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a b s t r a c t

The Bloom filter (BF) is a well-known randomized data structure that answers set member-
ship queries with some probability of false positives. In an attempt to solve many of the
limitations of current network architectures, some recent proposals rely on including small
BFs in packet headers for routing, security, accountability or other purposes that move
application states into the packets themselves. In this paper, we consider the design of such
in-packet Bloom filters (iBF). Our main contributions are exploring the design space and
the evaluation of a series of extensions (1) to increase the practicality and performance
of iBFs, (2) to enable false-negative-free element deletion, and (3) to provide security
enhancements. In addition to the theoretical estimates, extensive simulations of the multi-
ple design parameters and implementation alternatives validate the usefulness of the
extensions, providing for enhanced and novel iBF networking applications.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Since the seminal survey work by Broder and Mitzenm-
acher [1], the Bloom filter (BF) [2] has increasingly become
a fundamental data aggregation component to address
performance and scalability issues of very diverse network
applications, including overlay networks [3], data-centric
wireless networks [4], traffic monitoring, and so on. With
the caveat of one-sided errors, the use of Bloom filters
turns memory and computational expensive operations
into simple, resource-friendly set membership problems
(e.g. ‘‘is x 2 S?’’).

In this work, we focus on the subset of distributed net-
working applications that use packet-header-size Bloom
filters to share some state (i.e. information set S) among
. All rights reserved.
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network nodes. The specific state carried in the Bloom fil-
ter varies from application to application, ranging from se-
cure credentials [5,6] to IP prefixes [7] and link identifiers
[8], with the shared requirement of a fixed-size packet
header data structure to efficiently verify set memberships.
The commonality of recent inter-networking proposals
[5–10] is relying on Bloom filters to move application state
to the packets themselves in order to alleviate system bot-
tlenecks (e.g. IP multicast [7], source routing overhead [8]),
enable new in-network applications (e.g. security [5,6,9])
or stateless protocol designs [11].

We refer to the BF used in this type of applications as an
in-packet Bloom filter (iBF). In a way, an iBF follows a re-
verse approach compared to a traditional standalone BF
implementation: iBFs can be issued, queried, and modified
by multiple network entities at packet processing time.
These specific needs benefit from additional capabilities
like element removals or security enhancements. More-
over, careful design considerations are required to deal
with the potential effects of false positives, as every packet
header bit counts and the actual performance of the dis-
tributed system is a key goal.
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In this paper, we address common limitations of naive
iBF designs and provide a practical foundation for net-
working application designs requiring to solve set-mem-
bership problems on a packet basis (Section 3). Our main
contribution consists of assembling and evaluating a series
of practical extensions (i) to increase the system perfor-
mance, (ii) to enable false-negative-free element deletion,
and (iii) to provide security-enhanced constructs at wire
speed (Section 4). Via extensive simulation work, we ex-
plore the rich design space and provide a thorough evalu-
ation of the observed trade-offs (Section 5). Finally, we
relate our contributions to previous work on Bloom filter
designs and briefly discuss the applicability of the iBF
extensions to existing applications (Section 6).
2. Networking applications

iBFs are well suited for applications where one might
like to include a list of elements in every packet, but a
complete list requires too much space. In these situations,
a hash-based lossy representation, like a BF, can dramati-
cally reduce space, maintaining a fixed header size, at the
cost of introducing false positives when answering set-
membership queries. From its original higher layer
applications such as dictionaries, BFs have spanned their
application domain down to hardware implementations,
becoming a daily aid in network applications (e.g., routing
table lookups, DPI, etc.) and future information-oriented
networking proposals [12]. As a motivation to our work
and to get some practical examples of iBF usages, we first
briefly survey a series of networking applications with the
common theme of using small BFs carried in packets.

2.1. Data path security

The credential-based data path architecture [5] pro-
poses the following network router security feature. Dur-
ing the connection establishment phase, routers
authorize a new traffic flow request and issue a set of cre-
dentials (aka capabilities) compactly represented as bit
positions of a BF. The flow initiator constructs the creden-
tials by including all the router signatures into an iBF. Each
router along the path checks on packet arrival for presence
of its credentials, i.e., the k bits resulting from hashing the
packet 5-tuple IP flow identifier and the routers (secret)
identity. Hence, unauthorized traffic and flow security vio-
lations can be probabilistically avoided in a stateless, per
hop fashion. Using 128 bits only, for typical Internet path
lengths, the iBF-based authorization token reduces the
probability that attack traffic reaches its destination to a
fraction of a percent.

2.2. Wireless sensor networks

A typical attack by compromised sensor nodes consists of
injecting large quantities of bogus sensing reports, which, if
undetected, are forwarded to the data collector(s). The
statistical en-route filtering approach [6] proposes a detec-
tion method based on an iBF representation of the report
generation (collection of keyed message authentications),
that is verified probabilistically and dropped en-route in
case of incorrectness. The iBF-based solution uses 64 bits
only and is able to filter out 70% of the injected bogus reports
within 5 hops, and up to 90% within 10 hops along the paths
to the data sink.

2.3. IP traceback

The packet-marking IP traceback method proposed in
[9] relies on iBFs to trace an attack back to its approximate
source by analyzing a single packet. On packet arrival, rou-
ters insert their mark (IP mask) into the iBF, enabling a re-
ceiver to reconstruct probabilistically the packet path(s) by
testing for iBF presence of neighboring router addresses.

2.4. Loop prevention

In Icarus [10], a small iBF is initialized with 0s and then
filled as forwarding elements add their Bloomed interface
mask (setting k bits to 1). If the OR operation does not
change the iBF, then the packet might be looping and
should be dropped. If the Bloom filter changes, the packet
is definitely not looping.

2.5. IP multicast

Revisiting the case of IP multicast, the authors of [7]
propose inserting an iBF above the IP header to represent
domain-level paths of multicast packets. After discovering
the dissemination tree of a specific multicast group, the
source border router searches its inter-domain routing ta-
ble to find the prefixes of the group members. It then
builds an 800-bit shim header by inserting the path labels
(ASa: ASb) of the dissemination tree into the iBF. Routers
receiving the iBF check for presence of next hop autono-
mous systems and forward the packet accordingly.

2.6. Source routing & multicast

The LIPSIN [8] forwarding fabric leverages the idea of
having interface identifiers in BF-form (m-bit Link ID with
only k bits set to 1). A routing iBF can be constructed by
ORing the different Link IDs representing a source route.
Forwarding nodes maintain a small Link ID table whose en-
tries are checked for presence in the iBF to take the for-
warding decision. In a typical WAN topology and using
256-bit iBFs, multicast trees with around 40 links can be
constructed to reach up to 24 users while maintaining
the false positive rate (�3%) and the resulting forwarding
efficiency within reasonable performance levels.

3. Basic design

The basic notation of an iBF is equivalent to the stan-
dard BF, that is an array of length m, number of indepen-
dent hash functions k, and inserted elements n. On
insertion, the element is hashed to k hash values and the
corresponding bit positions are set to 1 (see example in
Fig. 1). On element check, if any of the bits determined
by the hash outputs is 0, we can be sure that the element



Fig. 1. Overview of the Bloom filter probabilistic data structure.
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was not inserted (no false negative property). If all the k
bits are set to 1, we have a probabilistic argument to be-
lieve that the element was actually inserted. The case of
collisions to bits set by other elements causing a non-in-
serted element to return ‘true’ is referred to as a false posi-
tive. In the example of Fig. 1, a false positive for w would be
returned if all three hashes would map to 1s.

For the sake of generality, we refer simply to elements as
the objects carried in the iBF. Depending on the applica-
tion, elements may take different forms such as interface
names, IP addresses, certificates, and so on. False positives
manifest themselves with different harmful effects such as
bandwidth waste, security risks, computational overhead,
etc. Thus, a system design goal is keeping false positives
to a minimum.

3.1. False positive estimates

The a priori false positive estimate, fpb, is the expected
false positive probability for a given set of parameters
(m,n,k) before actually adding the elements. Let
p = 1 � (1 � 1/m)kn be the probability that a particular bit
is set to 1. Then,

fpb ¼ ð1� ð1� 1=mÞknÞk: ð1Þ

The number k that minimizes the false positive probability
can be obtained by setting the partial derivative of fpb with
respect to k to 0. This is attained when k = m/n ln 2, and is
rounded to an integer to determine the optimal number of
hash functions to be used [1].

While Eq. (1) has been extensively used and experimen-
tally validated as a good approximation, for small values of
m the actual false positive rate is larger. Recently, Bose
et al. [13] have shown that fpb is actually only a lower
bound, and a more accurate estimate can be obtained by
formulating the problem as a balls-into-bins experiment:

pk;n;m ¼
1

mkðnþ1Þ

Xm

i¼1

iki!
m
i

� �
kn

i

� �
: ð2Þ

According to [13, Theorem 4], Eq. (2) can be lower- and
upper-bounded as follows:

pk < pk;n;m < pk � 1þ O
k
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln m� k ln p

m

r ! !
: ð3Þ

Hence, the difference between the observed false posi-
tive rate and the theoretical estimates can be significant
for small size BFs, a fact that we (and others) have empir-
ically observed (see evaluation in Section 5.1.2). Thus,
small iBFs are prone to more false positives than larger iBFs
for equivalent m/n ratios.
Both Eqs. (1) and (2) do not involve knowing exactly
how many bits are actually set to 1. A more accurate esti-
mate can be given once we know the fill factor q; that is
the observed fraction of bits that are actually set to 1 after
elements have been inserted. We can define the posterior
false positive estimate, fpa, as the expected false positive
probability after inserting the elements:

fpa ¼ qk: ð4Þ

Finally, the observed false positive rate (fpr) can be ob-
tained after testing for the presence of elements:

fpr ¼ Observed false positives
Tested elements

: ð5Þ

Note that the fpr is an experimental quantity obtained via
simulation or system measurements and not a theoretical
estimate. Hence, the fpr is the key performance indicator
we want to measure in a real system, where every ob-
served false positive will cause some form of degradation.
Therefore, practitioners are less interested in the asymp-
totic bounds of the hash-based data structure and more
concerned with the actual false positive rates, especially
in the case of space-constrained iBFs.
3.2. Naming and basic operations

A nice property of hash-based data structures is that
they do not depend on the form of the inserted elements.
Independent of its size or representation, every element
carried in the iBF contributes with at most k bits set to 1.
In order to meet the line speed requirements of iBF opera-
tions, one design recommendation is to have the elements
readily in a pre-computed BF-form (m-bit vector with k
bits set to 1), avoiding thereby any hashing at packet pro-
cessing time. Element insertion becomes a simple, parallel-
izable bitwise OR operation. Analogously, an iBF element
check can be performed very efficiently in parallel via fast
bitwise AND and COMPARE operations.

A BF-ready element name, also commonly referred to as
element footprint, can be stored as an bit vector of size m
or, for space efficiency, it can take a sparse representation
including only the indexes of the k bit positions set to 1.
In this case, each element entry requires only klog2m bits.
4. Extensions

In this section, we describe three useful extensions to
basic in-packet Bloom filter designs in order to address
the following practical issues:
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(i) Performance: Element Tags exploit the notion of
power of choices in combining hashing-based ele-
ment names to select the best iBF according to some
criteria, for instance, less false positives.

(ii) Deletion: Deletable regions introduce an additional
header to code collision-free zones, enabling thereby
safe (false-negative-free) element removals at an
affordable packet header bit space.

(iii) Security: Secure constructs use packet-specific infor-
mation and distributed time-based secrets to pro-
vide protection from iBF replay attacks and bit
pattern analysis, preventing attackers from misusing
iBFs or trying to infer the identities of the inserted
elements.

4.1. Element tags

The concept of element Tags (eTags) is based on extend-
ing BF-compatible element naming with a set of equivalent
footprint candidates. That is, instead of each element being
identified with a single footprint, every element is associ-
ated with d alternative names, called eTags, uniformly
computed by applying some system-wide mapping func-
tion (e.g., k � d hash functions). That allows us to construct
iBFs that can be optimized in terms of the false positive
rate and/or compliance with element-specific false positive
avoidance strategies. Hence, for each element, there are d
different eTags, where d is a system parameter that can
vary depending on the application. As we see later, a prac-
tical value of d is in the range of multiples of 2 between 2
and 64.

We use the notion of power of choices [14] and take
advantage of the random distribution of the bits set to 1
to select the iBF representation among the d candidates
that leads to a better performance given a certain optimi-
zation goal (e.g., lower fill factor, avoidance of specific false
positives). This way, we follow a similar approach to the
Best-of-N method applied in [15], with the main differ-
ences of (1) a distributed application scenario where the
value d is carried in the packet header, and (2) the best can-
didate selection criterion is not limited to the least amount
of bits set but may include other optimization criteria (e.g.,
Section 5.2 bit deletability), including those that involve
counting false positives against a training set (e.g. Section
4.1.2 fpr-based selection).

The caveats of this extension are, first, it requires more
space to store element names, and second, the value d
needs to be stored in the packet header as well, consuming
bits that could be used for the iBF. However, knowing d at
element query time is fundamental to avoid checking mul-
tiple element representations, which would traduce in
potentially more false positives (cf. [14]). Upon packet ar-
rival, the iBF and the corresponding eTag entries can be
ANDed in parallel.

4.1.1. Generation of eTags
To achieve a near uniform distribution of 1s in the iBF, k

independent hash functions per eTag are required. In gen-
eral, k may be different for each eTag, allowing to adapt
better to different fill factors and reducing the false posi-
tives of more sensitive elements. Using the double hashing
technique [16] to compute the bits set to 1 in the d eTags,
only two independent hash functions are required without
any increase of the asymptotic false positive probability.
That is, we rely on the result of Kirsch and Mitzenmacher
[16] on linear combination of hash functions, where two
independent hash functions and can be used to simulate i
random hash functions of the form:

giðxÞ ¼ ½h1ðxÞ þ i � h2ðxÞ� modm: ð6Þ

As long as h1(x) and h2(x) are system wide parameters,
sharing i = d � k integers is only required to derive the eTags
for any set of elements. For space efficiency, another opti-
mization for the sparse representation of the candidates
consists of defining the d eTags by combinations among

k + x iBF positions, i.e., d ¼ kþ x
k

� �
.

4.1.2. Candidate selection
Having ‘‘equivalent’’ iBF candidates enables to define a

selection criteria based on some design-specific objectives.
To address performance by reducing false positives, we can
select the candidate iBF that presents the best posterior
false positive estimate (fpa-based selection; Eq. (4)). If a ref-
erence test set is available to count false positives, the iBF
choice can be done based on the lowest observed rate (fpr-
based selection; Eq. (5)). Other types of selection policies
can be specified to favor the candidate presenting less false
positives for certain ‘‘system-critical’’ elements (fp-element
avoidance selection).

4.1.3. False positive improvement estimate
Following the same analysis as in [15], the potential

gain in terms of false positive reduction due to selecting
the iBF candidate with fewer 1s can be obtained by esti-
mating the least number of bits set after d independent
random variable experiments (see Appendix A for the
mathematical details). Fig. 2 shows the expected gains
when using the fpa-based selection after generating d can-
didate iBF for a given element set. With a few dozen candi-
dates, one can expect a factor 2 improvement in the
observed fpr when selecting the candidate with fewer
ones. Note that the four iBF configurations plotted in
Fig. 2 have the same m/n ratio. In line with the theoretical
predictions [13], smaller bit vectors are subject to slightly
larger false positive probabilities. However, as shown in
Fig. 2(b), the fpr improvement factor of smaller iBFs due
to the d-eTag extension is larger. Hence, especially for
small iBFs, computing d candidates can highly improve
the false positive behavior, a fact that we have validated
experimentally in Section 5.

4.2. Deletable regions

Under some circumstances, a desirable property of iBFs
is to enable element deletion as the iBF packet is processed
along network nodes. For instance, this is the case if some
inserted elements are to be processed only once (e.g., a hop
within a source route), or, if bit space is required to add
more elements upfront. Unfortunately, due to its compres-
sion nature, bit collisions hamper naive element removals
unless we allow introducing false negatives into the
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system. To overcome this limitation (with high probabil-
ity), so-called counting Bloom filters (CBF) [17] were pro-
posed to expand each bit position to a cell of c bits. In a
CBF, each bit vector cell acts as a counter, increased on ele-
ment insertion and decreased on element removal. As long
as there is no counter overflow, deletions are safe from
false negatives. The main caveat is the c times larger space
requirement, a prohibitive price for the tiny iBFs under
consideration.

The key idea of the deletable region extension is to keep
track of where the collisions occur at element insertion
time. By using the property that bits set to 1 by just one ele-
ment (collision-free bits) are safely deletable, the proposed
Fig. 3. An example of the DlBF with m = 32, k = 3 and r = 4, representing the s
corresponding region and bits therein cannot be deleted. Since each element ha
extension consists of encoding the deletable regions as part
of the iBF header. Then, an element can be effectively
removed if at least one of its bits can be deleted.

Encoding the deletable region information should con-
sume a minimum of bits from the allocated iBF space. A
straightforward coding scheme is to divide the iBF bit vec-
tor into r regions of m0/r bits each, where m0 is the original
m minus the extension header bits. As shown in Fig. 3, this
extension uses r bits to code with 0 a collision-free region
and with 1 a non-deletable region. The probability of ele-
ment deletion, i.e., the chances of an element having at
least one bit in a collision-free region, can be approximated
to (see Appendix B for the mathematical details):

pd ¼ ð1� ð1� pcÞ
m0=rÞk: ð7Þ

Fig. 4(a) plots pd against the number of regions r and con-
firms the intuition that increasing r results in a larger pro-
portion of elements being deletable. As more elements are
inserted into the iBF, the number of collisions increases
and the deletion capabilities (i.e., bits in collision-free re-
gions) are reduced (see Fig. 4(b)). As a consequence, the
target element deletion probability pd and the number of
regions r establish a practical limitation on the capacity
nmax of a deletable iBF.

Fig. 4(b) plots pd against the filter density m/n for differ-
ent memory to regions ratios m/r. As expected, increasing r
results in a larger portion of deletable elements. As more
elements are inserted (lower m/n and more collisions),
the deletion capabilities are reduced. Hence, the parameter
r can be chosen by defining a target element deletion prob-
ability pd and estimating the upper bound of the set cardi-
nality n. For instance, allocating only 5 % of the available
bits (m/r = 20) to code the collision bitmap, we can expect
to remove around 90 % of the elements when the bits per
element ratio m/n is around 16.

From a performance perspective, enabling deletions
comes at the cost of r bits from the iBF bit space. However,
removing already processed elements decreases the fill
factor and consequently reduces the probability of false
positives upfront. Later in Section 5.2 we explore the
trade-offs between the overhead of coding the deletable
regions, the impact on the fpr, and the implications of the
candidate selection criteria.

4.3. Secure constructs

The hashing nature of iBFs provides some inherent
security properties to obscure the identities of the inserted
elements from an observer or attacker. However, there are
et x,y,z. The 1s in the first r bits indicate that a collision happen in the
s at least one bit in a collision-free zone, all of them are deletable.
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a series of cases where improved security means are desir-
able. For instance, an attacker is able to infer, with some
probability, whether two packets contain an overlapping
set of elements by simply inspecting the bits set to 1 in
the iBFs. In another case, an attacker may wait and collect
a large sample of iBFs to infer some common patterns of
the inserted elements. In any case, if the attacker has
knowledge of the complete element space (and the eTags
generation scheme), she can certainly try a dictionary at-
tack by testing for presence of every element and obtain
a probabilistic answer to what elements are carried in a
given iBF. A similar problem has been studied in [18] to se-
cure standalone BFs representing a summary of documents
by using keyed hash functions. Our solution follows the
same approach i.e. obscuring the resulting bit patterns in
the filter by using additional inputs to the hashes. How-
ever, our attention is focused to the specifics of distributed,
line-speed iBF operations.

The main idea to improve the security is to bind the iBF
element insertion to (1) an invariant of the packet or flow
(e.g., IP 5-tuple, packet payload, etc.), and (2) system-wide
time-based secret keys. Basically, the inserted elements
become packet- and time-specific. Hence, an iBF gets expi-
rable and meaningful only if used with the specific packet
(or authorized packet flow), avoiding the risk of an iBF re-
play attack, where the iBF is placed on a different packet.
4.3.1. Binding to packet contents
We strive to provide a lightweight, bit mixing function

O = F(K, I) to make an element name K dependent on addi-
tional in-packet information I. For this extension, an ele-
ment name K is an m-bit hash of the element and not the
eTag representation with only k bits set to 1. The function
F must be fast enough to be done at packet processing time
over the complete set of elements to be queried by a node
processing the iBF. The output O is the k bit positions to be
set/checked in the iBF. Using cryptographic hash functions
(e.g., MD5, SHA1) for F becomes unpractical if we want to
avoid multiple (one per element) cycle-intense hashing
per packet.

As an example resource-efficient implementation of F,
we propose the lightweight Algorithm 1 to mix each ele-
ment K with a fixed bit string I. Taking I as an input, the
algorithm runs in parallel on each element K and returns
the k bit positions in the iBF to be set or checked. After an
initial bitwise XOR operation (Step 1), the output O is di-
vided into k segments of m/k bits (Step 2). To build the fold-
ing matrix in Step 3, each segment is transformed into a
matrix of clog2m bits.1 For instance, with m = 256 and
k = 4, each segment Ok would be a 64-bit bit vector trans-
formed into a 8 � 8 matrix. Finally, each of the k output val-
ues is computed by XORing the rows of each matrix into a
log2m bit value that returns the bit position to be set/checked
(Step 4). The d-bit shifting enables the power of choices.

We are faced with the classic trade-off between security
and performance. An heuristic evaluation suggests that the
proposed F provides a good balance between performance
and security. First, F involves only bit shifting and XOR

operations that can be done in a few clock cycles in parallel
for every K. Second, the k bit positions depend on all the
bits, within an m/k bit segment, from the inputs I and K.
The security of F depends on how well I and K are mixed.
For security sensitive applications, the XOR operation in
Step 1 should be replaced with a more secure transforma-
tion P(K, I) i.e., using lightweight hash functions or line-
speed stream ciphers (see e.g. [19]). The final choice of F
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Fig. 5. Power of choice gains (m = 256, k = 5).
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should take the application specifics into account (e.g., nat-
ure of K, computation of I per-packet) and the target secu-
rity level.

4.3.2. Time-based keyed hashing
A more elaborate security extension consists of using a

keyed element name construction, and change the secret
key S(t) regularly. We can define S(t) as the output of a
pseudo random function Si = F(seed, ti), where seed is the
previous value and t a time-based input. Then, we can in-
clude the current S value in the algorithm for element
check/insertion e.g., O = F(K, I,S(t)). Thereby, we obtain a
periodically updated, shared secret between iBF issuers
and iBF processing entities, with the benefit that an iBF
cannot be re-utilized after a certain period of time or after
an explicit re-keying request. Moreover, by accepting Si

and Si�1 the system requires only loose synchronization
similar to commercial time-coupled token generators. At
the cost of initial synchronization efforts and computa-
tional overhead, this method provides an effective means
to make iBF applications secure (e.g., forwarding availabil-
ity [20,21]).

4.4. Density factor

Finally, a basic security measure for iBFs, also proposed
in [5], is to limit the percentage of 1s in the iBF to 50%–75%.
A density factor qmax can safely be set to k � nmax/m, as each
legitimate element contributes with at most k bits. Then,
the probability of an attacker guessing a bit combination
that causes a single false positive can be upper bounded
by qk

max.
5. Practical evaluation

We now turn our attention to the practical behavior of
the iBF in function of the multiple design parameters and
carry out extensive simulation work to validate the useful-
ness of the three extensions under consideration. For these
purposes, we use randomly generated bit strings as input
elements and the double hashing technique using SHA1
and MD5. The section concludes exploring the potential
impact of different types of iBF elements (flat labels, IP ad-
dresses, dictionary entries) and the hash function imple-
mentation choice.

5.1. Element tags

We are interested in evaluating the gains of the power
of choices that underpins the element Tag extension (Sec-
tion 4.1), where any element set can be equivalently repre-
sented by d different iBFs, different in their bit distribution
but equivalent with regard to the carried element identi-
ties. We first explore the case where k = 5 and then the im-
pact of using a distribution around 5 for candidate
naming.2
2 We choose k = 5 to have a probabilistically sufficient footprint space for
the eTags (m!/(m � k)! � 1012 with m = 256) when targeting an m/n of
about 8 bits per element.
5.1.1. Power of choices (d)
We run the simulations varying d from 2 to 64 and

updating m accordingly to reflect the overhead of including
the value d in the packet header. Fig. 5 compares the ob-
served fpr for different values of d. In accordance with
the theoretical predictions (Section 4.1.3), increasing d
and choosing the candidate iBF just by observing its fill fac-
tor after construction (Fig. 5(a)) leads to better performing
iBFs. In the region where the iBF is more filled (30–40 ele-
ments), the observed fpr drops between 30% and 50% when
16 or more candidate iBFs are available. Another interpre-
tation is that for a maximal target fpr we can now insert
more elements. As expected, the performance gain is more
significant if we consider the best performing iBF after
testing for false positives. Observing Fig. 5(b), the number
of false positives is approximately halved when comparing
the best iBF among 16 or more against a standard 256-bit
iBF.

We also note that the observed fpr is slightly larger than
the commonly assumed theoretical estimate (Eq. (1)), con-
firming thus the findings (Eq. (4)) by [13]. As shown in Ta-
ble 1, this difference is more noticeable for smaller m,
becoming negligible for m larger than 1024.
5.1.2. Distribution of the number of hash functions (k)
Now, we explore allowing a different number of bits k

per candidate. For instance, with d = 8 the distribution of



Table 1
Observed fpr for iBFs with 16 eTag choices.

m n Std. (%) fpa-opt. (%) fpr-opt. (%)

Th. fpr kcte kdst kcte kdst

128 6 0.04 0.16 0.14 0.19 0.04 0.05
12 0.75 1.12 0.88 0.86 0.37 0.32
18 3.33 4.39 2.80 3.10 2.18 2.37

256 12 0.04 0.09 0.08 0.08 0.01 0.03
24 0.74 0.95 0.74 0.71 0.26 0.30
36 3.31 3.63 2.69 2.75 2.07 2.15

512 24 0.04 0.08 0.07 0.04 0.01 0.01
48 0.74 0.83 0.64 0.64 0.22 0.25
72 3.29 3.46 2.87 3.05 2.09 2.21
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k among the candidates could be {4,4,5,5,6,6,7,7}. Intui-
tively, this naming scheme adapts better to the final num-
ber of elements in the iBF (as kd closer to kopt = m/nln (2)).
The fpa-based selection criterion (Section 4.1) is now choos-
ing the candidate with the lowest estimate minfqk0

0 ; . . . ;

qkd
d g. Fig. 6(a) shows the distribution of the selected 256-

bit iBFs for the case of d = 16 and k evenly distributed be-
tween 4 and 7. The line shows the percentage of times that
the selected iBF actually yielded the best performance
among the candidates. Disregarding the scenarios with
fewer elements, the fpa-based selection strategy succeeded
to choose the optimal candidate in about 30% of the times.
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Fig. 6. Distribution of iBF candidates for different number of hash
functions k. (d = 16, m = 256).
Fig. 6(b) shows the percentile distribution of the best per-
forming iBF after fpr testing. As expected, in more filled
iBFs scenarios, setting less bits per element is beneficial.
However, the differences are relatively small. As shown
in Table 1, the observed fpr in the case of kconst. = 5 is prac-
tically equivalent (if not slightly better) to the case where k
is distributed. We can also observe what the theory in Sec-
tion 2 predicts with regard to smaller iBFs: (i) inferior fpr
performance for the same m/n ratio, and (ii) larger poten-
tial to benefit from the power of choices extension.
5.1.3. Discussion
Based on our experimental evaluation, having more

than 32 candidates per element is not compelling in terms
of additional proportional fpr benefits beyond approxi-
mately a factor 2 depending on the specific parameters.
The results are consistent with the theoretical estimates
in Section 4.1.3. However, if the system design choice is
based on selection criteria optimized for the non occur-
rence of specific false positives (i.e. element-avoidance
Section 4.1), increasing the number of choices d allows
complying to a larger set of false positive avoidance poli-
cies. The practical limitations would be how much space
the application designer is willing to pay to store the can-
didate element representations in the nodes and code the
index d in the packets.
5.2. Deletion

We explore two important aspects of the deletable re-
gions extension. First, from a qualitative point of view we
examine the actual capabilities to successfully delete ele-
ments for different m/n ratios, number of regions r and
choices d. Second, we evaluate the quantitative gains in
terms of false positive reduction after element bits are de-
leted. Obviously, both aspects are related and intertwined
with the ability to choose among candidate iBF representa-
tions to favor the deletion capabilities. Now, the applica-
tion can choose the iBF candidate with the most number
of bits set in collision free-zones, increasing thus the bit
deletability. Alternatively, one may want to favor the ele-
ment deletability, recalling that removing a single element
bit is traduced into a practical deletion of the element.

Using our basic coding scheme (Section 4.2), we
consume one bit per region to code whether collision
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happened and deletion is prohibited or not. Thus, the bits
available for iBF construction are reduced to m0 = m �
log2d � r.

On each experiment round, we randomly select n ele-
ments from a pool of 1 million unique bit strings, and in-
sert them updating the r bitmap accordingly. We then try
to remove every inserted element and measure the quality
and quantity of the deletion capabilities.
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5.2.1. Quality: how many elements can be removed in
practice?

Fig. 7(a) plots the average percentage of elements that
could be deleted. As expected, partitioning the iBF into
more regions results in a larger fraction of elements (and
bits) being deletable. For instance, in the example of a
256-bit iBF with 32 regions (Fig. 7), when 24 elements
are inserted, we are able to delete an average of more than
80% of the elements by safely removing around 50% of the
bits (Fig. 7(b)). Playing with the candidate choices, we can
enhance the bit (Fig. 8(a)) and element (Fig. 8(b)) deletabil-
ity considerably. The actual deletability rates are lower
than expected by theory (Fig. 4) but behave as predicted
by the mathematical model of the element deletability
probability (Eq. (7)). This divergence can be explained by
the theoretical assumptions on random bit distributions
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Fig. 7. Deletability as function of r (m = 256).
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and the actual behaviour of hash functions, especially in
small size bit vectors.
5.2.2. Quantity: what are the false positive rate gains due to
bit deletability?

On the one hand, we have the potential gains of remov-
ing bits from collision-free zones. On the other, the cost of
(1) coding the deletable regions (r bits), and (2) having
more filled iBFs due to the rarefication of colliding bits.
While Fig. 9(a) shows the price of having to code more re-
gions (fpr before deleting elements), Fig. 9(b) illustrates the
potential gains of removing every deletable bit. If we aver-
age the fpr before and after elements are deleted, the iBF
performance appears equivalent to the fpr of a standard
non-deletable m-bit iBF. In comparison, a counting BF with
2 bits per cell3 would behave like an iBF of size m/2, which
would have its element capacity prohibitively constrained.

Analyzing the impact of the power of choices, Fig. 10
shows that choosing the best deletable iBF candidate
causes the colliding bits to ‘‘thin out’’ (greater q), yielding
a higher fpr before deletion (Fig. 10(a)) and a smaller fpr
after elements are removed (Fig. 10(b)).
3 Using the power of choices, we could have with very high probability a
candidate that does not exceed the counter value of 3, avoiding false
negatives as long as no new additions are considered.
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Fig. 9. False positives in function of r (m = 256, d = 16).

 0

 1

 2

 3

 4

 5

 12  18  24  30  36

fp
r 

be
fo

re
 d

el
et

io
n 

(%
)

# elements 

no choices
2 choices
4 choices
8 choices

16 choices
32 choices

(a) fpr - before deletion

 0

 1

 2

 3

 4

 5

 12  18  24  30  36

fp
r 

af
te

r 
de

le
tio

n 
(%

)

# elements 

no choices
2 choices
4 choices
8 choices

16 choices
32 choices

(b) fpr - after deletion

Fig. 10. False positives as f(d). (m = 256, r = 16).

4 In future work we will extend these results and the hashing techniques
evaluation of Section 5.4 with standard randomness tests such as those
included in the Diehard suite (http://www.stat.fsu.edu/pub/diehard).
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5.2.3. Discussion
There is a tussle between having a smaller fill factor q,

with more collisions at construction time reducing the fpa,
and the deletability extension that benefits from fewer col-
lisions. Deletability may be a key property for some system
designs, for instance, whenever an element in the iBF
should be processed only once and then be removed, or
when space is needed to add new elements on the fly.
One key property is that just by inspecting the bitmap r,
any node can safely (without introducing false negatives)
remove an element from the iBF. A more detailed evalua-
tion should consider the specific application dynamics into
consideration, i.e., the nature and frequency of deletions/
insertions at runtime.

From a fpr performance perspective, the cost of coding
the deletable regions is only a slight increase in the fpr
due to r being only a small fraction of m. However, reduc-
ing m seems to hinder the average fpr gains due to bit dele-
tions upfront. Nonetheless, especially for space-restricted
iBFs, the proposed extension is a far more attractive ap-
proach to enable (probabilistic) deletions than alternative
solutions based on counting BFs. An open question is
whether there is a better coding scheme for the deletable
regions, for instance, using error correcting codes. Finally,
the power of choices again proved to be a very handy tech-
nique to deal with the probabilistic nature of hash-based
data structures, enabling candidate selection for different
criteria like better fpr or certain element/bit deletability.
5.3. Security

Besides fast computation, the main requirements for
the security extension are that (i) the random distribution
of the iBF bits is conserved, and (ii) given a collection of
packets I and the securely constructed iBFs, one cannot
easily reveal information about the inserted elements (K).
More generally, given a set of (I, iBF) pairs, it must be at
best very expensive to retrieve information about the iden-
tities of K.

We first measured the randomness of the secure iBF
construction outputs from Algorithm 1 by fixing a set of
20 elements and changing the per-packet 256-bit ran-
domly generated I value on each experiment run. Table 2
gathers the average results of 100 experiments with 1000
runs per experiment. The observed distribution of outputs
within an experiment, measured as the Hamming distance
between output bit vectors (BV), was very close to the
mean value of m/2 bits (128) with a small standard devia-
tion.4 The observed average number of bits set and their dis-
tribution were comparable to standard iBF constructs.
Additionally, we analyzed whether the 20 most frequent
bit positions set in secure iBFs corresponded to bits set in

http://www.stat.fsu.edu/pub/diehard


Table 2
Evaluation of the secure iBF algorithm (m = 256, k = 4, n = 20). Avg. (Stdev)
after 1000 runs.

Sec. iBF Plain iBF Random BV

Hamming dist. 127.94 (8.06) 0 127.95 (8.03)
# Bits set 96.27 (3.20) 96.29 (–) 127.97 (7.97)
Correlation 0.371 –

Table 3
Observed fpr in 256-bit iBF using double hashing with SHA1 & MD5 and
with 8-bit segments of CRC32. Avg. (StdDev); 1000 tests.

n DoubleHash IP Random Dict.

16 SHA1& MD5 0.340 (0.035) 0.338 (0.032) 0.328 (0.034)
CRC32 segm. 0.345 (0.037) 0.349 (0.034) 0.338 (0.034)

32 SHA1& MD5 2.568 (0.436) 2.576 (0.449) 2.519 (0.385)
CRC32 segm. 2.541 (0.418) 2.532 (0.403) 2.570 (0.444)
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plain iBFs. We defined the correlation factor as the fraction of
matches and obtained a value of 0,371, which is close to the
probability of randomly guessing bits in a 256-bit iBF with
k = 4 and n = 20 elements (Pr � 96/256 � 0,37).

The results indicate that, assuming a random packet
identifier I, first, no actual patterns can be inferred from
the securely inserted elements, and second, the random
bit distribution of an iBF is conserved when using the pro-
posed algorithm. However, we recognize the limitations of
Algorithm 1. For instance, if provable protection against
more elaborated attacks is required, then, a more secure
and computationally expensive bit mixing procedure (Step
1 in Algorithm 1) should be considered, in addition to a
time-based shared secret as suggested in Section 4.3.

5.4. Hashing technique

Finally, we investigate the impacts of the hash function
implementation choice and the nature of the input ele-
ments in small size iBFs. There are two factors that deter-
mine the ‘‘quality’’ of the bit distribution and consequently
may impact the observed fpr: (1) the input bit string, and
(2) the implementation of the hash function.

5.4.1. Input data sets
Instead of considering elements as simple random bit

strings, we now explore three types of elements that cover
typical inputs of iBF applications:

� 32-bit IP addresses: Nearly 9M IP addresses were gen-
erated by expanding the subnet values of IP prefixes
advertised in the CAIDA database.5 In addition, private
IP addresses (10.0.0.0/16,192.168.0.0/16) were also used
in the experiments.
� 256-bit random labels: A set of 3M random labels was

generated constructing each 256-bit label by picking
randomly 64 hex characters and checking for
uniqueness.
� Variable-bit dictionary words: A set formed by 98.568

entries of the American dictionary.6

5.4.2. Hash function choice
We chose 3 commonly used cryptographic hash func-

tions (MD5, SHA1 and SHA256) and 2 general purpose
hash functions (CRC32 and BOB).7
5 ftp.ripe.net/ripe/stats/delegated-ripencc-20090308.
6 /usr/share/dict/american-english.
7 Related work has investigated the properties of 25 popular hash

functions, pointing to BOB as a fast alternative that yields excellent
randomized outputs for network applications [22]. Although MD5 and
SHA1 are considered broken due to the recent discovery of collisions, they
are perfectly valid for our randomness purposes.
The observed fpr (Table 3) imply that, on average, the
input type does not affect the iBF performance. Fig. 11
plots the observed normalized sample variance for different
bit vector sizes (m). For lower m values the variances show
a larger difference and start converging for m > 512. CRC
presents the best output distribution when dealing with
IP addresses as inputs. This may be explained by the 32-
bit match of inputs and outputs. In general, the functions
exhibit similar behavior, leading to the conclusion that
all 5 hash functions can be used independently from the
nature of the elements. This result experimentally con-
firms, also in the case of small m values, the observation
by Mitzenmacher and Vadhan [23] that given a certain de-
gree of randomness in the input, simple hash functions
work well in practice.
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Fig. 11. Normalized bit distribution variance of hash outputs.
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5.4.3. Hash segmentation technique
For the purposes of iBF construction, there is a waste of

hash output bits due to the mod m residual restrictions.
Hence, we want to know whether we can divide the output
of a hash function into log2m segments and use each seg-
ment as an independent hash value. We compare the bit
distribution and fpr performance of iBFs constructed using
the double hashing technique with MD5 and SHA1 against
iBFs generated with CRC32 segments as hi(x). The differ-
ences of the observed fpr (Table 3) are negligible, which
suggests that this hashing technique may be practical.
Hence, we can reduce the two independent hash function
requirement of the double hashing technique to a single
hash computation based on e.g., CRC32 or BOB. This result
can be applied to iBF networking applications with on-line
element hashing instead of pre-computed element names.
Moreover, this efficient hash segmentation technique may
be useful in other multiple-hashing-based data structures
(e.g., d-left hash tables) that require hashing on a packet
basis.
6. Related work

Although multiple variants of Bloom filter designs and
applications have been proposed in the last years (e.g.,
Bloomier, dynamic, spectral, adaptive, retouched, etc.), to
the best of our knowledge, none of the previous work fo-
cuses on the particular requirements of distributed net-
working applications using small Bloom filters in packet
headers.

Prior work on improved Bloom filters include the Power
of Two Choices filter [14] and the Partitioned Hashing [24],
which rely on the power of choices at hashing time to im-
prove the performance of BFs. False positives are reduced
in [24] by a careful choice of the group of hash functions
that are well-matched to the input elements. However, this
scheme is not practical in distributed, highly dynamic
environments. The main idea of [14] is to reduce the num-
ber of 1s by choosing the ‘‘best’’ set of hash functions. Be-
sides our in-packet-header scope, our approach differs in
that we include the information of which group of hash
functions was used (d value) in the packet itself, avoiding
thereby the caveat of checking multiple sets. On the other
hand, we need to stick to one set of hash functions for all
elements in the BF, whereas in [14] the optimal group of
hash functions can be chosen on an element basis. To our
benefit, due to the reduced bit vector scenario, we are able
to select an optimal BF after evaluating all d candidates,
which leads to improved performance even in very dense
BF settings (small m/n ratios).

Regarding the extension to choose the best candidate fil-
ter, the Best-of-N method [15] only considers a standalone
application where the best BF selection is based on the least
dense filter constructed using the optimal number of hash
functions. In contrast, our distributed iBF applications
include candidates with different amount of bits set, as the
maximum set cardinality may be unknown a priori. An
optimized candidate iBF selection is possible whenever
the iBF application is able to test for presence of elements
that are known to be queried upfront. Moreover, selection
criteria may be beyond reducing fpr, for instance benefit-
ing the deletion of elements or avoiding specific false
positives.

The closest BF design innovations to support deletions,
other than counting BFs or d-left fingerprint hash tables
[17], are the Variable-length Signatures (VBF) [25]. Simi-
larly based on resetting at least one bit from element sig-
natures, the main caveat is being prone to false
negatives. In contrast, our deletable regions do not intro-
duce false negatives at the cost of providing only probabi-
listic element deletions.

Security and privacy preserving extensions for stand-
alone BFs have been previously proposed in different con-
texts (e.g., [18,26]). The novelty of our application resides
in taking distributed systems and data packets specifics
into consideration (e.g., flow-identifier, time-based loose
synchronization of distributed secrets).
7. Relevance and extensions in practice

Our work on iBFs is mostly an outcome from our re-
search on compact packet forwarding mechanisms. The
idea of element Tags has its roots in the work on a link
identifier based forwarding fabric [8], rendering the system
more useful (network policy compliance, loop avoidance,
security) and efficient (fpr control, larger multicast groups).
Recently, we applied the notion of power of choices in the
design of scalable data center forwarding services [27,28]
based on 96-bit iBF encoding of valiant load balanced fat
tree network paths between virtual machines hosted in
rack servers.

In general, the element tag extensions can be applied to
similar use cases of compact source routing. For instance,
in the IP multicast proposal [7], having multiple choices
would reduce false positives and enable compliance to in-
ter-domain AS policies in the case of false positives. When
applied to the credentials-based architecture proposed in
[5], multiple candidates may allow iBFs to transverse lar-
ger paths before reaching the maximum density. Addition-
ally, the security extension may provide extra protection
from an en-route attacker spoofing the source IP address
and re-using the flow credentials for unauthorized traffic.

In the field of secure packet forwarding mechanisms,
we contributed to the development of self-routing capabil-
ities for DDoS protection in Bloom filter based forwarding
services [20]. In addition, recent work has validated the
effectiveness of loop prevention with a new extension
based on performing per-hop bit permutations [29]. A joint
application of these iBF algorithmic techniques aims at
solving forwarding anomalies of naive approaches to iBF
based networking. Related work has explored the applica-
tion of secure iBF forwarding methods to provide fast host
mobility [30], scalable multicast VPN services in GMPLS-
enabled networks [31], and an edge-controlled approach
to stateless inter-domain ‘bloomcasting’ [21].

Last but not least, we are looking for new use cases for our
deletable Bloom filter design [32]. Due to its space efficiency
and the tunable probability of safe bit removals, the delet-
able regions extension may have interesting applications
beyond the scope of iBFs. Similarly, the hash segmentation
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technique appears useful to lower the burden on any system
requiring multiple expensive hash computations.
8. Conclusions

This paper explores an exciting front in the Bloom filter
research space, namely the special category of small Bloom
filters carried in packet headers. Using iBFs is an appealing
approach for networking application designers choosing to
move application state to the packets themselves. At the
expense of some false positives, fixed-size iBFs are amena-
ble to hardware and present a way for new networking
applications.

We studied the design space of iBFs in depth and eval-
uated new ways to enrich iBF-based networking applica-
tions without sacrificing the Bloom filter simplicity. First,
the power of choices extension shows to be a very power-
ful and handy technique to deal with the probabilistic nat-
ure of hash-based data structures, providing finer control
over false positives and enabling compliance to system
policies and design optimization goals. Second, the space-
efficient element deletion technique provides an important
(probabilistic) capability without the overhead of existing
solutions like counting Bloom filters and avoiding the lim-
itations of false-negative-prone alternatives. Third, secu-
rity extensions were considered to couple iBFs to time
and packet contents, providing a method to secure iBFs
against tampering and replay attacks. Finally, we validated
the extensions in a rich simulation set-up, including useful
recommendations for efficient hashing implementations.
We hope that this paper motivates the design of more
iBF extensions and new networking applications.
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Appendix A. Mathematical model for d-candidate fpa
optimization (adapted from [15])

Given the iBF parameters m, n, k, and letting d be the
number of different iBF candidates for the same element
set, the probability of setting arbitrary but fix s bits in
an iBF candidate can be formulated as an independent
random variable experiment:

E2½s� ¼m 1� 1� 1
m

� �kn
 !

þmðm�1Þ 1�2 1� 1
m

� �kn

þ 1� 2
m

� �kn
 !

; ðA:1Þ

r2½s� ¼m
m�1

m

� �kn

þm2 m�2
m

� �kn

þm
m�2

m

� �kn

þm2 m�1
m

� �2kn

: ðA:2Þ
Defining l = E[s] and r = r[s], the minimum continuous
probability density function is:

fminðsÞ ¼
1

2d�1

� �
d erfc

s� l
r
ffiffiffi
2
p

� �� �d�1 1
r
ffiffiffiffiffiffiffi
2p
p e

�ðs�lÞ
2r2

� �
: ðA:3Þ

Consequently, the expectation of the least number bits
(smin) set by any of d candidates:

EðSminÞ ¼
Z 1

�1
sfminðsÞds: ðA:4Þ

Finally, the probability of a false positive once the
smallest fill ratio has been estimated:

pr½false positive� ¼ E½smin�
m

k
 !

: ðA:5Þ
Appendix B. Element deletability probability

Consider a bit array of size m0 = m � r with dm0/re bit
cells per region. The probability that a given cell has at
least one collision is pc = 1 � p0 � p1, where p0 denotes
the probability that a given cell is set to 0 and p1 is the
probability that a given cell is set to 1 only once after
inserting n elements:

p0 ¼ ð1� 1=m0Þkn ðB:1Þ

and

p1 ¼ ðknÞð1=m0Þð1� 1=m0Þkn�1
: ðB:2Þ

Then, the probability that a m0/r bit region is collision-free
is given by ð1� pcÞ

m0=r . Finally, for r P k and m� k, the
probability of an element being deletable (i.e., with one
of its k bits in a collision-free region) can be approximated
to:

pd ¼ ð1� ð1� pcÞ
m0=rÞk:
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