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Abstract We investigate the possibility to prove security of the well-
known blind signature schemes by Chaum, and by Pointcheval and Stern
in the standard model, i.e., without random oracles. We subsume these
schemes under a more general class of blind signature schemes and show
that finding security proofs for these schemes via black-box reductions
in the standard model is hard. Technically, our result deploys meta-
reduction techniques showing that black-box reductions for such schemes
could be turned into efficient solvers for hard non-interactive crypto-
graphic problems like RSA or discrete-log. Our approach yields signif-
icantly stronger impossibility results than previous meta-reductions in
other settings by playing off the two security requirements of the blind
signatures (unforgeability and blindness).

Keywords Blind signature scheme, black-box reduction, meta-reduction,
random oracle, round complexity.

1 Introduction

Blind signatures [11] implement a carbon copy envelope allowing a signer to
issue signatures for messages such that the signer’s signature on the envelope
is imprinted onto the message in the sealed envelope. In particular, the signer
remains oblivious about the message (blindness), but at the same time no addi-
tional signatures without the help of the signer can be created (unforgeability).

Many blind signature schemes have been proposed in the literature, e.g.,
[1, 2, 6, 11, 12, 16, 17, 19, 20, 22–24, 26, 27], with varying security and efficiency
characteristics. The arguably most prominent examples are the schemes by
Chaum [11] based on RSA and the ones by Pointcheval and Stern [27] based
on the discrete logarithm problem, RSA and factoring. Both approaches admit
a security proof in the random oracle model, in the case of Chaum’s scheme the
“best” known security proofs currently even requires the one-more RSA assump-
tion [5].

Here we investigate the possibility of instantiating the random oracles in
the schemes by Chaum and by Pointcheval and Stern, and of giving a security
proof based on standard assumptions like RSA or discrete logarithm. Although
both schemes are different in nature we can subsume them under a more general
pattern of blind signature schemes where



– blindness holds in a statistical sense, i.e., where even an unbounded malicious
signer cannot link executions of the issuing protocol to message-signature
pairs,

– the interactive signature issuing has three (or less) moves, and
– one can verify from the communication between a possibly malicious signer

and an honest user if the user is eventually able to derive a valid signature
from the interaction.

We note that the construction by Boldyreva [6] based on the one-more Gap
Diffie-Hellman problem in the random oracle model also obeys these three prop-
erties such that any impossibility result immediately transfers to this scheme
as well. The third property, which we coin signature derivation check, basically
guarantees that blindness still holds if the user fails to produce a signature in
the postprocessing step, after the actual interaction with the signer has been
completed. Common notions of blindness do not provide any security guarantee
in this case (see [13,17] for further discussions).

1.1 The Idea Behind our Result

Given a blind signature scheme with the properties above we can show that for
such schemes finding black-box reductions from successful forgers to an arbitrary
non-interactive cryptographic problem (like RSA, discrete-log, or general one-
wayness or collision-resistance) is infeasible. The key idea to our result is as
follows. Assume that we are given a three-move blind signature scheme as above
and a reduction R reducing unforgeability to a presumably hard problem (given
only black-box access to an alleged forger). Vice versa, if the problem is indeed
infeasbile, then the reduction therefore shows that the scheme is unforgeable.

Our approach is to show that the existence of a reduction R as above already
violates the assumption about the hardness of the underlying problem. Our
starting point is to design an oracle Σ with unlimited power and a “magic”
adversary AΣ breaking the unforgeability of the blind signature scheme with
the help of Σ. By assumption, the reduction R with access to AΣ is then able to
break the underlying cryptographic problem (see the left part of Figure 1). Note
that, at this point, we are still in a setting with an all-powerful oracle Σ and
the non-interactive problem may indeed be easy relative to this oracle, without
contradicting the presumed hardness in the standard model.

Now we apply meta-reduction techniques, as put forward for example in
[7, 9, 14, 28], to remove the oracle Σ from the scenario. Given R we show how
to build a meta-reduction M (a “reduction for the reduction”) to derive an
efficient solver for the problem, but now without any reference to the magic
adversary and Σ (right part of Figure 1). To this end, the meta-reduction M
fills in for adversary AΣ and simulates the adversary’s actions without Σ, mainly
by resetting the reduction R appropriately. We have then eventually derived an
algorithm MR solving the underlying non-interactive problem in the standard
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Figure 1: Meta-reduction technique: The black-box reduction R on the left hand side
uses the adversary AΣ against unforgeability to solve an instance y of the non-
interactive problem. The meta-reduction M on the right hand side then uses R to
solve the problem from scratch, i.e., by simulating AΣ without Σ. For this, the meta-
reduction M exploits the blindness property of the scheme.

model, meaning that the problem cannot be hard. In other words, there cannot
exist such a reduction R to a hard problem.1

At this point it seems as if we have not used the blindness property of
the scheme and that the idea would paradoxically also apply to regular sig-
nature schemes (for which we know secure constructions based on any one-way
function). This is not the case. The blindness subtly guarantees that the meta-
reduction’s simulation of the adversary is indistinguishable from the actual be-
havior of AΣ , such that the success probabilities of RAΣ and of MR are close.
For these two cases to be indistinguishable, namely R communicating with AΣ
or with M, we particularly rely on the fact that blindness holds relative to
the all-powerful oracle Σ used by A, as in case of statistically-blind signature
schemes.

The reason that our approach only applies to blind signature schemes with at
most three moves originates from the resetting strategy of our meta-reduction. In
a three-move scheme the user sends a single message only, such that resetting the
reduction in such an execution allows our meta-reduction to choose independent
user messages in each run. This is essential for our proof. In schemes with four
or more moves the user sends at least two messages and the second message may

1 We consider very general reductions running multiple instances of the adversary in a
concurrent and resetting manner, covering all known reductions for blind signatures
in the literature. Yet, since the meta-reduction itself uses rewinding techniques,
we somewhat need to restrict the reduction in regard of the order of starting and
finishing resetted executions of different adversarial instances (called resetting with
restricted cross-resets). This saves us from an exponential running time for M. For
example, any resetting reduction running only a single adversarial instance at a time
obeys our restriction.



then depend on the first one, e.g., the scheme may implement a commit-and-
prove strategy with four moves.

1.2 The Essence of Our Meta-Reduction and Impossibility of
Random Oracle Instantiations

There are essentially two approaches in the literature to derive black-box sep-
arations like ours. One class of black-box separation results (e.g., [21, 29, 30])
basically starts with an oracle Σ breaking any cryptographic primitive of type
A, like a collision-resistant hash function, but adds an oracle Π implementing
another primitive of type B like a one-way function (and which cannot be bro-
ken by Σ). Here, the cryptographic primitives in question are usually treated as
black boxes.

The other approach uses meta-reductions [4, 7–9, 14, 28] and usually treats
the adversary as a black box. In our case, we show that no black-box reduction
to arbitrary (non-interactive) cryptographic problems can exist. This includes
common assumptions like the RSA and discrete logarithm problem, but also
more general notions of one-way functions and collision-resistant hash functions.
Compared to oracle-based separations and previous meta-reduction techniques
our result gives the following two advantages:

– Oracle separations involving a “positive” oracle Π implementing a primi-
tive often do not allow to make statements about the possibility of deriving
schemes based on concrete primitives such as RSA or discrete-log. The latter
primitives have other properties which could potentially be exploited for a
security proof, like homomorphic properties. This limitation does not hold
for our results.

– Meta-reduction separations such as [4, 8, 28] consider the impossibility of
reductions from secure encryption or signatures to a given RSA instance. Yet,
they often fall short of providing any meaningful claim if other assumptions
enter the security proof, e.g., the result in [28] does not hold anymore if two
RSA instances are given or an additional collision-resistant hash function is
used in the design. In comparison, our general approach covers such cases
as we can easily combine non-interactive problems P1, P2 into more complex
problems like P1∨P2 and P1∧P2, requiring to break one of the two problems
and both of them, respectively.

The latter advantage emerges because our meta-reduction plays off unforgeabil-
ity against blindness. This idea may be useful in similar settings where two or
more security properties are involved, to provide stronger separation results for
meta-reductions.

The broader class of problems ruled out by our meta-reduction also allows
to make meaningful claims when it comes to the possibility instantiating the
random oracle in the blind signature schemes. Namely, our separation indicates
the limitations of hash function options (assuming some restriction on the resets
of the reductions, mentioned in the previous section):



Any hash function whose security can be proven by black-box reduction to
hard non-interactive problems does not allow a black-box reduction from
the unforgeability of the blind signature scheme to hard non-interactive
problems, such as RSA or discrete-logarithm.

This can be seen as follows. Any reduction from the unforgeability either breaks
the underyling non-interactive problem like RSA or discrete-log, or breaks some
security property of the hash function. The latter, in turn, yields a nested reduc-
tion from the unforgeability of the blind signature scheme to the non-interactive
problem on which the hash function is based. One only needs to ensure that this
nested reduction falls within our admissible reset strategy. This is clearly true
if the security property of the hash function is given by a hard non-interactive
problem itself, like one-wayness or collision-resistance, or allows a suitable re-
duction to these problems or RSA, discrete-log etc.

1.3 Extension to Computational Blindness

In principle our result extends to computationally-blind signature schemes but
the conditions are arguably more restrictive than in the statistical case. First,
recall that blindness needs to hold relative to the forgery oracle Σ, i.e., the pow-
erful forgery oracle must not facilitate the task of breaking blindness. While this
comes “for free” in the statistical case, in the computational case one must as-
sume that unforgeability and blindness of the scheme are somewhat independent.
This is true for instance for Fischlin’s scheme [16], but there are also examples
where blindness and unforgeability are correlated, as in Abe’s scheme [1] where
unforgeability is based on the discrete-log problem and blindness on the DDH
problem.

Second, given that the scheme is computationally-blind relative to Σ we still
rely on the signature derivation check. One can easily design computationally-
blind schemes infringing this property, say, by letting the user sent a public
key and having the signer encrypt each reply (we are not aware of any counter
example in the statistical case). On the other hand, these signature derivation
checks are very common, e.g., besides the schemes above the ones by Okamoto
[26] and by Fischlin [16] too have this property.

Third, since we have to change the forgery oracle Σ for the computational
case, we also need a key-validity check which allows to verify if a public key
has a matching secret key (i.e., if there is a key pair with this public key in the
range of the key generating algorithm). For schemes based on discrete-logarithm
this usually boils down to check that the values are group elements. Given that
these three conditions are met we show that our techniques carry over to the
computational case.

1.4 Related Work

In a sense, our results match the current knowledge about the round complexity
of blind signature schemes. Nowadays, the best upper bound to build (non-
concurrently) secure blind signatures are four moves for the standard model, i.e.,



neither using random oracles nor set-up assumptions like a common reference
string. This is achieved by a protocol of Okamoto [26] based on the 2SDH bilinear
Diffie-Hellman assumption. Any schemes with three moves or less either use the
random oracle model [6, 11,27] or a commom reference string [2, 16,19].

We note that Lindell [25] rules out any concurrently secure blind signature
scheme in the standard model, independently of any cryptographic assump-
tion. Hence, it seems that two-move schemes —which are concurrently secure
by nature— are impossible in the standard model. However, Lindell’s impossi-
bility result only refers to the stronger (black-box) simulation-based definition
of blind schemes and can indeed be circumvented by switching to the common
game-based definition, as shown by [20]. In contrast, our result holds with respect
to game-based definitions and also covers three-move schemes, thus showing that
such blind signature schemes may be hard to build even under this relaxed no-
tion.

The recent results by Brown [8] and Bresson et al. [4] show meta-reduction
based separations of the one-more RSA and one-more discrete-logarithm problem
from their regular counterparts. The conclusion in [4] is that it should be hard
to find a security proof for Chaum’s scheme and the Pointcheval-Stern schemes
using only these regular assumptions. As mentioned before, the meta-reductions
in [4,8] are limited in the sense that they either cannot rewind (as in [8]) or can
only forward the input RSA or discrete log problem (as in [4]). Our approach,
however, considers arbitrary hard non-interactive problems and is robust with
respect to the combination of several underlying assumptions.

We also remark that the well-known three-move lower bound for non-trivial
zero-knowledge [18] is not known to provide a lower bound for blind signature
schemes. The intuitively appealing idea of using the blind signature scheme as
a commitment scheme in such zero-knowledge proofs unfortunately results in
proofs which require more than three moves. This is even true if we start with a
two-move blind signature scheme where a “hidden” third move is required for the
initial transmission of the signer’s public key. In addition, the game-based notion
of blind signatures is not known to yield appropriate zero-knowledge simulators.

Organization. We start with the definition of blind signature schemes in Sec-
tion 2. In Section 3 we discuss our notion of black-box reductions to hard prob-
lems. Before presenting our main result in Section 5 where we show the hardness
of finding black-box reductions from unforgeability to non-interactive problems
we first discuss a simpler case for restricted reductions in Section 4 to provide
some intuition about the general result. Due to the space restrictions, we have
delegated the case of computational blindness, as well as most of the proofs, to
the full version.

2 Blind Signatures

To define blind signatures formally we introduce the following notation for in-
teractive execution between algorithms X and Y. By (a, b) ← 〈X (x),Y(y)〉 we



denote the joint execution, where x is the private input of X , y defines the
private input for Y, the private output of X equals a, and the private output
of Y is b. We write Y〈X (x),·〉∞(y) if Y can invoke an unbounded number of
executions of the interactive protocol with X in sequential order. Accordingly,
X 〈·,Y(y0)〉1,〈·,Y(y1)〉1(x) can invoke sequentially ordered executions with Y(y0) and
Y(y1), but interact with each algorithm only once.

Definition 1 (Blind Signature Scheme). A blind signature scheme consists
of a tuple of efficient algorithms BS = (KG, 〈S,U〉 ,Vf) where

Key Generation. KG(1n) generates a key pair (sk, pk).
Signature Issuing. The joint execution of algorithm S(sk) and algorithm U(pk,m)

for message m ∈ {0, 1}n generates an output σ of the user, (⊥, σ) ←
〈S(sk),U(pk,m)〉, where possibly σ = ⊥.

Verification. Vf(pk,m, σ) outputs a bit.

It is assumed that the scheme is complete, i.e., for any (sk, pk) ← KG(1k), any
message m ∈ {0, 1}n and any σ output by U in the joint execution of S(sk) and
U(pk,m) we have Vf(pk,m, σ) = 1.

Security of blind signature schemes requires two properties, namely unforgeabil-
ity and blindness [22, 27]. A malicious user U∗ against unforgeability tries to
generate k+ 1 valid message-signatures pairs after at most k completed interac-
tions with the signer, where the number of interactions is adaptively determined
by the user during the attack. The blindness condition says that it should be in-
feasible for a malicious signer S∗ to decide upon the order in which two messages
m0 and m1 have been signed in two executions with an honest user U .

Definition 2 (Secure Blind Signature Scheme). A blind signature scheme
BS = (KG, 〈S,U〉 ,Vf) is called secure if the following holds:

Unforgeability. For any efficient algorithm U∗ the probability that experiment
ForgeBS

U∗ evaluates to 1 is negligible (as a function of n) where

Experiment ForgeBS
U∗

(sk, pk)← KG(1n)
((m1, σ1), . . . , (mk+1, σk+1))← U∗〈S(sk),·〉∞(pk)
Return 1 iff

mi 6= mj for 1 ≤ i < j ≤ k + 1, and
Vf(pk,mi, σi) = 1 for all i = 1, 2, . . . , k + 1, and
at most k interactions with 〈S(sk), ·〉∞ were completed.

Computational resp. Statistical Blindness. For any (efficient resp. unbounded)
algorithm S∗ working in modes find, issue and guess, the probability that the
following experiment BlindBS

S∗ evaluates to 1 is negligibly close to 1/2, where

Experiment BlindBS
S∗

(pk,m0,m1, stfind)← S∗(find, 1n)



b← {0, 1}
stissue ← S∗〈·,U(pk,mb)〉1,〈·,U(pk,m1−b)〉1(issue, stfind)

and let σb, σ1−b denote the (possibly undefined) local outputs
of U(pk,mb) resp. U(pk,m1−b).

set (σ0, σ1) = (⊥,⊥) if σ0 = ⊥ or σ1 = ⊥
b∗ ← S∗(guess, σ0, σ1, stissue)
return 1 iff b = b∗.

We remark that, even if occassionally not mentioned, all algorithms in this
paper receive the security parameter 1n as additional input.

3 Hard Problems and Black-Box Reductions

In order to prove the security of a cryptographic protocol, usually reduction
techniques are used. A reduction from a cryptographic protocol to an underly-
ing problem shows that breaking the protocol implies breaking the underlying
problem. A reduction is black-box if it treats the adversary and/or the underly-
ing primitive as an oracle. Reingold et al. [29] call reductions which use both the
adversary and the primitive merely as an oracle fully-black-box, whereas semi-
black-box reductions work for any efficient adversaries (whose code the reduction
may access) as long as the primitive is black-box.

In our case we only need the orthogonal requirement to semi-black-box re-
ductions, namely that the reduction treats the adversary as an oracle but we do
not make any assumption about the representation of the underlying primitive.
The reduction we consider works for any kind of non-interactive primitive (i.e.,
in which one gets an instance as input and outputs a solution without further
interaction):

Definition 3 (Hard Non-Interactive Problem). A non-interactive (cryp-
tographic) problem P = (I, V ) consists of two efficient algorithms:

Instance generation I(1n). The instance generation algorithm takes as input
the security parameter 1n and outputs an instance y.

Instance Verification V (x, y). The instance verification algorithm takes as
input a value x as well as an instance y of a cryptographic problem, and
outputs a decision bit.

We call a cryptographic problem P hard if the following condition is fulfilled:

Hardness. We say that an algorithm A solves the cryptographic problem P if
the probability that A on input y ← I(1n) outputs x′ such that V (x′, y) = 1,
is non-negligible. We say that the problem P is hard if no efficient algorithm
solves it.

Note that in the definition above we do not impose any completeness requirement
on the cryptographic problem. The reason is that reductions from the security
of blind signatures must work for arbitrary problems, and in particular to the
ones with non-trivial completeness conditions.



The notion of a non-interactive cryptographic problem clearly covers such
popular cases like the RSA problem, the discrete logarithm problem, or finding
collisions for hash functions. It also comprises more elaborate combination of
such problems, e.g., if P0, P1 are two non-interactive problems then so are P0∧P1

and P0∨P1 (with the straightforward meaning requiring to solve both problems
or at least one of them).

4 Warm Up: Impossibility Result for Vanilla Reductions

To give some intuition about our technique we first consider the simpler case
of vanilla reductions. This type of reduction only runs a single execution with
the adversary (without rewinding) and, if communicating with an honest user,
makes the user output a valid signature with probability 1. This means that a
vanilla reduction takes advantage of the magic adversary and its output, instead
of solving the problem on its own. We then augment our result in the next section
to deal with resetting reductions running multiple adversarial instances.

4.1 Preliminaries

For our impossibility result we need another requirement on the blind signature
scheme, besides statistically blindness. This property says that one can tell from
the public data and communication between a malicious signer and an honest
user whether the user is able to compute a valid signature or not.

For instance, in Chaum’s scheme the honest user sends a value y and receives
z from the signer, and the user is able to compute a signature σ for an arbitrary
message m if and only if ze = y mod N . This is easily verifiable with the help
of the public key and the communication. The scheme of Pointcheval and Stern
implements the signature derivation check already in the user algorithm.2 Anal-
ogous derivation checks occur in the schemes by Okamoto and by Fischlin. More
formally:

Definition 4 (Signature-Derivation Check). A blind signature scheme BS
allows (computational resp. statistical) signature-derivation checks if there ex-
ists an efficient algorithm SDCh such that for any (efficient resp. unbounded)
algorithm S∗ working in modes find and issue the probability that the experiment
SigDerCheckBS

S∗,SDCh evaluates to 1 is negligible, where

Experiment SigDerCheckBS
S∗,SDCh

(pk,m, st)← S∗(find, 1n)
(⊥, σ)← 〈S∗(issue, st),U(pk,m)〉

where trans denotes the communication between S∗, U
c← SDCh(pk, trans)
return 1 if σ 6= ⊥ and c = 0, or if σ = ⊥ but c = 1.

2 The signature derivation check is given by the user’s local verification a = gRhSye,
where the values a, r,R, S are exchanged during the signature issuing protocol and
the values g, h, y are part of the public key.



In the computational case, if the above holds even if S∗ gets access to an oracle
Σ then we say that the scheme has computational signature-derivation checks
relative to Σ. (In the statistical case S∗ could simulate Σ internally, such that
granting access to Σ is redundant.)

The notion in some sense augments the blindness property of blind signature
schemes to the case that the user algorithm fails to produce a valid signature
in the final local step. The common notion of blindness does not provide any
security in this case (because the malicious signer does not receive any of the
signatures if the user fails only then). See [17] for more discussions and solutions.
Here, the signature derivation check provides something stronger, as it can be
efficiently performed by anyone and holds independently of the user’s message.

Next we introduce a weaker notion than blindness which is geared towards our
separation result. Informally, a blind signature scheme has so-called transcript-
independent signatures if one cannot associate a transcript to a signature. This
is formalized by comparing signatures generated via an execution with a mali-
cious signer and signatures generated “magically” via an oracle Σ producing the
signature for a message from the public key and the transcript of the first execu-
tion. The intuition behind the following experiment is that the malicious signer
has to distinguish whether the second signature σb results from the signature
issuing protocol, or if the oracle Σ derived the signature σb from the transcript
of the signature issuing protocol where the honest user gets as input the message
m0.

Definition 5 (Transcript-Independent Signatures). A blind signature scheme
BS has (computationally resp. statistically) transcript-independent signatures
with respect to Σ if for any (efficient resp. unbounded) algorithm S∗trans the prob-
ability that the experiment trans-indBS

S∗trans,Σ
(n) evaluates to 1 is negligibly close to

1/2, where

Experiment trans-indBS
S∗trans,Σ

(n):
b← {0, 1}
(pk, st1,m−1,m0)← S∗,Σtrans(init, 1n)
st2 ← S∗,Σ,〈·,U(pk,m−1)〉1,〈·,U(pk,m0)〉1

trans (issue, st1)
let σ−1 and σ0 be the local outputs of the users in the two
executions (possibly σ−1 = ⊥ and/or σ0 = ⊥)
and let trans−1 be the transcript of the left execution

set m1 = m0 and compute σ1 ← Σ(pk, trans−1,m1)
set (σ−1, σ0, σ1) = (⊥,⊥,⊥) if σ−1 = ⊥ or σ0 = ⊥ or σ1 = ⊥
b∗ ← S∗,Σtrans(guess, st2,m−1, σ−1,mb, σb)
return 1 iff b = b∗.

To define our generic forgery oracle Σ allowing A to break unforgeability we
first outline the idea for the case of Chaum’s blind signature scheme. Assume
that the adversary has already obtained a valid signature for some message m′

by communicating with the signer. Let trans = (y, z) denote the transcript of
this communication. Algorithm Σ(pk, trans,m) for m 6= m′ then searches some



randomness r such that the user’s first message for m and r matches y in the
transcript, i.e., H(m)re mod N = y. Such an r exists by the perfect blindness
and the signature derivation check.3

The above example can be generalized to any blind signature scheme and
the following generic forgery oracle (which only depends on the blind signature
scheme in question):

Definition 6 (Generic Forgery Oracle). For a statistically-blind signature
scheme BS the generic forgery oracle Σ(pk, trans,m) performs the following
steps:

enumerate all values r such that
the user algorithm U(pk,m) for randomness r generates the same
transcript trans when fed with the same signer messages as in trans;
also store all signatures σ the user’s algorithm generates in these executions.

select a value r of the set at random and return the corresponding signature σ
(or return ⊥ if there is no such r).

Proposition 1. Every statistically blind signature scheme, which has statistical
signature-derivation checks, also has statistical transcript-independent signatures
with respect to the generic forgery oracle Σ.

The proof appears in the full version. The idea is that we can safely exchange
the order of messages m−1,m0 in the transcript-independence experiment be-
cause of the blindness property. Then oracle Σ in this experiment simply com-
putes another signature for m1 = m0 from the transcript for a run with the same
message m0 (instead of m−1). By construction of Σ this is perfectly indistin-
guishable from the original signature derived from this transcript. We note that
the signature derivation check and the statistical blindness ensure that failures
of Σ do not interfere with the blindness definition (where there are only two
executions with the user instances).

Given the generic forgery oracle Σ we can now define the “magic” adver-
sary which first plays an honest users communicating with the signer once. If
this single execution yields a valid signature (which is certainly the case when
interacting with the genuine signer, but possibly not when interacting with the
reduction), then the adversary generates another valid message-signature pair
without interaction but using Σ as a subroutine instead.

Definition 7 (Magic Adversary). The magic adversary A for input pk and
with oracle access to the generic forgery oracle Σ and communicating with an
oracle 〈S(sk), ·〉1 is described by the following steps:

pick random messages m′0,m
′
1 ← {0, 1}n

run an execution 〈S(sk),U(pk,m′0)〉 in the role of an honest user

3 Note that blindness for Chaum’s scheme is only guaranteed if the user can verify
that the exponent e is relatively prime to ϕ(N), say, if e is a prime larger than N ;
only then is guaranteed that the function (·)e mod N really is a permutation.



to obtain σ′0 and let trans′0 be the corresponding transcript
if Vf(pk,m′0, σ

′
0) = 1 then let σ′1 ← Σ(pk, trans′0,m

′
1) else set σ′1 ← ⊥

return (m′0, σ
′
0,m

′
1, σ
′
1)

By the completeness of the blind signature scheme the magic adversary, when
attacking the honest signer, returns two valid message-signature pairs, with prob-
ability negligibly close to 1 (there is a probability of at most 2−n that the ad-
versary outputs identical pairs for m′0 = m′1). We also remark that the magic
adversary, when attacking the actual scheme, applies the forgery oracle to de-
rive a signature for the second message using the transcript of the first signature
issuing protocol.

4.2 Impossibility Result

The following theorem states that vanilla black-box reductions to (non-interactive)
cryptographic problems do not provide a meaningful security statement. That
is, if there was such a reduction then the underlying problem would already be
easy. Since we only deal with non-resetting reductions the claim even holds for
schemes with arbitrary round complexity (instead of three-move schemes):

Theorem 1. Let BS be a statistically blind signature scheme that allows sta-
tistical signature-derivation checks. Then there is no vanilla black-box reduction
from unforgeability of BS to a hard non-interactive problem.

Proof. For sake of readability we divide the reduction R into steps, according
to the black-box simulation of the magic adversary in which R takes over the
role of the signer: in mode init the reduction outputs the public key pk and in
mode msgi the reduction creates the i-th protocol message msgi of the signer.
After getting the adversary’s signatures σ0, σ1 in the post-processing step final
the reduction outputs a putative solution x′ for its input y. In each step the
reduction also outputs some state information which is passed on to the next
stage.

Analogously to the reduction R we denote by msgj the step of the honest
user U which on input a public key pk, a message m and the previous message
msgi of the signer, outputs message msgj sent to the signer. Likewise, in mode
finish the user creates the signature from its state and the final message sent by
the signer.

Description of the Meta-Reduction. The meta-reduction M works as follows
(see Figure 2 for the case of three moves). It gets as input an instance y of
the problem. It start to simulate the reduction R on y to derive a public key
pk as well as the first message msg1 on behalf of the signer and a state stmsg1.
Algorithm M first completes an instance of the signature issuing protocol with
R using the program of the honest user on input a random message m0 from
{0, 1}n and some randomness r. Afterwards, it selects another message m′ from
{0, 1}n at random together with some independent randomness r′ and resets the
reduction to the point where R has returned the first message of the signature



Meta-reduction M(y)
let (pk, stinit)←R(init, y)
let (msg1, stmsg1)←R(msg1, stinit)

choose m0 ← {0, 1}n choose m1 ← {0, 1}n
let (msg20, st0msg2)← U(msg2, pk,m0,msg1) let (msg21, st1msg2)← U(msg2, pk,m1,msg1)
let (msg30, st0msg3)←R(msg3, stmsg1,msg20) let (msg31, st1msg3)←R(msg3, stmsg1,msg21)
let σ0 ← U(finish, st0msg2,msg30) let σ1 ← U(finish, st1msg2,msg31)
output x′ ←R(final, st0msg3,m0, σ0,m1, σ1)

Figure 2: Meta-Reduction for Vanilla Reduction (three moves), where trans0 =
(msg1,msg2,msg3) denotes the transcript of the first execution.

issuing protocol. As before, M executes the honest user algorithm on m′ using
the randomness r′.

Now, if the meta-reduction obtains two valid signatures σ0, σ1 from both
executions, then it hands the pairs (m0, σ0), (m1, σ1) to the reduction which
then outputs some x′. The meta-reduction returns x′ and stops. For brevity we
often write RM(y) for this interaction.

Analysis of the Meta-Reduction. The final step is to show that the reduction
R successfully outputs a solution x′, even if given the pairs from M instead of
receiving them from the magic adversary. For this it suffices to show that

Prob
[
y ← I(1n), x′ ← RM(y) : V (x′, y) = 1

∣∣M]
is non-negligible. As outlined above, for this we exploit the transcript-independence
of signatures.

Assume to the contrary that the reduction R outputs a valid solution x′ with
non-negligible probability if R receives two message-signature pairs (m0, σ0),
(m1, σ1) from the magic adversary,

Prob
[
y ← I(1n), x′ ← RA(y) : V (x′, y) = 1

∣∣A magic
]
6≈ 0,

but succeeds only with negligible probability if the message-signature pairs are
generated by M:

Prob
[
y ← I(1n), x′ ← RM(y) : V (x′, y) = 1

∣∣M]
≈ 0.

Then we construct an adversary S∗trans who breaks the transcript independence
of signatures in experiment trans-indBS

S∗,Σ(n).

Description of Adversary S∗trans. Informally, the adversary relays the first execu-
tion between the reduction and the external user instance and resets to reduc-
tion afterwards to answer the second execution. Afterwards S∗trans receives two
message-signature pairs without knowing whether the second signature σ0 has
been derived from the signature issuing protocol or with the help of Σ. We then
use the result of the reduction to distinguish this case.



More formally, the adversary S∗trans generates an instance y ← I(n) of a
cryptographic problem P . It simulates R in a black-box way, which for in-
put y initially outputs a public key pk as well as the first message msg1 and
some state information stmsg1. The algorithm S∗trans selects two random mes-
sage m−1,m0 ∈ {0, 1}n and outputs pk,m−1,m0 according to the transcript-
independence experiment. It stores the first message (from R to U) and relays
the communication between the reduction R and the first external user instance
U(pk,m−1). Then the adversary resets R to the point where R has returned
msg1 and forwards the communication between R and U .

After having finished both executions S∗trans receives two (valid) signatures
(σ−1, σ0) and runs the reductionR in mode final on input (st0msg3,m−1, σ−1,m0, σ0)
to obtain a putative solution x′ of the cryptographic problem P . The final output
of the adversary is b∗ ← V (x′, y).

Analysis of S∗trans. For the analysis recall that the magic adversary, after a sin-
gle interaction, outputs two message-signature pairs (with the help of Σ). In
fact, taking the message-signature pairs (m−1, σ−1) of the first execution to-
gether with the message-signature pair (m0, σ0) derived from Σ in experiment
trans-indBS

S∗,Σ(n) corresponds exactly to the behavior of the magic adversary
(b = 0). Here we take advantage of the fact that the second execution with the
user cannot fail (and force the signatures to be undefined) by our assumption
about the vanilla reduction always making the honest user derive a signature.

On the other hand, during the issuing protocol with the honest user U , the ad-
versary S∗trans resetsR and uses in the second execution the prefix msg1 (obtained
during the signature generation of (m−1, σ−1)) in experiment trans-indBS

S∗,Σ(n).
Therefore the message-signature pairs (m−1, σ−1), (mb, σb) are computed in the
same way as the meta-reductionM does (b = 1). Note that the additional run of
Σ in the transcript-independence experiment cannot make the three signatures
invalid (except with negligible probability), because of the statistical blindness
and the signature derivation checks. More specifically, the statistical blindness
guarantees that the transcript generated with U for message m−1 is (almost
surely) also a potential transcript for m0 = m1 used by Σ. Furthermore, the
signature derivation check tells us that, independently of the message, the tran-
script allows the user to derive a signature (such that Σ, too, will find a valid
random string r for the simulated user with a valid signature). This fact is stated
more formally in the full version. For simplicity we neglect the small error for Σ
returning an invalid signature in the analysis below.

We obtain for the probability that S∗trans outputs the right bit b∗ = b:

Prob[ b∗ = b] = 1
2 + 1

2 · (Prob[ b∗ = 1 | b = 1]− Prob[ b∗ = 1 | b = 0])

According to our construction, b = 0 corresponds to the case where the simula-
tion mimics the behavior of the magic adversary, and b = 1 the setting involving
the meta-reduction. Furthermore, the adversary S∗trans returns b∗ = 1 in the case



that the reduction R returns a valid solution x′ of y. Hence,

Prob[ b∗ = 1 | b = 1]− Prob[ b∗ = 1 | b = 0]

= Prob
[
y ← I(1n), x′ ← RA(y) : V (x′, y) = 1

∣∣A magic
]

− Prob
[
y ← I(1n), x′ ← RM(y) : V (x′, y) = 1

∣∣M]
.

By assumption the difference is non-negligible (because the first probability is
non-negligible and we have assumed that the second probability is negligible).
This, however, contradicts the transcript independence of signatures. ut

5 Impossibility Result for Statistically Blind Signature
Schemes

Here we discuss more general reductions which may reset the adversary and run
several nested executions with multiple copies of the adversary.

5.1 Preliminaries

To build our meta-reduction we will reset the reduction continuously. That is,
whenever the reduction expects a forgery from an instance of the magic adver-
sary, we freeze the scenario and branch into a loop in which the meta-reduction
seeks a second valid message-signature pair. In order to avoid an exponential
blow-up in the running time of such rewinding executions [15], we consider
slightly restricted reductions.

Resetting Reductions with Restricted Cross-Resets. Any reduction in our case is
allowed to run q = q(n) concurrent executions with the copies of the adversary,
each copy resetting at most q times, except that the reduction has to finish the
interaction in the order according to the arrival of the second messages of the
signature issue protocol. That is, consider a three-move signature issuing run
of the reduction with a copy of the adversary playing the honest user. Assume
that the reduction receives the second message in this execution (which has been
sent by the adversary resp. user), and call this execution pending from then on.
We say that the reduction successfully finishes this pending execution if it sends
the third message of the protocol such that the user is able to derive a valid
signature.

The cross-reset restriction now demands that, if the reduction ever finishes
a pending execution successfully, then there is no other execution which has
become pending and has been finished successfully meanwhile. In other words,
between the pending state of an execution and its completion the reduction may
not receive the second message and complete any other execution (for which
the user can compute a signature). We remark that the reduction may decide
to entirely abort a pending execution and is still allowed to finish other pend-
ing executions, as long as the user is unable to produce a signature from that
interaction. A formal definition appears in the full version.



Note that the scheduling of reductions with restricted cross-resets is related to
so-called bounded concurrent (and resettable) executions [3]. In m-bounded con-
current executions the number of instances running simultaneously is bounded
by some fixed function m = m(n) where the bound itself is known by the pro-
tocol. We do not put any a-priori bound on the number of concurrently running
executions, because the number q of such instances depends on the reduction
and is not bounded by a fixed polynomial. We merely restrict the way successful
executions are finished. We also note that we can extend our proof below to allow
a constant number of successfully finished executions between pending runs, but
state and prove the simpler version for sake of readability.

q-wise Independent functions. An adequate measure to thwart reset attacks
are usually pseudorandom functions (e.g., as in [10]). The idea is to make the
randomness of the adversary depend on the communication by computing it as
the output of the pseudorandom function for the communication. In this case,
resetting the adversary essentially yields runs with independent random choices.
Here, we use the same idea but can fall back to the weaker requirement of q-
wise independent functions in order to avoid the additional assumption that
pseudorandom functions exist.

We note that using q-wise independent functions instead of pseudorandom
functions makes the adversary now depend on the reduction. Namely, below we
use q as the number of maximal resets per row. However, since we deal with
black-box reductions this is admissible. We also remark that we can overcome
this dependency by using pseudorandom functions instead of q-wise independent
function.

The New Magic Adversary. We use again the generic forgery oracle from the
vanilla case. But here we augment our “new” magic adversary through a q-
wise independent function (i.e., the random hash function h is given by parts
of the adversary’s randomness). Informally, the adversary again runs the issuing
protocol with the signer in the role of the honest user once. However, it now
generates the message (and the user’s randomness) as the result of the q-wise
independent function applied to the public key and the first message of the
signer. Again, in the case that the single execution yields a valid signature, then
the magic adversary here also creates another valid signature.

As we will later view Σ to be an integral part of the magic adversary and
thus let the adversary provide the randomness s ∈ {0, 1}ψ(n) required by oracle
Σ. We denote this augmented (deterministic) oracle with Σaug which now takes
pk, trans,m and randomness s as input and returns σ. This randomness is also
derived through the q-wise independent function, ensuring consistent answers
for the same data (pk,msg1). We note that the length ψ(n) of this randomness
is only polynomial by construction of the generic forgery oracle:

Definition 8 (Magic Adversary). The magic adversary A = Aq (with pa-
rameter q) for input pk and access to the generic forgery oracle Σaug and com-
municating with an oracle 〈S(sk), ·〉1 works as described in the following steps:



select a hash function h from the family of q-wise independent functions H
run an execution 〈S(sk),U(pk,m′0; r′0)〉 in the role of an honest user, where

(m′0,m
′
1, r
′
0, s
′
0)← h(pk,msg1) is generated as the result of the

q-wise independent function applied to the public key pk and
the first message msg1 of S; let σ′0 denote the resulting signature and
trans′0 the corresponding transcript.

if Vf(pk,m′0, σ
′
0) = 1 then let σ′1 ← Σaug(pk, trans′0,m

′
1; s′0) else set σ′0, σ

′
1 ← ⊥

return (m′0, σ
′
0,m

′
1, σ
′
1)

It follows again from the completeness of BS together with the construction of
the generic forgery oracle that the magic adversary succeeds in the unforgeability
experiment with probability negligibly close to 1.

5.2 Impossibility Result

In the following we extend our result to restricted-cross resets.

Theorem 2. Let BS be a three-move blind signature scheme, which is statis-
tically blind and has statistical signature-derivation checks. Then there is no
resetting (with restricted cross-resets) black-box reduction from unforgeability of
the blind signature scheme BS to a hard non-interactive problem.

The proof appears in the full version. The idea is similar to the vanilla case.
Only here we use the q-wise independent hash function to ensure independent
randomness for runs with the adversary, and we need to take care of the fact
that the meta-reduction now loops to find the second message-signature pair. The
latter can be done in (expected) polynomial time by the assumption about the
restricted resets. Appropriate truncation then yields a meta-reduction running
in fixed polynomial time.

Transcript-independence again guarantees that the redcution cannot distin-
guish answers from the magic adversary from the ones of the meta-reduction.
Formally, one first reduces the case of at most q instances, each with at most q
resets, to a single run by a standard hybrid argument. Then one injects the data
from the transcript-independence experiment into this single run. The signature
derivation check allows to verify (without the help of Σ) if one has successfully
inserted the data in a “good” execution (and not in a run in which the magic
adversary would have failed to produce a forgery).

6 Conclusion

We have shown that for the blind signature schemes of Chaum [11] and of
Pointcheval-Stern [27] finding security reductions to any non-interactive cryp-
tographic problem in the standard model is hard. This class of cryptographic
problems is very broad in the sense that it contains candidates like RSA and
collision-resistant hash functions, and also any combination thereof. This also al-
lows us to make stronger infeasibility claims compared to previous results using
meta-reductions in other areas.



Concerning optimality of our results we remark that:

– Our result can be transfered to the computational blindness case (under ad-
ditional stipulations), thus also ruling out many approaches to revert to com-
putationally blindness to circumvent the results for the statistical schemes.

– Enlarging the class of cryptographic problems to interactive ones is too de-
manding: unforgeability of any blind signature scheme can indeed be securely
reduced to an interactive problem in the standard model by simply assuming
that the scheme is unforgeable. It is, however, unclear if and how decisional
problems can be subsumed under our class of non-interactive (computa-
tional) problems.

– Extending the result to protocols with more moves is impossible in light of
Okamoto’s scheme [26] with four moves in the standard model, based on a
non-interactive assumption.

Hence, our result fits well into our current knowledge about constructing blind
signatures and shows close boundaries for potential improvements on the effi-
ciency or assumptions.
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