 N 36707 664407 176 49388 3299 15448 7424 588672
15 5 46 1 0.91h 3.05h 1.27h 1.26h 11.74h 1.31h 0.97h 2.01h 258 N 36707 664405 174 49388 3299 15448 7424 588672

When R equals to 4 the first 4 test cases were satisfiabe and the next four cases (cases 5 to 8) were unsat-
isfiable. Based on the results, when G = 0 we recommend using Zenn and Cryptominisat2 . Cryptominisat3
and Minisat static were the slowest sat solver and therefore it should be avoided.

In the test cases 5 to 8, the guessing was done randomly and this could explain why the equation system
was unsatisfiale for all sat solvers. In test case 8, only Cryptominisat2 (2,3h), Lingeling(8h), and Riss3g
(21h) were able to deliver a solution in less than a day. The other solvers were not able to deliver a result
even after one week. In these test cases Cryptominisat2 is still the fastest sat solver and Cryptominisat3
and Minisat static are still the slowest one.

When R equals to 5, we notice that Lingeling and Cryptominisat2 are the fastest sat solvers in the test
cases 9 to 12. On the other hand, the guessing was done randomly in the test cases 13 to 15 and in these
cases Minisat static was the worst sat solver.

Concerning complexity the same rules as in Test 2 and Test 3 is still true. When looking globally at
table 4.4, we notice that Lingeling and Cryptominsiat2 are the fastest sat solvers whereas Cryptominsiat3
is the slowest one.

Next, we summarize the results for 5 test cases in which R varies from 6 to 10 in Table 4.5.

36

4.2.7 Test 5: R= 6 to 10

Table 4.5 shows the results of this test, which contains 30 test cases. The number of rounds R varies from
6 to 10 whereas the number of guessed bits N varies from 44 to 58 and the value of the correct guessing G
is either 0 or 1.

Table 4.5.: LED Test 5: R= 6 to 10
I R N GMini Cr3 Cr2 Li Ze Glu doug Riss C S?#pr #cl l1 l2 l3 l4 l5 l6
1 6 560 35.13 325.2310.88 449.5 59.4 17.73 60.83 6.85 259 Y 43145792567 18456948 3835178248688 705088
2 6 500 138.04335.77202.151273.58190.36120.817110.95 424.35257 Y 43145792561 17856948 3835178248688 705088
3 6 440 31.34h44.34h4.89h 9.08h 4.07h 8.57h 11.91h 29.54h258 Y 43145792555 17256948 3835178248688 705088
4 6 561 62.14 295.7 24.55 149.8 82.32 42.07 41.03 37.76 261 N 43145792567 18456948 3835178248688 705088
5 6 541 125.24538.2746.1 468.5 100.2495.31 118.3 72.03 260 N 43145792565 18256948 3835178248688 705088
6 6 471 2.34h 2.45h 0.64h 4.27h 1.66h 1.3h 3.96h 1.34h 258 N 43145792558 17556948 3835178248688 705088
7 7 570 26.4 114.5 16.57 45.3 17.31 21.05 0.83 73.79 257 Y 49575920502 18564506 4355202249984 821248
8 7 520 6.97 172.41140.77166.7 7.1 135.95 190.54 60.35 255 Y 49575920497 18064506 4355202249984 821248
9 7 460 1.97h 6.33h 2.16h 4.78h 0.96h 0.17h 0.73h 2.44h 255 Y 49575920491 17464506 4355202249984 821248
107 571 41.98 277 65.6 64 50.85 84.73 37.9 7.13 260 N 49575920502 18564506 4355202249984 821248
117 531 116.25210.9674.89 1105 171.07165.14 2405 130.1 259 N 49575920498 18164506 4355202249984 821248
127 471 1.73h 3.41h 1.1h 4.8h 1.64h 1.33h 1.9h 1.85h 259 N 49575920492 17564506 4355202249984 821248
138 570 6.51 80.51 30.24 77.9 7.59 38.53 14.46 1.04 257 Y 56002104831418572066 48792262411248937312
148 540 37.62 372.7467.62 238.6 42.68 331.2 10.78 24.7 257 Y 56002104831118272066 48792262411248937312
158 460 0.74h 1.18h 1.11h 19.67h 0.05h 1.15h 0.60h 3.06h 253 Y 56002104830317472066 48792262411248937312
168 571 17.07 87.21 13.37 59.8 17.7 37.19 12.24 7.91 260 N 56002104831418572066 48792262411248937312
178 551 63.24 533.1840.07 390.5 58.05 59.07 43.37 67.51 260 N 56002104831218372066 48792262411248937312
188 471 13.38h3.45h 1.37h 16.45h 2.46h 1.86h 2.45h 2.34h 259 N 56002104830417572066 48792262411248937312
199 580 9.49 64.64 13.48 34.5 11.05 11.17 7.19 14.43 261 Y 71929131063418696848 625630160126081164576
209 550 49.22 203.0324.37 77.8 60.2 95.8 13.97 323.46259 Y 71929131063118396848 625630160126081164576
219 470 1.86h 3.79h 1.15h 7.22h 1.46h 3h 0.32h 3.08h 257 Y 71929131062317596848 625630160126081164576
229 581 16.43 73.36 12.37 33.1 16.72 37.07 6.75 6.43 261 N 71929131063418696848 625630160126081164576
239 551 112.29314.4140.82 258.9 128.7482.61 52.1 200.08260 N 71929131063118396848 625630160126081164576
249 471 21.62h4.53h 1.33h 16.1h 2.6h 2.83h 10.08h 3.15h 259 N 71929131062317596848 625630160126081164576
2510580 21.23 331.9 14.47 7.5 17.72 74.24 15.98 4.35 260 Y 783571438466186104412678832520138881280672
2610550 36.1 884.3 68.87 524.3 130.2328.91 33.89 35.73 260 Y 783571438463183104412678832520138881280672
2710470 1.87h 0.33h 0.47h 12.32h 3.47h 2.03h 0.08h 2.28h 255 Y 783571438455175104412678832520138881280672
2810581 12.45 64.21 23.5 25.6 13.47 17.01 5.11 5.4 260 N 783571438466186104412678832520138881280672
2910561 32.2 155.3644.29 173 37.83 221.62 108.41 100.47261 N 783571438464184104412678832520138881280672
3010471 4.03h 5.77h 1.98h 19.36h 2.81h 2.57h 3.7h 3.71h 260 N 783571438455175104412678832520138881280672

When looking at this table globally, we notice that Cryptominsat2, Lingeling and Minisat Static are the
fastest sat solvers whereas Cryptominisat3, Zenn and Glucose are the slowest ones.

The first three test cases (1 to 3) are satisfiable and following three test cases (4 and 6) are unsatisfiable.
In such cases (i.e., when R equals 6), we recommend using either Minisat Static or Cryptominisat2. The
sat solvers Cryptominisat3 and Lingeling should be avoided in these cases.

In the test cases 7 to 12 R is equal to 7. The table shows that 3 test cases were satisfiable (when G=0)
and 3 were unsatisfiable (when G=1). Based on the results,we notice that Cryptominisat2 stilles the best
solver and we suggest avoiding cryptominisat3 and Minisat static.

37

In the test cases 13 to 18 R is equal to 8. As in the cases 7 to 12, three test cases were satisifable
(when G=0) and three test cases were not satisfiable. The tables shows that Cryptominisat3 (presented
with color Red) is the slowliest sat solver . Based on the results we recommend using Minisat Static and
cryptominisat2.

In the test cases 19 to 24 R is equal to 9. As in the cases 13 to 15, three test cases were satisifable (when
G=0) and three test cases were not satisfiable. The same applies also for the test cases 25 to 30, in which
R is equal to 10. Based on the results of the test cases 19 to 30 Minisat Static is recommended as it is
the fastest sat solver whereas Cryptominisat2 and Ligneling should be avoided as they are the slowest sat
solvers.

Next, we summarize the results for 3 test cases in which R varies from 16 to 48 in Table 4.6.

4.2.8 Test 6: R= 16, 32 and 48

Table 4.6 shows the results of this test, which contains 18 cases. The number of rounds R was fix to 16, 32
then 48 whereas the number of guessed bits N varies from 46 to 60 and the value of the correct guessing
G is either 0 or 1 .

Table 4.6.: LED Test 6: R= 16, 32 and 48
I R N GMini Cr3 Cr2 Li Ze Glu doug Riss C S?#pr #cl l1 l2 l3 l4 l5 l6
1 16590 10.58 129.2 23.15 72.7 11.73 22.94 5.64 6.05 261Y 12641923400231871669981080651872 216802088480
2 16560 74.29 224.7362.41 78.1 76.83 170.6343.67 30.57 261Y 12641923400201841669981080651872 216802088480
3 16460 3.54h 10.36h1.82h 32.74h0.08h 10.27h3.44h 7.08h 254Y 12641923400101741669981080651872 216802088480
4 16591 17.29 122.6 29.43 140.7 16.49 26.1 7.43 6.47 262N 12641923400231871669981080651872 216802088480
5 16561 217.01706.61144.6 143.6 99.43 74.48 502.5 58.41 262N 12641923400201841669981080651872 216802088480
6 16471 6.76h 9.31h 6.58h 17.91h5.87h 4.71h 6.3h 4.66h 261N 12641923400111751669981080651872 216802088480
7 32600 27.72 193.6640 77.4 30.16 40.26 3.13 6.54 262Y 267256492365518835683422601110560427204390752
8 32560 204.5 550.4 163.2 361.7 176.07106.46160.2992.06 262Y 267256492365118435683422601110560427204390752
9 32480 1.99h 3.33h 0.38h 24.11h3.05h 3.76h 3.27h 0.42h 252Y 267256492364317635683422601110560427204390752
1032601 43.2 172 37.3 190.5 43.48 51.41 8.36 51.41 263N 267256492365518835683422601110560427204390752
1132561 315.9 832.7 237.01204 327.2 239.5 182.8 518 263N 267256492365118435683422601110560427204390752
1232501 5.19h 2.54h 1.45h 5h 2.08h 1.48h 1.92h 1.85h 262N 267256492364517835683422601110560427204390752
1348600 31.43 244.3 38 107.5 34.16 66.57 14.97 9.23 263Y 408046750623718854664634419169048640006691936
1448550 371.24918.02530.21466.8 484.7 261.1 282.3 63.9 261Y 408046750623218354664634419169048640006691936
1548500 2.61h 2.35h 0.44h 1.61h 0.12h 2.34h 3.66h 1.8h 259Y 408046750622717854664634419169048640006691936
1648601 48.54 328.8 33.72 42.6 48.65 61.39 12.42 18.3 264N 408046750623718854664634419169048640006691936
1748551 410.5 1253.2572.1 707.3 458.8 835.8 330.071417.1263N 408046750623218354664634419169048640006691936
1848501 7.56h 4.05h 2.97h 9.2h 2.94h 2h 6.21h 3.9h 263N 408046750622717854664634419169048640006691936

When looking at this table globally, we notice that Riss3g and Minisat Static are the fastest sat solvers
whereas Cryptominisat3 and Lingeling are the slowest ones.

The first three test cases (1 to 3) are satisfiable and following three test cases (4 and 6) are unsatisfiable.
In such cases (i.e., when R equals 16), we recommend using Minisat Static. The sat solvers Cryptominisat3
and Lingeling should be avoided in these cases.

38

In the test cases 7 to 12 R is equal to 32. The table shows that 3 test cases were satisfiable (when G=0)
and 3 were unsatisfiable (when G=1). Based on the results, we suggest using Minisat static and Riss3g
and avoiding Cryptominisat3. In the test cases 13 to 18 R is equal to 48. As in the cases 7 to 12, three
test cases were satisifable (when G=0) and three test cases were not satisfiable. Based on the results we
recommend using Minisat static and suggest avoiding Cryptominisat3

To sum up, we were able to solve fully the first round of LED and some of the other rounds (2 to 48) by
guessing an appropriate number of key bits. In round 48 we guessed 50 bits out of 64 and were able to solve
LED. Without guessing any bit breaking LED is impossible with the currently available hardware resources.

39

5 Common Scrambling Algorithm (CSA)

In this chapter, we first report on the different programs and scripts that were developed to support the
different tests of the CSA block cipher. Then, we present the results of these tests using several tables and
discuss these results. Finally some curves are presented, which show graphically the stability of the eight
different sat solvers that were used in the CSA tests.

5.1 Tools for CSA tests

Several programs were necessary to automate the CSA tests. First, a modified part of a sage class [23] will
be presented which generates the CNF file that acts as input for the sat solvers. Then we present another
sage class called converter, which transforms nonlinear equations to linear equations.

5.1.1 CSA Equation Generator

Listing 5.1 shows the source code of the modified SAGE class that was developed in the context of the
bachelor thesis of Julian Wälde [23] . We had to change the method encodelinear of that class so that
the generated file can be used by the eight sat solvers. The original version of that method works only
with the sat solver Cryptominisat2. Without this modification only Cryptominisat2 can read the CNF file
and the other seven sat solvers produce a syntax error message.

def encode l i n ea r (p) :
i f p . deg () != 1 : r a i s e ValueError (" polynomial must be o f degree 1 ")
i f l en (p) == 1 : #ra i s e ValueError (" po lynomia l must have l e n g t h > 1")

v = p . vars_as_monomial () . v a r i a b l e s () [0]
r = s t r (v . index ()+1)+ " 0 "
i f not p . has_constant_part () :

r = "−"+r
return r

var = l i s t (p . vars_as_monomial () . v a r i a b l e s ())
idx = [v . index ()+1 f o r v in var]
i f not p . has_constant_part () : #idx [−1] = −i d x [−1]

return " x "+("+x " . j o i n (map(lambda x : s t r (x) , idx)))
e l s e :

return " x "+("+x " . j o i n (map(lambda x : s t r (x) , idx)))+ "+1"

return p

Listing 5.1: CSA Equation generator

We modified only the method encodelinear so that nonlinear equations are converted to linear equa-
tions. Listing 5.2 shows as an example with a part of the generated file.

41

152 159 −151 150 −149 146 147 −145 0
−152 −159 151 −150 −148 −147 145 0
159 −151 149 148 146 147 −145 0
−152 −159 151 −150 149 −148 146 −145 0
x18+x65+x129
x57+x66+x130
x50+x67+x131
x8+x68+x132

Listing 5.2: Example CSA Output

.

5.1.2 Converter of Non-linear Equations to Linear Equations

An additional advantage of the modification to the function encodelinear is the reduction of the length
of clauses. In the original version the length of clauses can reach the value 30 and the file size can exceed
10 GB (e.g., in round 20). In our modified version the maximum length value is 9 and the maximum file
size is 2 MB (e.g, in round 20) . This is achieved by setting maxv arssparse to 2.

Listing 5.3 shows a simplified example showing the conversion of nonlinear equations to linear one. First,
a sufficient number of variables is declared so that the original names of variables does not change. In this
example, 10 variables are declared but this can be up to 40.000 variables. Then, all nonlinear equations
are added to a list L using the method append. After that, the CNF encoder is called once to operate on
the whole list L and the result is written to the output file result.txt.

B.<x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10> = BooleanPolynomialRing ()
from sage . sa t . c onve r t e r s . po l ybo r i import CNFEncoder
from sage . sa t . s o l v e r s . dimacs import DIMACS
fn = ’tmp . txt ’
nf = open (’ r e s u l t . txt ’ , ’w ’)
L = []
L . append (x1+x6+x2)
L . append (x5+x6+x8)
L . append (x5+x7+x4)
s o l v e r = DIMACS(f i l ename=fn)
e=CNFEncoder (so lve r , B, max_vars_sparse=2)
e (L)
s o l v e r . wr i t e (f i l ename=fn)
nf . wr i t e (open (fn) . read ())
nf . c l o s e

Listing 5.3: Converter

42

5.1.3 Other Tools

As in the previous chapter we used the bash scripts presented in Section for running a given test 100 times.
We also used the java classes Javerage and ClauseCounter for the same purposes.

5.2 Tests and Results: CSA round 1 to 20

In this section, we present the results of the tests that were conducted on the CSA block cipher. In these
test we vary the number of rounds R from 1 to 20.

Table 5.1 shows the results of this test, which contains 20 cases. Column 1 shows the number of rounds
R. Columns 2 to 9 show the time in seconds that is taken by the respective sat solver for each test case.
Column 10 states if the equation system was satisfiable or not. Column 11 shows the number of variables
used to solve the equation system. Column 12 shows the total number of clauses. Columns 13 to 21 show
respectively the number of clauses with the length 2,3,4,5,6,7,8 and 9.

In this table the best values are shown in green whereas the worst values are shown in red. The orange
color is used to highlights the values of the second slowest sat solvers as blocks.

Table 5.1.: CSA Test: Round 1 to 20
R Min CR3 CR2 Lin Zenn GLu Riss Doug S? #V #Cl l1 l2 l3 l4 l5 l6 l7 l8 l9
1 0.004 0.009 0.001 0.001 0.005 0.007 0.003 0.003 Y 112 1141 120 80 32 0 0 90 578 234 7
2 0.009 0.009 0.004 0.001 0.001 0.013 0.004 0.003 Y 128 2170 96 96 96 64 0 180 1156 468 14
3 0.013 0.012 0.004 0.001 0.014 0.02 0.004 0.003 Y 144 3271 96 32 160 256 0 270 1734 702 21
4 0.017 0.013 0.006 0.0015 0.018 0.026 0.004 0.003 Y 184 4548 96 48 192 192 384 360 2312 936 28
5 0.025 0.023 0.017 0.004 0.026 0.036 0.006 0.003 Y 216 5744 96 16 192 384 512 450 2890 1170 35
6 0.032 0.025 0.024 0.007 0.033 0.048 0.006 0.003 Y 264 7070 96 48 128 448 896 540 3468 1404 42
7 0.04 0.029 0.0374 0.011 0.04 0.06 0.009 0.006 Y 320 8587 96 80 128 256 1664 630 4046 1638 49
8 0.05 0.034 0.047 0.014 0.051 0.07 0.012 0.006 Y 376 10183 96 96 160 256 1792 1232 4624 1872 56
9 0.064 0.046 0.045 0.016 0.066 0.095 0.026 0.014 Y 416 11909 96 48 256 256 2048 1834 5202 2106 63
10 0.087 0.063 0.068 0.015 0.086 0.128 0.047 0.03 Y 456 13650 96 16 288 320 2304 2436 5780 2340 70
11 0.159 0.153 0.162 0.014 0.149 0.222 0.144 0.09 Y 512 15759 96 32 256 384 2432 3550 6358 2574 77
12 0.33 0.728 0.692 0.1 0.301 0.430 0.364 0.224 Y 568 17900 96 48 192 512 2560 4664 6936 2808 84
13 0.526 1.437 1.002 0.101 0.479 0.693 0.620 0.378 Y 616 19913 96 64 192 320 3072 5522 7514 3042 91
14 1.089 2.77 1.719 1.388 1.165 1.243 1.571 1.29 Y 680 22070 96 96 256 192 3072 6892 8092 3276 98
15 9.345 16.59 8.16 13.88 3.13 4.38 6.15 7.87 Y 736 24179 96 80 256 384 3072 8006 8670 3510 105
16 120.38 107.83 115.72 416.9 1.03h 2479.9 0.9h 29.4 Y 792 26368 96 80 256 384 3328 9120 9248 3744 112
17 54.9 585.42 0.36h 336.43 297.7 349.5 1.03h 0.4h Y 856 28717 96 80 288 384 3456 10490 9826 3978 119
18 0.125h 1.11h 0.97h 0.59h 1.9h 0.95h 5.05h 0.9h Y 920 31162 96 80 288 384 3712 11860 10404 4212 126
19 0.33h - 15.5h 6.63h 102.8h 18.64h 251.67h - Y 992 33670 96 112 256 448 3712 13486 10982 4446 133
20 - - 12.14h - 136.5h - - 22.6h Y 1064 36276 96 112 288 448 3840 15112 11560 4680 140

In the first 10 test cases, the eight sat solvers require less than 1 second to solve the equation system.
Lingeling (4 first cases) and Minisat static (cases 5 to 9) were the fastest sat solver and it immediately
tells that the system is satisfiable (in some milliseconds). On the other hand, Glucose and Zenn were the
slowest sat solver in these cases (results are presented with color read and orange) . In these test cases we
notice that the number of variables and the number of clauses did not increase a lot compared to the work
of [23], in which the number of clauses exceed 140000 in round 10. In our work the number of variables in
round 1 is 112 and the total number of clauses is 1141 whereas in round 10 the number of variables is 456
and the number of clauses is 13650.

43

In the test cases 11 to 15, we notice that Lingeling and Minisat static are the fastest sat solvers.
Based on that we recommend using these sat solvers in such situations. In contrast, the performance of
Cryptominisat2 and Cryptominisat3 was the worst. Therefore, both versions of Cryptominisat should be
avoided when the number of rounds is between 11 and 15. Furthermore, we noticed that the eight used
sat solvers require less than 17 seconds in round 15 to solve the CNF file, which is an encouraging sign to
try breaking bigger rounds.

In the test cases 16 to 19, Minisat was the fastest sat solver and Riss3g was the slowest one. For instance
in test case 18, Minisat took just 400 seconds for providing a solution whereas Riss3g took 5 hours for
solving the same system. In test case 19, Cryptominisat3 and Minisat static were not able to deliver a
result within 1 week while Zenn required 4 days. In Opposite, Minisat needed just 0.33 hour to solve the
equation system.

In test case20, we notice that Minisat was not able to solve the problem even within 2 weeks. This was
also the case for Cryptominisat3, Lingeling, Glucose and Riss3g. On the other hand Cryptominisat2 was
the fastest sat solver and it needs only 12 hours.

We also run test cases with R=21. However, even after 14 days, all sat solvers were unable to deliver a
result.

Based on the results presented above we derive the following consequences:

• It is recommended to use Lingeling or Minisat Static when number of rounds less than 14 . In these
cases Zenn, and Glucose should be avoided.

• It is recommended to use Minisat static, Minisat, or Cryptominisat2 when number of rounds bigger
than 14. Riss3g and cryptominisat3 should be avoided in such cases.

Like for the previous block cipher (AES), we derived some mathematical relations between the number
of variables and the length of clauses and the number of rounds as explained in the following:

• number of clauses length 1 = 92, if P > 1

• number of clauses length 7 = 578 * number of rounds.

• number of clauses length 8 = 234 * number of rounds

• number of clauses length 9 = 7 * number of rounds

Based on these results we can state that CSA (R=55) is unbreakable with the state of art computing
resources. In fact, we were able in our tests to solve only 20 rounds out of 55 and all 20 cases were
satisfiable.

5.3 Stability Cases 12 and 15

Figure 8 shows the stability curve of the used eight sat solvers when R=12. This figure shows that
Cryptominisat3 is very unstable. Furthermore, the curve shows that Lingeling is the most stable sat
solver.

Figure 9 shows the stability curve of the used eight sat solvers when R=15. The curve shows that Riss3g
and Zenn are the most stable sat solvers. Lingeling is unstable. Cryptominisat3 is very unstable as when
R=12.

44

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Ti
m

e
 (

s)

Test Number

Test Case R=12

Crypto2

Crypto3

Glucose

Lingling

Riss

Zenn

Minisat

Doug

Figure 8.: CSA Stability Case 12

0

2

4

6

8

10

12

14

16

18

20

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

Ti
m

e
 (

s)

Test Number

Test Case R=15

Crypto2

Crypto3

Glucose

Lingling

Riss

Zenn

Minisat

Doug

Figure 9.: CSA Stability Case 15

45

6 Conclusion and General Discussion

In this chapter first a summary of this work is given and then a general discussion is provided.

6.1 Summary

Block ciphers play an important role in the design of protocols for shared-key cryptography. Appropriate
tools are needed to test and assess the security level and the power of encryption mechanisms in general
such as block ciphers.

In this work we analyzed the security of three block ciphers using algebraic cryptanalysis. More specif-
ically we used eight of the best available sat solvers to study the security behavior of AES, LED, and
CSA. The choice of these sat solvers is motivated by their excellent performance at the international sat
competition1. Several tests have been performed for each block cipher. The results of these tests were
presented in the previous three chapters. Based on these results we give in the following recommendations
on the best sat solver for a given situation.

6.2 General Discussion and Recommendations

In the following, we first mention some general observations on the sat solvers. Then, we give some
recommendations based on this work.

It is noteworthy that Minisat and Minisat Static do not provide a concrete solution when the system is
satisfiable. They just tell that it is satisfiable. The six other sat solvers display the solution at the end of
the generated file. Furthermore, we notice one limitation of Glucose regarding the size of the generated
output file, which exceeded 20 GB in some of our tests. Glucose does not provide a configuration option
to hinder printing out all possibilities that this sat solver tries until a result is found.

Based on the test results we suggest avoiding Minisat. In fact, Minisat is the parent of all other seven
sat solvers that we used. The rationale behind this is the unstability of this sat solver. As we saw in the
previous chapters Minisat can solve a given test case in 10 minutes. Later, it can require one hour for the
same test case. In contrast, the seven other sat solvers were always stable during the different experiments.

In general, we recommend using either Zenn or Minisat Static when the polynomial systems are small and
very sparse. The good performance of Zenn in such a case can be explained by the fact that Zenn employs
a technique called phase shift, which integrates different search methods. As the system is small, the result
can be found quickly. On the other hand the good performance of Minisat static can be explained by the
used reduction technique which simplifies the initial formula by fixing truth assignments. In contrast, we
suggest avoiding Cryptominisat3 when the polynomial systems are small and very sparse.

1 http://www.satcompetition.org/

47

Furthermore, we recommend using Cryptominisat2 when the systems are big and dense. The good
performance of Cryptominisat2 in such cases can be explained by the usage of clause cleaning and the
DPLL algorithm. In contrast we suggest in such cases avoiding Cryptominisat3 - which should be actually
an improvement of Cryptominisat2 - but our experiments show that the performance of Cryptominisat3 is
worse than that of Cryptominisat2.

In cases where the number of variables in the polynomial system is bigger than 43000, we recommend
not using Cryptominisat3 and Lingeling. In such cases, it is better to use Riss3g or Minisat Static. In cases
where number of variable is less than 1000, we recommend avoiding Cryptominisat3. Instead, we suggest
using Minisat Static.

When the maximum length of clauses is less than 5, we recommend avoiding Cryptominisat3. Instead,
Riss3g should be used. When the maximum length of clauses is between 5 and 7, Cryptominisat3 should
be avoided as before. Instead, Minisat Static and Riss3g should be chosen. When the maximum length of
clauses is bigger than 7, both Glucose and Cryptominisat3 have to be avoided. In such a case, Riss3g and
Minisat Static are the best alternatives.

To sum up, Minisat Static can be considered as the most suitable sat solver in general. Despite that it
does not provide the concrete solution, it is very efficient and fast. In the second place, we recommend
Riss3g, which enumerates all solutions of the input formula in addition to being fast and efficient. On the
other hand Cryptominisat3 has the worst performance and should therefore be avoided.

The most important results of this work can be summarized as follows: With respect to AES, we were
able to break a small scale variant of the AES polynomial system namely (1, 4, 4, 4). With respect to LED,
we were able to break the first round fully and some rounds by guessing a specific number of bits of the
Key. With regard to CSA, we were able to break 20 rounds of totally 55 rounds. However, it is probably
possible to reach round 22 by guessing some bits of the key. This is definitely an interesting direction for
future research.

48

A Appendix

49

A.1 Java Class LingelingOutput

import java . i o . ∗ ;
import java . u t i l . ∗ ;
publ i c c l a s s Lingel ingOutput
{ publ i c s t a t i c void main (St r ing args [])

{
S t r ing th i sL in e ;
ArrayList<Str ing> l i n e s = new ArrayList () ;
i n t c =0;
i n t temp =0;
f o r (i n t i =0; i < args . l ength ; i++)
{

i n t k =0;
try
{
BufferedReader br =
new BufferedReader (new Fi leReader (args [i])) ;
while ((t h i sL in e = br . readLine ()) != nu l l)
{

l i n e s . add (th i sL in e) ;
i f (t h i sL i n e . s tartsWith (" s "))

temp=c ;
c++;

}
St r ing r e s u l t l i n e 1 = l i n e s . get (temp) ;

S t r ing r e s u l t l i n e 2 = l i n e s . get (l i n e s . s i z e ()−1);
S t r ing r e s u l t = r e s u l t l i n e 1 . s p l i t (" ") [1] ;
S t r ing time = r e s u l t l i n e 2 . s p l i t (" ") [1] ;
System . out . p r i n t l n (r e s u l t + " " + time) ;
}
catch (IOException e)
{

System . e r r . p r i n t l n (" Error : " + e) ;
}

}
}

}

Listing A.1: Java Class LingelingOutput

50

A.2 Java Class Javerage

import java . i o . ∗ ;
import java . u t i l . ∗ ;
publ i c c l a s s Javerage

{
publ i c s t a t i c void main (St r ing [] a rgs) throws FileNotFoundException{

i f (args . l ength == 0)
{

System . out . p r i n t l n (" Usage java jave rage f i l ename ") ;
return ;

}
S t r ing n = args [0] ;

F i l e f = new F i l e (n) ;
while (! f . e x i s t s ()) {

System . out . p r i n t (" Doesn ’ t e x i s t . Enter a va l i d f i l ename : ") ;
return ;

}
Scanner input = new Scanner (f) ;
double countDouble = 0 ;
double averageDouble = 0 ;
double sum = 0 ;
input . useLoca le (Loca le .US) ;
while (input . hasNext ()) {

i f (input . hasNextFloat ()) {
double next2 = input . nextDouble () ;
sum = sum + next2 ;
countDouble++;

}
e l s e

input . next () ;
}
averageDouble = sum/countDouble ;
System . out . p r i n t l n ("The r e s u l t s f o r the i n t e g e r s in the f i l e : ") ;
System . out . p r i n t f (" Count = %f \n " , countDouble) ;
System . out . p r i n t f (" average = %f \n " , averageDouble) ;

}
}

Listing A.2: Java Class Javerage

51

A.3 Java Class ClauseCounter

import java . i o . ∗ ;
import java . u t i l . ∗ ;
publ i c c l a s s ClauseCounter {

publ i c s t a t i c void main (St r ing args []) {
S t r ing th i sL in e ;
ArrayList<Str ing> l i n e s = new ArrayList () ;
i n t c , temp , k = 0 ;
i n t [] counter s = new in t [2 0] ;
f o r (i n t i = 0 ; i < args . l ength ; i++) {
try {
BufferedReader br = new BufferedReader (new Fi leReader (args [i])) ;
while ((t h i sL in e = br . readLine ()) != nu l l) {
i f (! t h i sL i n e . s tartsWith (" c ") && ! th i sL i n e . s tartsWith ("p "))

{
l i n e s . add (th i sL in e) ;
f o r (i n t l = 0 ; l < th i sL in e . l ength () ; l++)
{

i f (Character . t oS t r i ng (th i sL i n e . charAt (l))
. equa l s (" "))

c++;
}

counter s [c]++;
System . e r r . p r i n t l n (c) ;
c = 0 ;

}
}
f o r (i n t x = 0 ; x < counter s . l ength ; x++) {

System . out . p r i n t l n (" the re are " + counter s [x]
+ " Clauses with " + x + " Parameters ") ;

}
} catch (IOException e) {

System . e r r . p r i n t l n (" Error : " + e) ;
}
}
}

}

Listing A.3: Java Class ClauseCounter

52

Bibliography

[1] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern sat solvers. In
Proceedings of the 21st International Jont Conference on Artifical Intelligence (IJCAI), pages 399–
404. Morgan Kaufmann Publishers Inc., 2009.

[2] Gregory V. Bard. A challenging but feasible blockwise-adaptive chosen-plaintext attack on ssl. Cryp-
tology ePrint Archive, Report 2006/136, 2006. http://eprint.iacr.org/.

[3] Gregory V. Bard. Algebraic Cryptanalysis. Springer, 1st edition, 2009.

[4] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block chaining message
authentication code. Journal of Computer and System Sciences, 61(3):362 – 399, 2000.

[5] Armin Biere. Lingeling and friends entering the SAT challenge 2012. In SAT Competition 2012, pages
33–34, 2012.

[6] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

[7] Michael Brickenstein and Alexander Dreyer. Polybori: A framework for gröbner-basis computations
with boolean polynomials. J. Symb. Comput., 44(9):1326–1345, 2009.

[8] SAT 2013 Organizing Committee. Sat competition 2013, July 2013.

[9] The SAGE developement team. Sage mathematics software. http://www.sagemath.org/, May 2014.

[10] Adele Howe Doug Hains, Darell Whitely. Hyperplane guided minisat. In SAT Competition 2013, 2013.

[11] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In SAT Competition 2013, LNCS, pages
502–518, 2013.

[12] Tobias Eibach, Enrico Pilz, and Gunnar Völkel. Attacking bivium using sat solvers. In SAT Compe-
tition 2008, pages 63–76, May 2008.

[13] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability solvers. In Handbook
of Knowledge Representation, pages 89–134. Elsevier, 2008.

[14] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The LED block cipher. In Workshop
on Cryptographic Hardware and Embedded Systems (CHES 2011), volume 6917 of LNCS, pages 326–
341, September 2011.

[15] Philipp Jovanovic and Martin Kreuzer. Algebraic attacks using sat-solvers. Groups Complexity Cryp-
tology, 2(2):247–259, 2010.

53

[16] Wu Kehui, Wang Tao, Zhao Xinjie, and Liu Huiying. Cryptominisat solver based algebraic side-channel
attack on present. In Proceedings of the 2011 First International Conference on Instrumentation,
Measurement, Computer, Communication and Control, IMCCC ’11, pages 561–565, Washington, DC,
USA, 2011. IEEE Computer Society.

[17] Grzegorz Kondrak and Peter van Beek. A theoretical evaluation of selected backtracking algorithm.
Artificial Intelligence, 89(1–2):365 – 387, 1997.

[18] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In 22nd Annual
International Cryptology Conference (CRYPTO 2012), volume 2442 of LNCS, pages 31–46, August
2002.

[19] Nobert Manthey. The sat solver RISS3G at sc 2013. In SAT Competition 2013, July 2013.

[20] David A. McGrew. Impossible plaintext cryptanalysis and probable-plaintext collision attacks of 64-bit
block cipher modes. IACR Cryptology ePrint Archive, 2012:623, 2012.

[21] Mate Soos. Limits of sat solvers in cryptography, guest lecture at cased, July 2011.

[22] Takumi Okugawa Takeru Yasumoto. Zenn. In SAT Competition 2013, July 2013.

[23] Julian Wälde. Algebraic cryptanalysis of round reduced versions of CSA and the LED family of block
ciphers. Bachelor thesis, TU Darmstadt, January 2013.

[24] Ralf-Philipp Weinmann and Kai Wirt. Analysis of the DVB common scrambling algorithm. In Proc.
of the 8th IFIP TC-6 TC-11 Conference on Communications and Multimedia Security, volume 175,
New York, NY, September 2005. IFIP.

54

