
Security Analysis of the Extended Access
Control Protocol for Machine Readable Travel

Documents

Özgür Dagdelen1 and Marc Fischlin2

1 Center for Advanced Security Research Darmstadt - CASED
oezguer.dagdelen@cased.de

2 Darmstadt University of Technology, Germany
marc.fischlin@gmail.com

Abstract. We analyze the Extended Access Control (EAC) protocol
for authenticated key agreement, recently proposed by the German Fed-
eral Office for Information Security (BSI) for the deployment in ma-
chine readable travel documents. We show that EAC is secure in the
Bellare-Rogaway model under the gap Diffie-Hellman (GDH) problem,
and assuming random oracles. Furthermore, we discuss that the protocol
achieves some of the properties guaranteed by the extended CK security
model of LaMacchia, Lauter and Mityagin (ProvSec 2008).

Keywords provable security, authenticated key exchange, German elec-
tronic ID card, machine readable travel document.

1 Introduction

Authenticated Key Exchange (AKE) is an important cryptographic primitive to
establish a secure key between two parties. It is currently deployed in practical
protocols like SSL and TLS, and it will, for instance, also be used in the future
German identity cards, and for machine readable travel documents [6].

Security Models for AKE. Bellare and Rogaway [5] were the first to provide a
profound model to analyze AKE protocols (BR model). Security according to
their notion provides strong guarantees, ensuring that the derived keys remain
secure even in presence of active adversaries and multiple concurrent executions.
Alternative models have later been suggested to guarantee further desirable se-
curity properties.

The most prominent alternatives stem from Canetti and Krawczyk [7], mainly
augmenting the BR model by modeling leakage of session states of execution (CK
model), and from LaMacchia et al. [13] extending the CK model (eCK model)
to include also, for example, forward secrecy and key-compromise impersonation
resilience. The former property guarantees that session keys are still protected,
even if the adversary later learns long-term secrets like a signature key. The other

property ensures that leaking the long-term secret does not help to make the
party spuriously believe to talk to a different party. Although seemingly stronger,
all these models do not form a strict hierarchy, due to technical details [2,8,9,12].

The Extended Access Control Protocol. The Extended Access Control (EAC)
protocol was proposed by the German Federal Office for Information Security
(BSI) for the German passports (ePASS) in 2005. It is meant to provide a se-
cure key establishment between a chip card and a terminal, using a public-key
infrastructure. The new version of EAC, recommended for the German ID card
to be introduced in November 2010, is presented in this paper (with some slight
simplifications for the sake of presentation, but without violation of security
properties of the overall protocol). EAC serves the purpose to give access con-
trol to the sensitive data (e.g., stored finger prints). The BSI has planned to
integrate EAC in the German ID card (ePA) to have a complete protection of
all recorded personal data.

The EAC protocol consists of two phases: The Terminal Authentication (TA)
which is a challenge-response protocol in which the terminal signs a random
challenge (and an ephemeral public key) with its certified signing key; and the
Chip Authentication (CA) in which both parties derive a Diffie-Hellman key
from the terminal’s ephemeral key and the chip’s static certified key, and where
the chip finally computes a message authentication code to authenticate.

We note that the EAC key exchange protocol is one component in the security
framework for the identity cards and passports. See Figure 1 for an overview.
Another sub protocol is the password authenticated connection establishment
(PACE) [3, 6] to ensure a secure key exchange between the card and a reader
(which sits in between the card and the terminal). The PACE protocol should be
executed first, and the communication between the card and the terminal is then
secured through the EAC protocol. We note that the reader and the terminal
should also be connected securely through, say, SSL/TLS, before the keys in the
EAC protocol between the chip and the terminal are derived. We comment on
security issues related to the composition at the end of the paper.

Analyzing the EAC Protocol. We analyze the EAC protocol as an authenticated
key exchange protocol in the BR security model. We show that the protocol
is secure in this model, assuming that the underlying cryptographic primitives
are secure (signatures, certification, and message authentication codes), that
the deployed hash function for key derivation behaves as a random oracle, and
assuming the gap Diffie-Hellman assumption [4]. The latter assumption says
that it is infeasible to solve the computational Diffie-Hellman problem even if
one has access to a decisional Diffie-Hellman oracle. This assumption is for
example equivalent to the standard computational DH assumption for pairing-
friendly elliptic curves since the decisional Diffie-Hellman problem is easy in
such groups [11].

Our analysis is in terms of concrete security, identifying exactly how weak-
nesses of the EAC protocol relate to attacks on the underlying assumptions

Fig. 1. EAC Protocol for Machine Readable Travel Documents

and primitives. We note that the eCK model is not applicable to show secu-
rity of the EAC protocol. This is mainly because the chip card does not use
ephemeral secrets due to its limited resources, and consequently forward secrecy
cannot be achieved without further assumptions (like tamper-resistant hard-
ware). However, we still show that the EAC protocol achieves key-compromise
impersonation resilience.

Organization. In Section 2 we define the BR security model (including a registra-
tion step). In Section 3 we describe the EAC protocol, and show its security and
the underlying assumptions in Section 4. We discuss further security properties
in Section 5.

2 Security Model

We analyze the EAC protocol in the real-or-random security model of Bellare
and Rogaway [5]. Our notation follows the one in [3] for PACE closely. Some
adaptations from the password-based setting to the certified-key scenario are
necessary, though.

Attack Model. The model considers a set of honest participants, also called users.
Each participant may run several instances of the key agreement protocol, and
the j-th instance of a user U is denoted by Uj or (U, j). Each user holds a long-
lived key pair (sk, pk) and we assume that the public key is registered with a
certification authority (e.g., some approved organization for identity cards). The
certification authority somehow the well-formedness of the keys, e.g., that they
belong to an approved group. To obtain a session key the protocol P is executed

between two instances of the corresponding users. An instance is called an ini-
tiator or client (or resp. respondent or server) if it sends the first (resp. second)
message in the protocol. For sake of distinctiveness we often denote the client
by A and the server by B.

Upon successful termination we assume that an instance Ui outputs a session
key key, the session ID sid, and a user ID pid identifying the intended partner.
In the case of the EAC protocol we will assume that the partner identity is
determined through the certificates exchanged during the protocol. We note that
the session ID usually contains the entire transcript of the communication but,
for efficiency reasons, in the EAC protocol it only contains a fraction thereof.
We discuss the implications in more detail in Section 3.4.

We consider security against active attacks where the adversary’s goal is to
distinguish between genuine keys, derived in executions between honest parties,
and random keys. This is formalized by allowing a (single) test query in which
the adversary either sees the genuine key of the session, or a randomly and
independently chosen key (real-or-random). It suffices to consider a single test
query only since the case for multiple test queries for many sessions follows by a
hybrid argument [1], decreasing the adversary’s advantage by a factor equal to
the number of test queries.

Each user instance is given as an oracle to which an adversary has access,
basically providing the interface of the protocol instance. By assumption, the
adversary is in full control of the network, i.e., decides upon message delivery.
Initially, the adversary is given all (registered) public keys of the users. These
users are called honest whereas the other users, for which the adversary registers
chosen public keys, are called adversarially controlled.3 The adversary can make
the following queries to the oracles:

Execute(A, i,B, j) causes the honest users A and B to run the protocol for
(fresh) instances i and j. The final output is the transcript of a protocol
execution. This query simulates a passive attack where the adversary merely
eavesdrops the network.

Send(U, i,m) causes the instance i of honest user U to proceed with the protocol
when having received message m. The output is the message generated by
U for m and depends on the state of the instance. This query simulates
an active attack of the adversary where the adversary pretends to be the
partner instance.

Reveal(U, i) returns the session key of the input instance. The query is answered
only if the session key was generated and the instance has terminated in
accepting state and the user is not controlled by the adversary. This query
models the case when the session key has been leaked. We assume without
loss of generality that the adversary never queries about the same instance
twice.

Corrupt(U) enables the adversary to obtain the party’s long-term key sk. This
is the so-called weak-corruption model. In the strong-corruption model the

3 We remark that the adversary may register public keys chosen by honest parties on
behalf of adversarially controlled users.

adversary also obtains the state information of all instances of user U . The
corrupt queries model a total break of the user and allow to model forward
secrecy. Henceforward, user U is considered to be adversarial controlled.

Test(U, i) is initialized with a random bit b. Assume the adversary makes a
test query about (U, i) during the attack and that the instance has termi-
nated in accepting state, holding a secret session key key. Then the oracle
returns key if b = 0 or a random key key′ from the domain of keys if b = 1.
If the instance has not terminated yet or has not accepted or the user is
adversarial-controlled, then the oracle returns ⊥. This query should deter-
mine the adversary’s success to tell apart a genuine session key from an
independent random key. We assume that the adversary only makes a single
Test query during the attack.

Register(U∗,pk∗) allows the adversary to register a public key pk∗ in the name
of a new user (identity) U∗. The user is immediately considered to be ad-
versarial controlled.

In addition, since we work in the random oracle model, the attacker may also
query a random hash function oracle.

We assume that the adversary always knows if an instance has terminated
and/or accepted. This seems to be inevitable since the adversary can send further
messages to check for the status. We also assume that the adversary learns the
session id and the partner id immediately for accepting runs.

Partners, Correctness and Freshness. We say that instances Ai and Bj are
partnered if both instances have terminated in accepting state with the same
output for sid and each pid identifies the other party as the alleged partner.
Instance Ai is called a partner to Bj and vice versa. Any untampered execution
between honest users should be partnered and, in particular, the users should
end up with the same key (this correctness requirement ensures the minimal
functional requirement of a key agreement protocol).

Neglecting forward security for a moment, an instance (U, i) is called fresh
if U is not controlled by the adversary, there has been no Reveal(U, i) query
at any point, neither has there been a Reveal(B, j) query where party Bj is a
partner to Ui, nor is (U, i) partnered with an adversarial-controlled party, nor has
somebody been corrupted. Else the instance is called unfresh. In other words,
fresh executions require that the session key has not been leaked (by neither
partner) and that no Corrupt-query took place.

To capture forward security we refine the notion of freshness and further
demand from a fresh instance (U, i) as before that the session key has not been
leaked through a Reveal-query, and that for each Corrupt(U)-query there has
been no subsequent Test(U, i)-query involving U , or, if so, then there has been
no Send(U, i,m)-query for this instance at any point. In this case we call the
instance fs-fresh, else fs-unfresh. This notion means that it should not help if the
adversary corrupts some party after the test query, and that even if corruptions
take place before test queries, then executions between honest users are still
protected (before or after a Test-query).

AKE Security. The adversary A eventually outputs a bit b′, trying to predict
the bit b of the Test oracle. We say that the adversary wins if b = b′ and instance
(U, i) in the test query is fresh (resp. fs-fresh). Ideally, this probability should be
close to 1/2, implying that the adversary cannot significantly distinguish random
keys from session keys.

To measure the resources of the adversary we denote by t the number of
steps of the adversary, i.e., its running time, (counting also all the steps required
by honest parties); qe the maximal number of initiated executions (bounded by
the number of Send- and Execute-queries); qh the number of adversarial queries
to the hash oracle. We often write Q = (qe, qh) and say that A is (t, Q)-bounded.

Define now the AKE advantage of an adversary A for a key agreement pro-
tocol P by

AdvakeP (A) := 2 · Prob[A wins]− 1

AdvakeP (t, Q) := max
{

AdvakeP (A)
∣∣∣ A is (t, Q)-bounded

}
.

The forward secure version is defined analogously and denoted by Advake−fsP (t, Q).

3 The Extended Access Control (EAC) Protocol

The EAC protocol, or more precisely, the composition of the Terminal Authen-
tication (TA) protocol and the Chip Authentication (CA) protocol, allows mu-
tual authentication between a terminal and a chip and the establishment of an
authenticated and encrypted connection. The next subsections present the two
main components of the Extended Access Control protocol. Afterwards we define
the EAC protocol and comment on deviations in the presentation here compared
to the original protocol.

3.1 Protocol Description of the Terminal Authentication

The Terminal Authentication demands a proof of authority by the terminal and
thereby allows the chip to check whether the terminal is allowed to access sen-
sitive data. This evidence works with the use of a Public Key Infrastructure
(PKI). Terminals are given a certificate specifying the access authority and a
signed public key. By a challenge-response step, the terminal renders the chip
the permission to read (some of) the chip’s data. In this step the terminal signs,
together with a nonce sent by the chip, its compressed ephemeral key, which is
used in the following Chip Authentication protocol. This step, therefore, some-
what “connects” the TA and the CA phase.

From a cryptographic point of view the TA protocol requires a compression
function Compr : {0, 1}∗ → {0, 1}λ, and a secure signature scheme, consisting of
three efficient algorithms S = (SKGen,Sig,SVf) to generate a key pair (sk, pk)←
SKGen(1λ) such that s← Sig(sk,m) allows to sign arbitrary messages m with the
secret key sk, and such that the signatures can subsequently be verified via the

verification algorithm and the public key pk, returning a bit d ← SVf(pk,m, s).
The scheme should be correct in the sense that for any (sk, pk) ← SKGen(1λ) ,
any message m, any s ← Sig(sk,m) we always have SVf(pk,m, s) = 1. We will
later describe the security requirements for these primitives.

We also assume a certification authority CA, modeled like the signature
scheme through algorithms CA = (CKGen,Certify,CVf), but where we call the
“signing” algorithm Certify. This is in order to indicate that certification may be
done by other means than signatures. We assume that the keys (skCA, pkCA) of
the CA are generated at the outset and that pkCA is distributed securely to all
parties (including the adversary). We also often assume that the certified data is
part of the certificate. We note that the CA may, as usual, check for correctness
of the data it certifies, e.g., verifying well-formedness of certified keys or checking
the identity of a key owner; however, for security purposes we allow the adversary
to register arbitrary (well-formed) keys.

In the Terminal Authentication protocol the terminal T and the chip C per-
form the following steps:

1. T sends a certificate chain to C including its certificate along with the certifi-
cates of the Document Verifier (DV) and Country Verifiying CA (CVCA).

2. C is able to verify the certificate chain of CVCA, DV and the certificate certT
of the terminal. Then C extracts T ’s public key pkT from the certificate.4

3. T generates an ephemeral Diffie-Hellman key pair (eskT , epkT ,DC) for do-
main DC and sends the compressed ephemeral public key Compr(epkT) to
C.

4. C randomly chooses a nonce r1 ← {0, 1}λ and sends it to T .
5. T signs the identifier IDC of C along with the nonce r1 and the compressed

public key Compr(epkT), i.e.

s = Sig(skT , (IDC , r1,Compr(epkT))).

The signature s is sent to C by T .
6. C checks if VfSig(pkT , s,m) = 1 for m = (IDC , r1,Compr(epkT)), using the

static public key pkT of the terminal.

Remarks. We do not consider auxiliary data sent by the terminal as specified
in [6], since it does not offer any additional security for the key exchange. The
delivery of auxiliary data is insignificant and omitting these data from the de-
scription above facilitates the analysis and understanding of the TA protocol.

The static domain parameter DC contains the (certified) group description
for which the chip and terminal execute the Diffie-Hellman computations. The
identifier of the chip IDC is defined by the compressed ephemeral public key
Compr(epkC) used in the PACE protocol before the Terminal Authentication is
invoked. Thus, one establishes a link between the PACE protocol and Terminal
Authentication, but decoupling of protocols like PACE and EAC again eases
4 For sake of simplicity, we will sometimes use certT and mean therewith the whole

certificate chain including the certificates of CVCA and DV.

the analysis of EAC. The composition of the protocols does not lead to any
significant advantage in terms of the BR model, since active adversaries are
potentially able to control the card reader and act genuinely for the PACE and
SSL/TLS protocol executions.

Further we assume that the parties abort an execution whenever they re-
ceive an unexpected message including either wrong format or false sequence of
messages. This holds also for the following protocols.

3.2 Protocol Description of the Chip Authentication

The Chip Authentication protocol provides an authenticity check of chips, as
well as a secure session key for encryption and integrity of subsequently trans-
mitted messages. Unlike TA, there is no challenge-response action. Instead, the
chip computes the Diffie-Hellman value with its static key and the ephemeral key
chosen by the terminal, and both parties then hash this value together with a
random nonce. Thereby, the chip obtains the session key for encryption and au-
thentication (and an extra key for authentication in the key confirmation phase).
Now, the chip computes a message authentication code over the ephemeral pub-
lic key of the terminal, using the additional authentication key as the secret,
and sends this authentication token to the terminal. The terminal can verify the
authenticity by checking the validity of the token with the newly derived key.

In this step we need a message authentication code which, similar to signature
schemes, is modeled by a tupleM = (MKGen,MAC,MVf) of efficient algorithms
and works like a signature scheme, except that pk equals the secret key sk and is
also kept secret. We also let H1, H2 and H3 denote the hash functions modeled
as random oracles. For implementations we assume that we are given a random
oracle H and then set Hi(·) = H(〈i〉 ||·) for some fixed-length encoding 〈i〉 of
i = 1, 2, 3.

In the Chip Authentication protocol the terminal T and the chip C perform
the following steps:

1. C sends its static public key pkC , and the domain parameters DC to T ,
together with a certificate for pkC .5

2. After T has checked the validity of pkC , T sends its ephemeral public key
epkT to C.

3. C applies the compression function Compr to the received ephemeral public
key by T and compares this to the compressed public key received during
the Terminal Authentication execution.

4. Both C and T compute the shared key as K = DH(epkT , skC) resp. K =
DH(pkC , eskT).6

5 Formally, the chip card sends further data which are irrelevant for the security of
EAC as an AKE protocol.

6 Here, DH(ga, b) = gab for group element ga and exponent b. In the following we
overload the function and occasionally also write DH(ga, gb) = gab, where g is clear
from the context.

5. C picks a random r2 ← {0, 1}λ and derives session keys computing

KENC = H1(K, r2), KMAC = H2(K, r2), K′MAC = H3(K, r2)

where we assume thatH3 generates the same distribution on keys as MKGen(1λ).
Afterwards C prepares an authentication token T = MAC(K′MAC, (epkT ,DC))
and sends it along with r2 to T .

6. After receiving r2 the terminal T is able to derive the session keys as well
by computing the secret keys

KENC = H1(K, r2), KMAC = H2(K, r2), K′MAC = H3(K, r2).

Next the validity of authentication token T is checked by T with K′MAC.

3.3 Protocol Description of the Extended Access Control

After the introduction of the Terminal Authentication and Chip Authentica-
tion protocols, we define the Extended Access Control protocol. See Figure 2
for an overview. When viewed as an authenticated key exchange protocol the
parties output KENC,KMAC as the session key(s), the session id consists of the
authenticated values (epkT , pkC , r2,DC) in the final messages, and the partner id
is assumed to be empty (see below for remarks).

We remark that in this paper we place a scope on the security analysis of
EAC. Performance analysis and design choices of the protocol are not investi-
gated here.

3.4 Remarks

Some remarks about the changes compared to the original protocol in [6] and
about underlying assumptions are in order.

Session and Partner IDs. We substitute the common definition of session IDs
which include the whole transcript in sid by a “more loose” version. In order to
spare the parties from storing the transcript data in the execution —see [10] for
solutions to this problem— we define the session IDs by the ephemeral public key
of the terminal, the chip’s static key, and the nonce r2 chosen by the chip (and
the domain DC). This loose partnering approach here may allow an adversary
now to run a man-in-the-middle attack making the honest parties assume they
communicate with someone else, even though they hold the same key.

We note that the terminal identifies the chip as a partner in pid (i.e., its public
key), whereas the chip outputs an empty partner ID. The latter is necessary if
the adversary can register adversarial-controlled terminals (as is the case in
our model), because such a terminal could basically act in a man-in-the-middle
attack substituting the honest terminal’s data in the TA phase by its own. If
the adversary cannot register terminals then the chip can output the certified
public-key pkT as the reliable partner ID.

Chip : Terminal Authentication Terminal :
pkCA, IDC , skC , pkC , certC pkCA, certT , IDC , skT

certT←−−−−−−−−−−−−−−
If CVf(pkCA, certT) = 0, abort

extract pkT (from certT)
generate (eskT , epkT ,DC)

Compr(epkT)
←−−−−−−−−−−−−−−

r1
$←− {0, 1}λ

r1−−−−−−−−−−−−−−→
s = Sig(skT , (IDC , r1,Compr(epkT)))

s←−−−−−−−−−−−−−−
If SVf(pkT , s, (IDC , r1,Compr(epkT))) = 0, abort

Chip : Chip Authentication Terminal :

certC , pkC ,DC−−−−−−−−−−−−−−→ If CVf(pkCA, certC) = 0, abort
epkT←−−−−−−−−−−−−−−

verify that epkT matches Compr(epkT)
K = DH(epkT , skC) K = DH(pkC , eskT)

r2
$←− {0, 1}λ

KENC = H1(K, r2)
KMAC = H2(K, r2)
K′MAC = H3(K, r2)
T = MAC(K′MAC, (epkT ,DC))

T, r2−−−−−−−−−−−−−−→
KENC = H1(K, r2)
KMAC = H2(K, r2)
K′MAC = H3(K, r2)
If MVf(K′MAC,T, (epkT ,DC)) = 0, abort

key=(KENC,KMAC) key=(KENC,KMAC)
sid = (epkT , pkC ,DC, r2) sid = (epkT , pkC ,DC , r2)
pid = ∅ pid = pkC

Fig. 2. Extended Access Control (EAC) protocol

The final authentication step. The original scheme uses the output key KMAC

for the MAC computations (token) in the key-agreement protocol, too. This
version, however, may not be provable secure in our security model. The reason
is that with the Test query the adversary obtains a random or the genuine secret
key, including KMAC. Then the adversary can possibly test whether this key
part KMAC together with epkT matches the transmitted value. For the general
analysis, we therefore suggest to derive an ephemeral MAC keyK′MAC asK′MAC =
H3(K, r2) and use this key for authentication. A similar strategy is used in the
formal analysis of PACE [3].

Different versions of EAC protocol. In [6] the German Federal Office for Infor-
mation Security (BSI) proposes two versions of EAC. Both versions give implicit
authentication of the data stored on the chip. The second version provides addi-
tionally explicit authentication of the chip. This is realized by the authentication

token in Step 5 and 6 in the Chip Authentication. We present and analyze the
second version of EAC since it allows the composition order executing the Chip
Authentication protocol at the end, and this version will be implemented in the
electronic German ID card in November 2010.

Encryption by PACE. Basically the whole communication between the chip and
the terminal is secured by the session key obtained in the in advance executed
PACE protocol instance and presumably SSL/TLS. PACE is responsible for a
secure communication between card reader and the chip. The communication
security between card reader and the terminal should be assured by SSL/TLS.
For our analysis, we do not even use these additional provisions of security means;
the EAC protocol alone is already strong enough.

Passive Authentication. In [6] the German Federal Office for Information Se-
curity (BSI) recommends to insert a Passive Authentication step between the
Terminal Authentication and the Chip Authentication. In this step the chip’s
certificate (data security object) issued by the document signer is transmitted to
the terminal to verify the authenticity of the chip. However, Passive Authentica-
tion cannot detect cloning. Therefore, the execution of the Chip Authentication
protocol is necessary. To simulate the original workflow of EAC, we substitute
the Passive Authentication step by adding a certificate while the chip sends his
static public key. This abstracts out the essential part for AKE security.

4 Security of the EAC Protocol

In this section we state the underlying security assumptions and prove EAC to
be secure.

4.1 Security Assumptions

As remarked above we carry out our security analysis assuming an ideal hash
function (random oracle model). Basically, it says that the three hash functions
H1, H2 and H3 act like random functions to which all parties have access.

For the compression function Compr we assume either that this function is
injective (errorless compression), or at least second-preimage resistant. In any
case, it should be hard to find another preimage to a given random image map-
ping to the same value. For instance, this property is fulfilled by injective and
collision-resistant functions, even though second-preimage resistance imposes a
weaker condition on the function than collision-resistance. We discuss in the full
version that even this requirement can be weakened even further provided that
collisions are “appropriately intertwined” with the Diffie-Hellman problem. For
example, a projection to the x-coordinate of the public key in case of elliptic
curves, suggested in [6], remains secure as well.

Definition 1 (Second-Preimage-Resistance). For a function H : {0, 1}∗ →
{0, 1}λ let denote the probability that algorithm A given input m ← D (drawn
according to distribution D) outputs m′ such that m 6= m′ and H(m) = H(m′).

We usually demand that AdvSecPre
H,D (A) is negligible, and call the function

then second-preimage resistant.
For the signature scheme we need unforgeability which says that no outsider

should be able to forge the signers signature. More formally, a signature scheme
S = (SKGen,Sig,SVf) is (t, Qs, ε)-unforgeable if for any algorithm A running in
time t the probability that A outputs a signature to a fresh message on behalf
of an arbitrary public key is Advforge

S (t, Qs) (which should be negligible small)
while A has access (at most Qs times) to a singing oracle. That is, the adversary
may ask for signatures of chosen messages.

We define unforgeability for a certification scheme analogously, and denote
the advantage bound of outputting a certificate of a new value in time t after see-
ingQc certificates by Advforge

CA (t, Qc). We assume that the Certification authority
only issues unique certificates in the sense that for distinct parties the certifi-
cates are also distinct; we also assume that the authority checks that the keys are
well-formed group elements. As for MACs, we denote by Advforge

M (t, Qm, Qv) the
bound on the advantage of finding a valid MAC for a new message after making
Qm queries to MAC and Qv queries to a verification oracle (which is necessary
since verification also uses the secret key).

In addition, we need some known number-theoretic assumptions which we
briefly introduce next. To prevent (mainly) passive adversaries, merely eaves-
dropping the network, we need the common computational Diffie-Hellman as-
sumption. To show security against active adversaries, possibly contributing to
the DH steps in the Chip Authentication protocol, we need a stronger assump-
tion, denoted gap Diffie-Hellman problem [4]. This assumption basically says that
solving the computational DH problem for (ga, gb) is still hard, even when one
has access to a decisional oracle DDH(X,Y, Z) which returns 1 iff DH(X,Y) = Z,
and 0 otherwise.

4.2 Security Proof

This section gives a security analysis for the Extended Access Control (EAC)
protocol.

Theorem 1. In the random oracle model we have

AdvAKE
EAC(t, Q)

≤ qe ·AdvSecPre
Compr,KG(t) +

(
qe
2

)
· (1
q + 2−λ+1) + qe ·Advforge

M (t+O(λ), 1, qe)

+qe ·Advforge
S (t+O(λ · qe log qe), qe) + Advforge

CA (t+O(λ), qe)

+2q2e ·AdvGDH(t+O(λ · qeqh log qeqh), (2qe + 1)(qh + qe))

where λ denotes the security parameter (and bit length of nonces), q = q(k)
the group order, Q = (qe, qh) the number of executions and hash computations,
respectively, and KG the algorithm which generates a ephemeral public key for
the terminal.

Proof. The proof of correctness, that untampered executions between honest
parties yield the same accepting output, is straightforward from the correctness
of the underlying primitives. Therefore, it remains to show the AKE security
property.

We show security via the common game based approach, gradually changing
the original attack Game0 (with random test bit b) via experiments Game1;
Game2; . . . to a game where the adversary’s success probability to predict b
is bounded by the guessing probability of 1

2 . Each transition from Gamei to
Gamei+1 will change the adversary’s probability only slightly (depending on
cryptographic assumptions), thus showing that the success probability in the
original attack cannot be significantly larger than 1

2 . (Formally, we can condition
on all “bad” events ruled out in the previous games not to happen.)

Due to space limitations, here we provide a proof sketch given in Figure 3
listing the modifications in each game. For a complete and comprehensive proof,
we refer to our full version of this paper.

Games Probability loss Description/Restriction Reduction to

Game0 — original attack on the EAC protocol —

Game1 qe ·AdvSecPre
Compr,KG(t) no collision in the compression function

Compr
Second-Preimage

Resistance of Compr

Game2

(
qe
2

)
· 1
q

no collisions among (epkT , r1) values cho-
sen (resp. received) by honest terminals

Birthday paradox

Game3

(
qe
2

)
· 2−λ no collisions among (h, r1) values received

(resp. chosen) by honest chip cards
Birthday paradox

Game4 qe ·Advforge
S (t+O(λ ·

qe log qe), qe)
abort if there exists an adversary A who is
able to forge a valid signature on behalf of
an honest terminal

Unforgeability of the
signature scheme

Game5 Advforge
CA (t+O(λ), qe) abort if the adversary in some execution

submits a new long-term public key with a
valid certificate such that this key has not
been registered with the authority before

Unforgeability of the CA
scheme

Game6 q2e ·AdvGDH(t+O(λ ·
qeqh log qeqh), (2qe + 1)(qh +

qe))

no adversary makes a hash query for a
Diffie-Hellman key computed by an hon-
est chip, allegedly in an execution with an
honest terminal

GDH problem

Game7 q2e ·AdvGDH(t+O(λ ·
qeqh log qeqh), (2qe + 1)(qe +

qh))

no adversary makes a hash query for a
Diffie-Hellman key computed by an honest
terminal, allegedly in an execution with an
honest chip

GDH problem

Game8

(
qe
2

)
· 2−λ no r2 collisions for honest chip cards Birthday paradox

Game9 qe ·Advforge
M (t+O(λ), 1, qe) abort if there are two honest parties with

both accepting sessions yielding (K; r2)
but which are not partnered

Unforgeability of the MAC
scheme

Fig. 3. Overview of the games within the proof

5 Discussion

In this section we put the security guarantees provided by the BR model into
perspective of the eCK security model of LaMacchia et al. [13], which in turn
extends the model of Canetti and Krawczyk [7]. Among others we analyze the
protocol in terms of forward secrecy and key-compromise impersonation. We also
briefly discuss questions related to the composition of the security protocols for
identity cards. Due to lack of space, the full discussion including the analysis is
provided in the full version. However, here we itemize the results.

Forward Secrecy. It is obvious that, whenever the card discloses its long term
secret key, or the terminal its ephemeral key, the adversary can deduce easily
the session key. On the other hand, assuming that the hardware of the ePA
is leakage-resistant, and that the terminal immediately and securely deletes
ephemeral keys when no longer required and that these keys cannot be leaked
meanwhile, previous sessions cannot be attacked anymore.
We also remark that, if the adversary only knows the terminal’s long-term
secret key, but lacks knowledge of the terminal’s ephemeral key and of the
card’s long-term secret, then the session key of an execution between honest
parties is still secret.

Leakage-Resilience. The card only uses internal randomness r1, r2 which is
later sent in public. Leaking these information does not harm to the security
of the protocol, even if leaked in advance. Leaking the terminal’s ephemeral
key, however, does breach security. However, it is recommended to hedge
terminals against leakage of ephemeral keys, whereby this risk should be
minimized.

Leakage of Secrets. Due to the asynchronous structure of the protocol, an
adversary who gets hold of the (long-term) secret key of either the terminal
or the chip card, is unable to make the respective party accept in an attempt
to stand in for the party in the different role. First, the chip’s long-term secret
is of no avail to sign on behalf of a valid terminal, and, second, by using the
long-term secret of a terminal, one is still unable to derive the Diffie-Hellman
key (session key).

Acknowledgments

We thank the anonymous reviewers of ISC’10 for helpful comments.
This work was supported by the German Federal Office for Information Secu-

rity (BSI) and CASED (http://www.cased.de). Marc Fischlin is also supported
by the Emmy Noether Program Fi 940/2-1 of the German Research Foundation
(DFG). The content and views expressed in this article are those of the authors
and do not necessarily reflect the position or policy of the supporting authorities.

References

1. Michel Abdalla, Pierre alain Fouque, and David Pointcheval. Password-based au-
thenticated key exchange in the three-party setting. PKC 2005: 8th International

Workshop on Theory and Practice in Public Key Cryptography, Lecture Notes in
Computer Science, pages 65–84. Springer-Verlag, 2005.

2. Colin Boyd, Yvonne Cliff, Juan Gonzalez Nieto, and Kenneth G. Paterson. Efficient
One-Round Key Exchange in the Standard Model. ACISP ’08: Proceedings of the
13th Australasian conference on Information Security and Privacy, pages 69–83.
Springer-Verlag, 2008.

3. Jens Bender, Marc Fischlin, and Dennis Kuegler. Security Analysis of the PACE
Key-Agreement Protocol. Information Security Conference (ISC) 2009, Volume
5735 of Lecture Notes in Computer Science, pages 33–48. Springer-Verlag, 2009.

4. Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the Weil
Pairing. Advances in Cryptology — Asiacrypt 2001, Volume 2248 of Lecture Notes
in Computer Science, pages 514–532. Springer-Verlag, 2001.

5. Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm for
Designing Efficient Protocols. Proceedings of the Annual Conference on Computer
and Communications Security (CCS). ACM Press, 1993.

6. Advanced Security Mechanism for Machine Readable Travel Documents Extended
Access Control (EAC). Technical Report (BSI-TR-03110) Version 2.02 Release
Candidate, Bundesamt fuer Sicherheit in der Informationstechnik (BSI), 2008.

7. Ran Canetti and Hugo Krawczyk. Analysis of Key-Exchange Protocols and Their
Use for Building Secure Channels. Advances in Cryptology — Eurocrypt 2001,
Lecture Notes in Computer Science, pages 453–474. Springer-Verlag, 2001.

8. Cas J.F. Cremers. Formally and Practically Relating the CK, CK-HMQV, and eCK
Security Models for Authenticated Key Exchange. Number 2009/253 in Cryptology
eprint archive. eprint.iacr.org, 2009.

9. Cas J.F. Cremers. Session-state Reveal Is Stronger Than Ephemeral Key Reveal:
Attacking the NAXOS Authenticated Key Exchange Protocol. ACNS ’09: Proceed-
ings of the 7th International Conference on Applied Cryptography and Network
Security, pages 20–33. Springer-Verlag, 2009.

10. Marc Fischlin and Anja Lehmann. Delayed-Key Message Authentication for
Streams. Theory of Cryptography Conference (TCC), Volume 5978 of Lecture
Notes in Computer Science. Springer-Verlag, 2010.

11. Antoine Joux and Kim Nguyen. Separating Decision Diffie-Hellman from Com-
putational Diffie-Hellman in Cryptographic Groups. J. Cryptology, 16(4):239–247,
2003.

12. Kim kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock. Examining
Indistinguishability-Based Proof Models for Key Establishment Protocols. Advances
in Cryptology — Asiacrypt 2005, pages 585–604. Springer-Verlag, 2005.

13. Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger Security of
Authenticated Key Exchange. Number 2006/073 in Cryptology eprint archive.
eprint.iacr.org, 2006.

