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Abstract. Physical isolation provides tenants in a cloud with strong
security guarantees, yet dedicating entire machines to tenants would go
against cloud computing’s tenet of consolidation. A fine-grained isolation
model allowing tenants to request fractions of dedicated hardware can
provide similar guarantees at a lower cost.

In this work, we investigate the dynamic provisioning of isolation at
various levels of a system’s architecture, primarily at the core, cache, and
machine level, as well as their virtualised equivalents. We evaluate recent
technological developments, including post-copy VM migration and OS
containers, and show how they assist in improving reconfiguration times
and utilisation. We incorporate these concepts into a unified framework,
dubbed SafeHaven, and apply it to two case studies, showing its efficacy
both in a reactive, as well as an anticipatory role. Specifically, we describe
its use in detecting and foiling a system-wide covert channel in a matter of
seconds, and in implementing a multi-level moving target defence policy.
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1 Introduction

The growing use of shared public computational infrastructures, most notably
in the form of cloud computing, has raised concerns over side channel and covert
channel attacks (collectively termed illicit channels). These are formed using
unconventional and often discreet means that circumvent current security mea-
sures. This gives an attacker an edge over conventional attacks, which, while often
effective, are well-characterised, conspicuous, and actively guarded against. To
date, demonstrations of illicit channels have remained largely academic, with
occasional influences on mainstream security practices. Nevertheless, the threat
of such channels continues to grow as knowledge on the subject increases.

Hardware illicit channels are fundamentally the product of the unregulated
sharing of locality, be it spatial or temporal. Side channels occur when a process
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inadvertently leaks its internal state, whereas covert channels are built by con-
spiring processes that actively leak state in an effort to transmit information.
To break hardware locality, processes must be confined through what has been
termed soft or hard isolation [38]. Hard isolation involves giving a process exclu-
sive access to hardware, preventing illicit channels by removing their prerequisite
of co-location. This approach is limited by the physical hardware available, yet it
offers the strongest level of isolation. In contrast, soft isolation allows hardware
to be shared but attempts to mask its characteristics.

Soft isolation often incurs an ongoing performance overhead, with some frac-
tion of the machine’s capacity committed to maintaining the isolation. Hard
isolation does not typically incur a maintenance cost, but it can lead to under-
utilised hardware [26]. Nevertheless, underused capacity is not truly lost, and can
potentially be used to perform functionally useful computations. Conversely, the
maintenance costs of soft isolation consume resources.

The viability of hard isolation as a general mitigation technique depends
on three factors, namely the availability of hardware, the degree of utilisation
supported and the cost of reconfiguration. Modern architectures are hierarchical
and vast, with different regions of their hierarchy offering varying granularities of
isolation. Isolated resources can thus be provisioned at a finer granularity than
dedicating machines to each tenant, which enables higher rates of utilisation. The
cost of reconfiguration depends on the type of isolation being provisioned. Cheap
reconfiguration allows isolation to be procured temporarily and on-demand, fur-
ther improving utilisation rates by minimising the duration for which resources
are reserved, which translates into lowered operating costs for tenants requesting
isolation

This work presents the following contributions:

– an investigation into the types of hard isolations present within modern hierar-
chical computer architectures, and the types of migration mechanisms avail-
able at each level, namely at the core, cache, and machine level, and their
virtualised equivalents,

– the creation of a framework, dubbed SafeHaven, to orchestrate migration
and distributed monitoring,

– an evaluation of the use of a series of maturing technologies, namely post-
copy live VM migration, OS-level containers and hardware counters, and their
application in improving a mitigation’s agility and utilisation, and finally,

– an application of SafeHaven in mitigating a system-wide covert channel, in
implementing a multi-level moving target defence, and in measuring the cost
of migration at each level of the hierarchy.

2 Background and Related Work

The issue of isolating processes has been historically described as the confine-
ment problem [25]. The following is an overview of the various ways in which
confinements can be broken and upheld.
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Attacks. Confinements can be broken at different levels of a system architec-
ture, such as the cache level (L1 [32], L2 [41] and L3 [42]), virtual machine
level [33], system level [4,40], or network level [10], through various forms of
attack. Attacks are characterised by type (side or covert), scope (socket, sys-
tem or network-wide), bandwidth and feasibility. Illicit channels can be broadly
categorised as being time-driven, trace-driven or access-driven [38]. Time-driven
attacks rely on measuring variations in the aggregate execution time of opera-
tions. Trace-driven cache attacks are based on analysing an operation’s evolu-
tion over time. Access-driven attacks allow an attacker to correlate effects of the
underlying system’s internal state to that of a co-located victim.

Covert channels are generally simpler to construct due to the involved parties
cooperating. Fast channels have been shown at the L2 cache level [41], which in
a virtualised environment would require VCPUs to share related cores, as well
as across virtual machines [40]. Scheduling algorithms can also be leveraged to
form a channel by modulating the time for which a VM [30] or process [20] is
scheduled.

Defences. Mitigations can broadly be categorised as being passive, reactive or
architectural. Passive countermeasures attempt to preserve isolations through
an indiscriminate process. For example, disabling hardware threads will elimi-
nate a class of attacks [32] at the cost of performance. Alternatively, one can
use a scheduling policy that only co-schedules entities belonging to the same
process [24,39] or coalition of virtual machines [34]. Policies can also be altered to
limit their preemption rate, restricting the granularity of cache-level attacks [38].
Other countermeasures include periodically flushing caches [45], changing event
release rates [6], and intercepting potentially dangerous operations [35].

Reactive countermeasures attempt to detect and mitigate attacks at runtime.
Frameworks for distributed event monitoring [28] can be fed events generated
via introspection [14], or can enforce a defined information flow policy [34].

Architectural mitigations are changes in hardware or to the way in which it is
used. One example is Intel’s introduction of specialised AES instructions, which
insulate the operations’ internal state from external caches [18]. Other solu-
tions include randomly permuting memory placement [39], rewriting programs
to remove timing variations [5,13], reducing the precision of system clocks [19,32]
or normalising timings [26], cache colouring [24] and managing virtual machines
entirely in hardware [23].

3 Isolation and Co-Location

We briefly introduce the fundamental notions of co-location and migration using
a simple graph model, with which the relationship between different forms of
isolation can be represented.

3.1 Locality

A confinement delineates a boundary within which entities can potentially share
state. Entities are themselves confinements, leading to a hierarchy.
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Definition 1 (Locality). A confinement (or locality) with a name N, a type
Γ , a set of capabilities C, and a set of sub-localities Sb is denoted by Γ :N(C)Sb.

Capabilities regulate how confinements can modify each other, with operations
on confinements only being allowed when they share a capability. We denote a
locality X as being a sub-locality of D using X∈D. This is extended to the notion
of transitive containment X∈+ D, where X∈+ D

def= X∈D ∨ ∃X’∈D. X∈+ X’.

Example 1 (Cache Hierarchy). Intel CPUs often implement simultaneous multi-
threading, with two hardware threads (C) sharing an L1 cache. A dual-core
system with per-core L2 caches and a common L3 cache can be described as:

L3:0() [L2:0() [L1:0() [C:0() [] ,C:1() []]] ,L2:1() [L1:1() [C:2() [] ,C:3() []]]]

Definition 2 (Co-Location). Two localities X and Y are co-located within D
(denoted by X

D←→ Y) if X∈D ∧ Y∈D. The localities are transitively co-located
in D (denoted by X

D⇐⇒ Y) if X∈+ D ∧ Y∈+ D.

We denote the movement of a locality X to a parent confinement D as X � D.

Example 2 (Cache Co-Location). For the hierarchy defined in Example 1, given
that a process Pi executes on a hardware thread C:i, process P0 is transitively
co-located with (i) P1 via L1:0, L2:0 and L3:0, and (ii) P2 via L3:0.

3.2 Confinements

Figure 1a lists the primary types of isolations with which this work is con-
cerned, which are broadly categorised as being static or dynamic. The former
are architectural elements such as caches and networks, which, while offering
some degree of configuration, exist at fixed locations in relation to each other.
The latter are isolations that can be created, destroyed or otherwise moved
around. Figure 1b is an example of a containment graph, with possible migra-
tion paths depicted through arrows 1–7, where paths denote how an isolation’s
parent can be changed. The mechanisms implementing each path will be detailed
in Sect. 4.2.

An additional form of confinement is that produced by soft isolation [38],
which attempts to decrease the amount of information that can be inferred from
shared state, simulating a plurality of disjoint isolations. This often incurs an
ongoing overhead, the severity of which varies depending on the technique being
used [38]. For example, the clflush instruction, which flushes all cached versions
of a given cache line, has been shown as an effective enabler of side-channel
attacks [42,44]. Disabling the instruction would impede attacks. While clflush
is an unprivileged instruction that does not generate a hardware trap [44], closer
inspection of its semantics shows that its execution depends upon a clflush flag
within the machine’s cpuid register being asserted [22]. This register is generally
immutable, yet virtualisation can mask it [3]. Unfortunately, hardware-assisted
virtualisation, such as that used by KVM, bypasses the virtualised cpuid register,
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Static Confinements

Type Description Can Contain

Net Network Net, M
M Machine L3, OS
L3 L3 Cache L2
L2 L2 Cache L1
L1 L1 Cache C
C Physical core VC, PE, Con, VM
OS Operating Sys. PE, Con, VM

Dynamic Confinements

Type Description Can Contain

VC Virt. CPU VC, PE, Con, VM
VM Virt. machine VC, OS
PE Control group Con, P
Con Container P
P Process -

(a) Confinement types

Net:192.168.0.0/24

M:Intel2

L3:0

L2:1

L1:1

C:HT3

VC:V1

PE:PE1

C:HT2

VC:V0

PE:PE0

L2:0

L1:0

C:HT1

VC:V1

PE:PE1

P:P3

C:HT0

VC:V0

PE:PE0

M:Intel1

L3:0

L2:1

L1:1

C:HT3

VC:V3

PE:PE3

P:P2

C:HT2

VC:V2

PE:PE2

L2:0

L1:0

C:HT1

VC:V1

PE:PE1

P:P1

C:HT0

VC:V0

PE:PE0

P:P0

vm0 vm1 vm2

3 4

1 2 6 5

7

(b) Graph of 2 × M, 3 × VM. Edges denote con-
tainment. 1-7 denote migration paths.

Fig. 1. Example of a containment hierarchy, and various confinement types.

limiting one to using an emulated VCPU such as QEMU. While we found this to
be effective in disabling clflush (an invalid opcode exception was thrown on
its invocation), a QEMU VCPU is substantially slower than its KVM equivalent,
leading to a continuous overhead.

4 SafeHaven

With the basic terminology and notation required to model locality and co-
location introduced, we now describe SafeHaven, a framework designed to
facilitate the creation, deployment and evaluation of isolation properties.

4.1 Overview

SafeHaven is a framework that assists in creating and deploying a network of
communicating probe and agent processes. Sophisticated system-wide detectors
can be built by cascading events from various probes at different system levels.
A crucial aspect of this model is that detectors can be both anticipatory as well
as reactive, meaning that they can either trigger isolations as a precaution or as
a countermeasure to a detected attack.

SafeHaven is implemented in Erlang [16] due to its language-level support
for many of the framework’s requirements, with probes and agents as long-lived
distributed actor processes communicating their stimuli through message pass-
ing. Other innate language features include robust process discovery and commu-
nication mechanisms and extensive support for node monitoring and error report-
ing. SafeHaven was developed in lieu of adapting existing cloud-management
suites such as OpenStack [31] so as to focus on the event signalling and migra-
tion aspects of the approach. Erlang’s functional nature, defined communication
semantics and use of generic process behaviours help to simplify the automatic
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generation and verification of policy enforcement code, paving the way for future
formal analysis.

Probes and Agents. A probe is an abstraction for an event source, typically
implemented in SafeHaven as an Erlang server process. Agents are manage-
ment probes that can modify one or more confinements.

Algorithm 1.

Capabilities. An agent can create, destroy or migrate a locality if it owns its
associated capability. Capabilities serve to describe the extent of an agent’s influ-
ence. To exert influence on locations outside its scope, an agent must proxy its
requests through an external agent that controls the target scope. For example, a
probe within a tenant’s virtual machine may ask an agent within the underlying
cloud provider for an isolated VC, which then changes the VC to C mappings.

Communication. Communication within SafeHaven is carried out using
Erlang’s message passing facilities. Processes can only message others that share
a token (a magic cookie [16]) that serves as a communication capability.

Confinement Discovery. The view of an arbitrary agent within a cloud is
generally limited to its immediate environment and that of other agents with
which it is co-operating. For example, a tenant’s agents will be restricted to the
processes and structures of their OS environment. Similarly, the cloud provider
views VMs as black boxes. Knowledge of their internal structures is limited to
what is exposed by the tenants’ agents, bar the use of introspection or disassem-
bly mechanisms.

To facilitate the creation of dynamic policies, SafeHaven provides a series of
reconnaissance (or recon) functions that query the underlying system at runtime
and build a partial model of the infrastructure, translating it into a graph of first-
class Erlang objects. Algorithm 1 demonstrates an agent’s use of SafeHaven’s
recon functions. Handles to the system’s running processes (Line 1) and available
CPU cores (Line 2) are loaded into lists of locality structures that can be
manipulated programmatically. This example describes a simple property that
partitions processes to different Cs based on their user ID (Lines 5–9). The
procedure for pinning (or migrating) processes (Line 10) will be described in the
next section.
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4.2 Migrating Confinements

An agent’s core isolation operator is migration. Agents perform both objec-
tive and subjective moves [11], as they can migrate confinements to which they
belong as well as external confinements. The following section describes methods
with which one can migrate system structures, namely VCPUs, process groups,
processes, containers and virtual machines.

Virtual CPUs (VC). Virtual CPUs in KVM [2] can be pinned to different sets
of CPUs by means of a mask, set through libvirt [3]. VCs can only be migrated
to cores to which the parent VM has been assigned.

Process/Control Groups (PE). Pinning processes to CPUs via affinities has a
drawback in that unprivileged processes can change their own mappings at will,
subverting their confinement. Instead, control groups (managed via cpusets)
[27] are used to define a hierarchy of C partitions. Assigning processes to a par-
tition confines their execution to that C group, which cannot be exited through
sched setaffinity. All processes are initially placed within a default root con-
trol group. Control groups can be created, remapped or destroyed dynamically.
Destroying a group will not automatically kill its constituent processes, rather
they will revert to that group’s parent.

Processes and Containers (P, Con). Process migration moves a process from
one PE to another, using mechanisms that vary based on the level at which
the control groups are co-located. Arbitrary processes can be moved directly
amongst PE groups within the same OS using cpusets, which is fast and can
be performed in bulk. Conversely, if the target PE exists within a different OS,
additional mechanisms must be used to translate the process’ data structures
across system boundaries. In SafeHaven, this is handled using criu [1], which
enables process checkpoint and restore from within user-space. Recent versions of
the Linux kernel (3.11 onwards) have built-in support for the constructs required
by criu. Migration preserves a process’ PE containment structure.

Cross-OS process migration comes with some limitations. Trivially, processes
that are critical to their parent OS cannot be migrated away. Other restrictions
stem from a process’ use of shared resources. For instance, the use of interprocess
communication may result in unsafe migrations, as the process will be discon-
nected from its endpoints. Similarly, a process cannot be migrated if it would
cause a conflict at the destination, such as in the case of overlapping process
IDs or changing directory structures. This problem is addressed by launching a
process with its own namespaces, or more generally, by using a container such as
LXC or Docker [1]. Live migration for LXC containers is still under active devel-
opment. An alternative stop-gap measure is to perform checkpoint and restore,
transferring the frozen image in a separate step [37].

Virtual Machines (VM). SafeHaven uses KVM for virtualisation, managed
via libvirt. In the case of a cloud infrastructure, the provider’s agents exist within
the base OS, running alongside a tenant’s VM. The framework can easily be
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retargeted to Xen-like architectures, with hypervisor-level agents residing within
dom0. The choice of hypervisor largely determines what type of instrumentation
can be made available to probes.

Similarly to process migration, VMs can be migrated locally (changing C
pinnings) using PE groups, or at the global level (changing OS). The latter
is performed using live migration , backed by a Network File System (NFS)
server storing VM images. Recently, experimental patches have been released
that enable post-copy migration through libvirt, which also requires patching the
kernel and QEMU1. Using post-copy migration, a virtual machine is immediately
migrated to its destination, and pages are retrieved from the original machine on
demand. The drawback of post-copy migration is that a network failure can cor-
rupt the VM, as its state is split across machines. Hybrid migration reduces this
risk by initially using standard pre-copy and switching to post-copy migration if
the system determines that the transfer will not converge, which would happen
when memory pages are being modified faster than they can be transferred.

Other Operations. In addition to being migrated, VM, P and Con isola-
tions can be paused in memory, which can serve as a temporary compromise in
cases where an imminent threat cannot be mitigated quickly enough through
migration.

4.3 Allocation

To determine a destination for a confinement that must be migrated, an agent
broadcasts an isolation request to its known agents. If one of these agents finds
that it can serve the request whilst maintaining its existent isolation commit-
ments, it authorises the migration. The problem of placement is equivalent to
the bin-packing problem [7], and a greedy allocation policy will not produce an
optimal allocation. Nevertheless, our scheme is sufficiently general so as to allow
different allocation strategies. For example, targets can be prioritised based on
their physical distance. Prioritisation can also be used in hybrid infrastructures,
where certain targets may be more effective at breaking specific types of co-
locations than others. For example, a cloud provider can opt to mix in a number
of machines with various hardware confinements and lease them on demand.

5 Case Studies

The previous section detailed the architecture of SafeHaven and the migra-
tion techniques it employs. The following section describes the application and
evaluation of these methods in the context of illicit-channel mitigation. All exper-
iments were carried out on two Intel i7-4790 machines (4 cores × 2 hardware
threads) with 8 GB RAM. VMs were allocated 2 VCs and 2 GB of RAM, and
had 40 GB images. A third computer acted as an NFS server hosting the virtual

1 https://git.cs.umu.se/cklein/libvirt.

https://git.cs.umu.se/cklein/libvirt
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machines’ images (average measured sequential speeds: 54 MB/s read, 70 MB/s
write), and all machines were connected together via a consumer-grade gigabit
switch. VMs were connected to the network through a bridged interface. All sys-
tems were running Ubuntu 14.04 LTS with the 3.19.0-rc2+ kernel and libvirtd
version 1.2.11, patched to enable post-copy support (Sect. 4.2).

5.1 Case 1: System-Wide Covert Channel

The following section describes the use of SafeHaven as an active countermea-
sure to thwart a system-wide covert-channel.

Overview. Wu et al. [40] demonstrated that performing an atomic operation
spanning across a misaligned memory boundary will lock the memory bus of
certain architectures, inducing a system-wide slowdown in memory access times.
This effect was then used to implement a cross-VM covert channel.

Detection. Detecting the channel’s reader process is difficult, as it mostly per-
forms low-key memory and timing operations, and would execute in a co-located
VM, placing it outside the victim tenant’s scope. Conversely, writer processes
are relatively conspicuous, in that they perform memory operations that are
atomic and misaligned. Atomic instructions are used in very restricted contexts,
and compilers generally align a program’s memory locations to the architec-
ture’s native width. Having both simultaneously can thus be taken as a strong
indication that a program is misbehaving.

Although an attack can be detected by replicating a reader process, a much
more direct, precise and efficient method is to use hardware event counters [21]
to measure the occurrence of misaligned atomic accesses. Recent versions of
KVM virtualise a system’s performance monitoring unit, allowing VMs to count
events within their domain [15]. One limitation of hardware counters is that
their implementation is not uniform across vendors, complicating their use in
heterogeneous systems. In addition, while event counters are confined to their
VM and can only be used by privileged users, one must ensure that they do not
themselves enable attacks (for instance, by exposing a high resolution timer).

Policy. Algorithm 2 outlines the behaviour of the agents participating in the
mitigation. Each agent takes two arguments, namely the isolation that they are
monitoring and a list of additional cooperating agents. When a probe detects
that a process P is emitting events at a rate exceeding a threshold ε, it notifies its
local agent. If the environment is not already isolated, then the agent attempts
to locate an isolated resource amongst its own existing tenants. Failing this,
the cloud provider is co-opted into finding an isolated machine and resolving
the request at the virtual machine level. If a process is mobile, then the cloud
provider can opt to create a new isolated VM to which the process can be
migrated, rather than migrating the source machine.
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Algorithm 2.

The degree of isolation required is regulated by the isolD(X) predicate,
which checks whether X is isolated within D. Evaluating this accurately from
within the tenant’s scope requires additional information from the cloud agent
regarding its neighbours. The strictest interpretation of isolation would be to
allocate a physical machine to each VM requesting isolation. Another approach
is to stratify isolation into different classes determined by user access lists [12],
or to only allow a tenant’s isolated VMs to be co-located with each other.

If an isolated destination cannot be found immediately, then soft isolation
must be used as a fallback strategy. Note that soft isolation only has to disrupt
the channel until hard isolation is achieved. For example, rather than migrating
the locality requesting isolation, one can evict its co-residents, applying soft iso-
lation during their eviction. A simple, general but intrusive method would be to
pause the process until isolation is obtained. This should be reserved for creating
temporary isolations during fast migration operations. A more targeted mitiga-
tion may attempt to degrade the attacker’s signal-to-noise ratio by flooding the
memory bus with its own misaligned atomic memory accesses. Finally, one may
deploy a system such as BusMonitor [35] on a number of machines and migrate
VMs requesting isolation to them. The problem with the latter solutions is that
they must be changed with each discovered attack, whereas a migration-based
approach would only require a change in the detector.

Implementation and Evaluation. The policy was implemented in Safe-
Haven as a network of Erlang server processes, with the detector running as a
separate process and taking two parameters, namely (i) a set of system processes→
P to be scanned, and (ii) a duration τ within which the scan must be performed.
Hardware counters were accessed using the Performance Application Program-
ming Interface (PAPI) [29] library, with calls proxied through an Erlang mod-
ule using Native Implemented Functions (NIF) [16]. The test machines exposed
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a native event type that counts misaligned atomic accesses (LOCK CYCLES:
SPLIT LOCK UC LOCK DURATION [21]). Conversely, another machine to
which we had access, namely an AMD Phenom II X6, was found to lack such a
combined event type. In this case, one would have to measure misaligned accesses
and atomic operations independently, which can lead to more false positives.

The procedure for measuring a process’ event emission rate is to attach a
counter to it, sleep for a sample time φ, and read the number of events generated
over that period of time. This is repeated for each process in

→
P. The choice of

φ will affect the detector’s duty cycle. Setting φ = τ/|→P| guarantees that each
process will have been sampled once within each τ period, but the sampling
window will become narrower as the number of processes increases, raising the
frequency of library calls and consequently CPU usage. Setting a fixed φ produces
an even CPU usage, but leads to an unbounded reaction time.

We tested our hypothesis regarding the infrequency of misaligned atomic
accesses by sampling each process in a virtualised and non-virtualised environ-
ment over a minute during normal execution. Most processes produced no events
of the type under consideration, with the exception of certain graphical appli-
cations such as VNC, which produced spikes on the order of a few hundreds per
second during use. We then measured the emission rate of the attack’s sender
process using the reference implementation of Wu et al. [40], compiled with its
defaults. This was found to emit ≈ 1.4 × 106 events per second in both environ-
ments, with attacks for 64-byte transmissions lasting 6 ± 2 s.

Figure 2a shows the detector’s CPU usage (measured directly using top)
against varying φ on shifting the detector’s logic into a compiled C probe and
enumerating processes directly from /proc/. To fully encompass the detector’s
overhead, we pinned the virtual machine to a single VCPU. At φ = 10 ms, over-
head peaked at a measured 0.3 %. This was confirmed by executing the CPU-
intensive blackscholes computation from the PARSEC benchmark suite [8] in
parallel with the detector, and observing a speed-up proportional to φ. Figure 2b
describes how reaction time varied against the number of processes being moni-
tored, where reaction time was measured as the time elapsed between the start of
an attack and its detection. The reaction time was measured for 133 ≤ |→P| ≤ 200.
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The size of
→
P was raised by spawning additional processes that periodically wrote

to an array. The attack was started at random points in time.

Mitigation. Once a potential attack is detected, it must be isolated. The per-
formance of process migration will be discussed in further detail in Sect. 5.2. For
now, we will focus on the different modes of VM migration.

Table 1. Summary of detection and mitigation times (s).

Phase Parameters Min Max Geometric mean Arithmetic mean

Detect τ = 1 s 0.0148 3.16 0.54 0.72

τ = 2.5 s 0.0272 2.69 1.20 1.46

Migrate Post-copy 1.2813 2.13 1.47 1.48

Detect & Post-copy & τ = 1 s 1.296 5.29 2.01 2.20

Migrate Post-copy & τ = 2.5 1.309 4.82 2.67 2.93

Figure 3 illustrates the worst case times taken to perform a single VM live
migration using pre-copy, hybrid and post-copy while it executed various work-
loads from the PARSEC suite. Migrations were triggered at random points
during the benchmark’s execution, with 6 readings per benchmark and migra-
tion mode. The host machines were left idle to reduce additional noise. Solid bars
represent the time taken for the VM to resume execution at the target machine,
and the shaded area denotes the time spent copying over the remainder of the
VM’s memory pages after it has been moved.

Pre-copy’s performance was significantly affected by the workload being exe-
cuted, with canneal never converging. Hybrid migration fared better as it always
converged and generated less traffic. Post-copy exhibited the most consistent
behaviour, both in terms of migration time as well as generated traffic. During the
course of our experiments, we found that attempting to start a migration imme-
diately in post-copy mode would occasionally trigger a race condition. This was
remedied by adding a one second delay before switching to post-copy. Neverthe-
less, VMs migrated using post-copy resumed execution at the target in at most
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2.13 s, and 1.51 s on average, which includes the delay. Total migration time and
data transferred were also consistently low, averaging 20 s and 2 GB, respectively.

Table 1 summarises the results. Based on the detector’s reaction times and
post-copy’s switching time, and assuming that a target machine has already been
identified, a channel can be mitigated in around 1.3 s under ideal conditions, 5.3 s
in the worst case, and in just under 3 s on average.

Conclusion. We have shown how hardware event counters can be used to detect
an attack efficiently, quickly and precisely, and how post-copy migration con-
siderably narrows an attack’s time window. Additional improvements can be
obtained by integrating event counting with the scheduling policy, where the
event monitor’s targets are changed on context switching. This would eliminate
the need to sweep through processes and avoids missing events.

5.2 Case 2: Moving Target Defence

The following describes the use of SafeHaven in implementing a passive and
preventive mitigation, specifically, a moving target defence.

Overview. The moving target defence [46] is based on the premise that an
attacker co-located with a victim within a confinement D requires a minimum
amount of time α(D) to set up and perform its attack. Attacks can thus be
foiled by limiting continuous co-location with every other process to at most
α(D). The defence is notable in that it does not attempt to identify a specific
attacker, being driven entirely on the basis of co-location.

Policy. Algorithm 3 describes the moving target defence as a generalisation of
the formulation given by Zhang et al. [46]. The policy assumes the existence of
three predicates, namely: (i) H(T), the time required to migrate a locality of type
T, (ii) α(D), the time required to attack a process through D, and (iii) τ(P), the
duration for which a supplied predicate P holds. The following section attempts
to establish practical approximations for the aforementioned predicates.

Algorithm 3.

Defining H ().H() must be able to predict the cost of a future migration. In
addition, H() varies based on the destination of a migration, thus requiring that
the predicate be refined. We estimate the next value of H() using an exponential
average [36], expressed as the following recurrence relation:

Hn+1(T � D) = hηn(T � D) + (1 − h)Hn(T � D)

where ηn() is the measured duration of a migration, and 0 ≤ h ≤ 1 biases
predictions towards historical or current migration times. We take h = 0.5.
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Defining α(). A precise predicate for α() is difficult to define, as it would
require a complete characterisation of the potential attacks that a system can
face, with knowledge of the state of the art at most bounding the predicate. In
the absence of a perfect model, we adopt a pragmatic approach, whereby the
duration of co-locations (and, by association, the migration rate) is determined
by the overhead that a tenant will bear, as this is ultimately the limiting factor.

Defining τ ( ⇐⇒ ). A tenant can determine the co-location times for processes
within its domain, but is otherwise oblivious to other tenants’ processes. In the
absence of additional isolation guarantees from the cloud provider, τ( ⇐⇒ ) must
be taken as the total time spent at a location, timed from the point of entry.

Propagating Resets. The hierarchical nature of confinements can be lever-
aged to improve the moving target defence. Migrations at higher levels will
break co-locations in their constituents. Thus, following a migration, an agent
can propagate a directive to its sub-localities, resetting their τ( ⇐⇒ ) predicates.
Propagation must be selective. For example, while process migration to another
machine will break locality at the OS and C level, VM migration only breaks
cache and machine-wide locality, and leaves the OS hierarchy intact. Similarly,
a lower locality can request isolation from a higher-level parent to trigger a bulk
migration action, which can resolve multiple lower-level migration deadlines.

Implementation and Evaluation. Similarly to the previous case study, a
two-tiered system of agents is used. Agents are given a set of distinct locations
which are guaranteed to be disjoint, which is necessary for the mitigation to
work, as otherwise migrations would not break co-location.

Table 2. Migration times for different isolation types and paths (ms).

Table 2 lists the migration times measured when migrating containers and
VMs through each migration path (paths 1–7 in Fig. 1b) whilst executing var-
ious benchmarks from PARSEC, with the hosts being otherwise idle. Given
its consistent behaviour, we only considered post-copy migration when mov-
ing VMs. The timings for Con migration were broken down into its phases.
To keep Con migration independent from the cloud provider, container images
were transferred to their target using rsync. This was by far the dominant factor
in Con migration times, and can largely be eliminated through shared storage.
The initial value of H0() for each path was derived from the geometric mean of
the migration times.
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Fig. 4. Predictions of H() against measured migration times.

We evaluated the relationship between performance and migration frequency
on the system running at capacity. On the first machine, three VMs were
assigned benchmarks to execute. A fourth was set as a migrating tenant, running
each benchmark listed in Table 2. A fifth VMs for cross-VM process migration,
and was kept idle. The second machine ws configured with three tenants run-
ning benchmarks and two idle VMs. Table 3 in Appendix A lists the geometric
means of the benchmarks’ running times, with the All column denoting the time
required for all of the migrating tenant’s benchmarks to complete. Figure 4 shows
the predicted and actual migration times for the first migration operations, using
the H0() values derived previously. Network effects and thrashing on the NFS
server introduced a significant degree of variability. In summary, we found that
migration operations generally had no discernible effect on the neighbouring
tenants, although we posit that this would not hold for oversubscribed systems.
Migrations at the C and VC level had no significant effect on performance. Con
and VM migration did not appear to affect neighbouring tenants, but clearly
affected their own execution. Migrating the VM every 30 s more than doubled
its benchmark’s running time (note that at this migration frequency, the VM
was involved in a migration operation for two-thirds of its running time).

Conclusion. We have investigated the core components of a multi-level mov-
ing target defence, and examined the cost of migration at each level. Lower-level
migrations can be performed at high frequency, but break the fewest co-locations,
whereas the opposite holds at higher levels. Restricting the moving target defence
to a single level limits its ability to break co-location. For example, while VM
migration will break co-locations with other tenants, it cannot break the OS-
level co-locations formed within it. Process and container migration can break
co-location through every level, yet offline migration results in a significant down-
time, rendering its application to a moving target defence limited. The advent
of live process migration will thus help in making this mitigation pathway more
viable.
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5.3 Other Policies

HomeAlone. HomeAlone [43] uses a Prime-Probe attack to monitor cache
utilisation, and a trained classifier to recognize patterns indicative of shared
locality. This can be used to implement a hypervisor-independent version of the
isol() predicate described in Sect. 5.1, or to detect adversarial behaviour.

Network Isolation. Networks can harbour illicit channels [9,10]. Isolation at
this level can be achieved via a combination of soft and hard isolation, with
trusted machines sharing network segments and traffic normalisers [17] monitor-
ing communication at the edges.

6 Conclusion

In this work, we examined the use of migration, in its many forms, to dynami-
cally reconfigure a system at runtime. Through the SafeHaven framework, we
described and evaluated the use of migration to implement an efficient and timely
mitigation against a system-wide covert-channel attack. We also demonstrated
how a moving target defence can be enhanced by considering multiple levels and
granularities of isolation, examining the costs associated with migrating entities
at each level, and showing how performance and granularity are correlated.

A Appendix: Migration Frequency and Performance

Table 3. Effect of migration frequency on performance when running at capacity.
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