
Clara: Partially Evaluating
Runtime Monitors at Compile Time?

Tutorial supplement

Eric Bodden1 and Patrick Lam2

1 Technische Universität Darmstadt, Germany
2 University of Waterloo, Ontario, Canada

eric.bodden@cased.de

Abstract. Clara is a novel static-analysis framework for partially eval-
uating finite-state runtime monitors at compile time. Clara uses static
typestate analyses to automatically convert any AspectJ monitoring as-
pect into a residual runtime monitor that only monitors events triggered
by program locations that the analyses failed to prove safe. If the static
analysis succeeds on all locations, this gives strong static guarantees.
If not, the efficient residual runtime monitor is guaranteed to capture
property violations at runtime. Researchers can use Clara with most
runtime-monitoring tools that implement monitors as AspectJ aspects.

In this tutorial supplement, we provide references to related reading ma-
terial that will allow the reader to obtain in-depth knowledge about the
context in which Clara can be applied and about the techniques that
underlie the Clara framework.

1 Introduction

It is challenging to implement runtime-verification tools that are expressive,
nevertheless induce only little runtime overhead. It is now widely accepted that,
to be expressive enough, runtime-verification tools must be able to track the
monitoring state of different objects or even combinations of objects separately.
Maintaining these states at runtime is costly, especially when the program under
test executes monitored events frequently.

Even worse, to be reasonably confident that a program does not violate
the monitored property, programmers must monitor many different program
runs. The more code locations a program contains at which the program may
violate the monitored property, the more test cases one may need to execute to
appropriately cover all possible execution paths through these code locations.
Paired with potentially slow runtime monitors, this goal may be hard if not
impractical to achieve.

We therefore developed the Clara [9] framework to partially evaluate run-
time monitors at compile time. Partial evaluation brings two main benefits:

? This work was supported by CASED (www.cased.de).



1. The partially evaluated monitors usually induce a much smaller runtime
overhead than monitors that are fully evaluated at runtime.

2. The partial evaluation can drastically reduce the number of code locations
that one needs to consider when looking for code that may cause a property
violation. This helps programmers to tell apart useful from useless test cases.

As we show in our accompanying research paper [17], Clara’s partial-evaluation
algorithms can often prove that a given program can never violate the monitored
property. In these cases, monitoring becomes entirely obsolete.

Clara was designed such that it poses minimal restrictions on the runtime-
verification tool that generates the runtime monitor. Clara works with virtually
all tools that generate runtime monitors in the form of AspectJ aspects.

In this paper we recapitulate Clara’s architecture, explain its major design
decisions and give pointers to further in-depth reading material.

2 Architecture of Clara

Clara targets two audiences: researchers in (1) runtime verification and (2)
static typestate analysis. Clara defines clear interfaces to allow the two com-
munities to productively interact. Developers of runtime verification tools simply
generate AspectJ aspects annotated with semantic meaning, in the form of so-
called “Dependency State Machines”. Static analysis designers can then create
techniques to reason about the annotated aspects, independent of the monitor’s
implementation strategy.

Figure 1 gives an overview of Clara. A software engineer first defines (top
right of figure) finite-state properties of interest, in some finite-state formal-
ism for runtime monitoring, such as Extended Regular Expressions or Linear-
Temporal Logic, e.g. using JavaMOP [18] or tracematches [1]. The engineer then
uses some specification compiler such as JavaMOP or the AspectBench Com-
piler [4] (abc) to automatically translate these finite-state-property definitions
into AspectJ monitoring aspects. These aspects may already be annotated with
appropriate Dependency State Machines: we extended abc to generate annota-
tions automatically when transforming tracematches into AspectJ aspects. Other
tools, such as JavaMOP, should also be easy to extend to generate these anno-
tations. If the specification compiler does not yet support Dependency State
Machines, the programmer can easily annotate the generated aspects by hand.

Clara then takes the resulting annotated monitoring aspects and a program
as input. Clara first weaves the monitoring aspect into the program. The De-
pendency State Machine defined in the annotation provides Clara with enough
domain-specific knowledge to analyze the woven program. The accompanying
research paper [17] summarizes Clara’s predefined analyses; further details can
be found in previous work [10,11,14] and the first author’s dissertation [9]. The
result is an optimized instrumented program that updates the runtime monitor
at fewer locations. Sometimes, Clara optimizes away all updates, which proves
that the program cannot violate the monitored property.



Clara

abc compiler

abc compiler,
JavaMOP, . . .

tracematches,
PTLTL, FTLTL,

ERE, . . .

compile & weave

program
AspectJ aspects annotated

with Dependency
State Machines

specification compiler

finite-state specification

static analysis engine

partitioning

ranking heuristics

optimized instru-
mented program

collaborative optimized
instrumented program

potential failure
points (ranked)

programmer

component designer,
QA engineer, . . .

runtime
monitor

test-run

inspect

hand-write

define

Fig. 1: Overview of Clara

In addition, Clara supports Collaborative Runtime Verification [13]. In Col-
laborative Runtime Verification, users execute differently-configured versions of
the program under test; each version only contains partial monitoring code. Col-
laborative Runtime Verification interacts smoothly with the static analyses.

Finally, Clara includes a set of built-in ranking heuristics [15]. These heuris-
tics rank all program points that Clara reports as “potential point of failure”
according to a computed confidence value. This confidence value enables Clara
to prioritize program points where the program most likely violates the stated
typestate property. Program points at which a violation is still possible, but not
likely, will show up further down the ranked list. In addition, Clara associates
with each potentially property-violating program point all other program points
that may have contributed to this violation, enabling programmers to easily
inspect the context of the violation.

Clara is available as open-source software at http://bodden.de/clara/,
along with extensive documentation, the first author’s dissertation [9], which
describes Clara in detail, and benchmarks and benchmark results.

In the following sections we discuss further reading on Clara, explain how
Clara relates to existing approaches to runtime monitoring and static typestate
analysis.

3 Further reading on Clara and its analyses

Clara started out as an extension to the AspectBench Compiler [4] that was
specific to one single specification formalism for runtime monitors, called trace-

http://bodden.de/clara/


matches [1]. At ECOOP 2007, we presented a set of three static analyses that
attempt to statically optimize tracematches at compile time [14]. The three anal-
yses presented there are similar to the three analysis stages that Clara contains
today, however they were all bound to tracematches; they did not generalize to
any other monitoring tool. Further, the third analysis stage from the ECOOP
paper, the “Active-shadows Analysis”, is entirely different from today’s Nop
Shadows Analysis. The former analysis did not work at all: too coarse-grained
abstractions resulted in both bad performance and bad precision.

In 2007, we presented an approach to Collaborative Runtime Verification [12].
In this approach, runtime monitors are spread accross multiple users; every user
only monitors a subset of the original instrumentation points. It is non-trivial
to select subsets of instrumentation points that (1) still have the potential of
causing, in combination, a property violation, and (2) will not cause any false
warnings at runtime. In our approach, we present an algorithm to select such
subsets. We further present an algorithm that enables certain subsets only from
time to time. This trades recognition power for runtime: the program runs faster
but may not detect all property violations. Our results showed that this approach
scales very well. A journal version of this work appeared in 2008 [13]. Clara
contains an option to enable Collaborative Runtime Verification.

In 2008, we presented [15] a replacement for the ineffective Active-shadows
Analysis. This new analysis improves on the Active-shadows Analysis:

– It uses intra-procedural must-alias information to allow for strong updates.
In many situations it helps to know that two variables must point to the
same object. Similarly, the new analysis now uses may-alias information
that is flow-sensitive on the intra-procedural level (opposed to being flow-
insensitive everywhere). We use a novel pointer abstraction, called Object
Representatives [16], to transparently combine the different sources of alias
information. The original Active-shadows Analysis had no access to such
information, it only used flow-insensitive may-alias information.

– While the Active-shadows Analysis performed a flow-sensitive analysis of the
entire program, the novel analysis inspects one method at a time. While the
analysis analyzes this method flow-sensitively, it models outgoing method
calls flow-insensitively. This trades precision for analysis time, speeding up
the analysis significantly.

Further, we presented a novel ranking and filtering approach that aids program-
mers in finding “true warnings” in a set of potentially false warnings. For program
points at which the static analyses issue a warning, the analyses collect informa-
tion about possible sources of imprecision. If there are many such sources, then
the warning is assigned a low probability of being a “true warning”, otherwise a
higher probability. The Clara framework contains these filtering and ranking
heuristics as well.

In 2009, in joint work with Feng Chen and Grigore Roşu [11], the developers
of JavaMOP [18], we generalized the analyses from ECOOP so that they were
applicable to AspectJ aspects in general, and to monitors generated by JavaMOP
in particular. The analyses presented in this novel work are generalizations of



the first two analysis stages from the ECOOP paper, however include also the
following improvements:

– The Quick Check in [14] can only detect cases in which a monitor cannot
reach a final state as a whole. The improved Quick Check from [11], on
the other hand, considers individual paths to final states. This can yield
advantages in case of complicated specifications.

– The Orphan Shadows Analysis in [11] is highly optimized. In [14], the analy-
sis algorithm explicitly enumerated all possible combinations, i.e., subsets of
instrumentation points. With 1000 or more points, there can be up to 21000

subsets. While we only observed a few pathological cases where this exponen-
tial blow-up happened in practice, the novel implementation of the Orphan
Shadows Analysis circumvents this problem through a new algorithm that
requires no such enumeration.

Also in 2009, for the first author’s dissertation [9], we extended the analysis
approach to be a proper framework, Clara, that can be easily extended by
others. For the first time, Clara provides a uniform way to (1) specify runtime
monitors as annotated AspectJ aspects, and (2) integrate novel static typestate
analyses. During the process, we discovered that the flow-sensitive analysis pre-
sented in 2008 [15] was incorrect: in certain cases it could occur that the anal-
ysis yielded optimized runtime monitors that give false warnings at runtime.
(see [10] for an example) Interestingly, in the meantime Naeem and Lhoták had
published [36] an improved version of our analysis from 2008 that contained
the same mistake. In 2010, we published [10] a modified version of the analysis,
called the Nop Shadows Analysis, which is the final version of the flow-sensitive
analysis that Clara contains today. Opposed to the original analysis attempts,
this new analysis now contains a backwards-analysis pass that computes for ev-
ery instrumentation point information about all continuations of the control flow
from this point. It was this crucial piece of information that the original analy-
sis was missing. The first author’s dissertation [9] proves this analysis (and the
analyses [11] from 2009) sound.

4 Runtime monitoring tools

In the following we discuss a number of monitoring tools that influenced the
design and implementation of Clara. We also discuss whether programmers
could use these tools in combination with Clara.

4.1 Stolz and Huch

Our work was originally motivated by Stolz and Huch’s work [38] on runtime-
verifying concurrent Haskell programs. The authors specify program properties
using linear-temporal-logic formulae. Such formulae are generally evaluated over
a propositional event trace: a formula refers to a finite set of named propositions
and any of the propositions can either hold or not hold at a given event. Stolz and



Huch implemented a runtime library that would generate a propositional event
trace at runtime and update a linear-temporal-logic formula according to the
monitored propositional values. The library reports a property violation when
the formula reduces to false. The formulas that Stolz and Huch allow for can
be parameterized by different values, similar to the object-to-variable bindings
that Clara supports.

4.2 J-LO

We ourselves developed J-LO, the Java Logical Observer [8], a tool for runtime-
checking temporal assertions in Java programs. J-LO follows Stolz and Huch’s
approach in large parts, however the propositions in J-LO’s temporal-logic for-
mulae carry AspectJ pointcuts as propositions. The J-LO tool accepts linear-
temporal-logic formulae with AspectJ pointcuts as input, and generates plain
AspectJ code by modifying an abstract syntax tree. J-LO extends the Aspect-
Bench Compiler, which allows it to then subsequently weave the generated as-
pects into a program under test. Pointcuts in J-LO specifications can be param-
eterized by variable-to-object bindings. While the implementation of J-LO is
effective in finding seeded errors in small example programs, it causes a runtime
overhead that is too high to allow programmers to use J-LO on larger programs.
Nevertheless, one could annotate the J-LO-generated aspects with dependency
information and then use Clara’s static analyses to remove some of this over-
head.

4.3 Tracematches

Allan et al. [1] are the creators of tracematches. Tracematches share with J-
LO the idea of generating a low-level AspectJ-based runtime monitor from a
high-level specification that uses AspectJ pointcuts to denote events of interest.
Nevertheless, the tracematch implementation generates runtime monitors that
are far superior to those that J-LO generates. Avgustinov et al. [6] perform so-
phisticated static analyses of the tracematch-induced state machine to determine
an optimal monitor implementation that satisfies three main goals:

1. The monitor implementation should be correct.
2. The monitor should allow parts of its internal state to be garbage-collected

whenever possible without jeopardizing correctness.
3. The monitor should implement an indexing scheme that allows the monitor,

at any event that binds a variable v to an object o, to quickly look up all
state-machine instances for the binding v = o.

As Avgustinov et al. show, reclaiming memory (2) and indexing of partial matches
(3) are both necessary to achieve a low runtime overhead in the general case.
In all the experiments that we conducted with tracematches in our work, these
optimizations were already enabled. Hence our experiments show that, while
these optimizations are necessary, they may not always be sufficient on their



own. However, in combination with Clara’s analysis, the runtime overhead will
be low in most cases. Another difference between Allan et al.’s analyses and ours
is that Allan et al. only analyze the state machine, while we analyze both the
state machine and the program. This allows us to disable instrumentation at
program points where this is sound, hence making it easier to check the program
for potential property violations already at compile time. Allan et al.’s analyses
do not analyze or modify the program under test.

4.4 Tracecuts

Walker and Viggers developed tracecuts [41], an approach that monitors pro-
grams with respect to a specification given as a context-free grammar over As-
pectJ pointcuts. Context-free grammars are strictly more expressive than the
finite-state patterns that we consider in Clara: the first author’s dissertation [9,
Chapter 2] shows that some properties exist that finite-state formalisms cannot
express but that could be expressed as a context-free language. However, most
interesting program properties are in fact finite-state properties.

It is unclear how much runtime overhead tracecuts induce. In previous work [5],
we tried to compare the relative efficiency of J-LO, tracematches, tracecuts and
another tool called PQL (see below). As we reported there, there is an imple-
mentation of tracecuts, but it is immature, and while its authors kindly gave us
private access to their executables, they did not feel it was appropriate for us to
use their prototype for our experiments.

4.5 JavaMOP

JavaMOP provides an extensible logic framework for specification formalisms
[18]. Via logic plug-ins, one can easily add new logics into JavaMOP and then use
these logics within specifications. As we already showed in this thesis, JavaMOP
has several specification formalisms built-in, including extended regular expres-
sions (ERE), past-time and future-time linear temporal logic (PTLTL/FTLTL),
and context-free grammars. JavaMOP translates specifications into AspectJ as-
pects using the rewriting logic Maude [19]. JavaMOP aims to be a generic frame-
work that should support multiple specification languages. Therefore, the de-
signers of JavaMOP are careful when it comes to making assumptions about the
specifications used with their framework.

To make JavaMOP compatible with Clara, Feng Chen extended [11] the
JavaMOP implementation so that it would perform some limited analysis of
the specification, so that JavaMOP could annotate the generated monitors with
dependency information that Clara can use to partially evaluate these monitors
at compile time.

4.6 PQL

The Program Query Language [35] by Martin at al. resembles tracematches in
that it enables developers to specify properties of Java programs, where each



property may bind free variables to runtime heap objects. PQL supports a
richer specification language than tracematches: it uses stack automata rather
than finite state machines, which yields a language slightly more expressive than
context-free grammars. Martin et al. propose a flow-insensitive static-analysis
approach to reduce the runtime overhead of monitoring programs with PQL.
This approach inspired us to implement our Orphan Shadows Analysis. As the
authors show and as we confirm in our work, such an analysis can be very
effective in ruling out impossible matches. However, we also showed that a flow-
sensitive analysis can yield additional optimization potential. PQL instruments
the program under test manually, using the BCEL [20] bytecode engineering
toolkit. If PQL used AspectJ instead, then is should be possible to optimize the
generated monitor with Clara, similar to tracecuts. PQL was published as an
open-source project, available for download at http://pql.sourceforge.net/.
However, it appears that the project is no longer maintained.

4.7 PTQL

Goldsmith et al. [30] proposed PTQL, the Program Trace Query Language,
which provides an SQL-like language for querying properties of program traces
at runtime. The authors also provide “partiqle”, a compiler for this language.
The compiler instruments the program that is to be queried so that the program
notifies monitoring code about the appropriate events at runtime. The moni-
tor itself uses indexing trees to associate the monitor’s internal state with the
appropriate objects. It may be possible to evaluate parts of a program query
at compile time, for instance when comparing a method name to a constant
string. Partiqle resolves such parts of a query already during compilation. This
is the same as the partial evaluation of pointcuts that happens in standard As-
pectJ compilers: these compilers also insert runtime checks only for parts of a
pointcut that the compilers cannot determine at compile time. Partiqle resorts
to a table-based approach to evaluate the remainder of the query at runtime.
Because PTQL uses its own compiler, and is not based on AspectJ, one cannot
currently use Clara to evaluate PTQL queries ahead of time. Even if PTQL
did generate aspects for its monitoring needs, one would have to take into ac-
count that the PTQL language is very expressive and probably Turing complete.
Hence it remains unclear whether one could effectively determine dependencies
within a query at compile time, so that Clara could exploit these dependencies
to optimize PTQL monitors.

4.8 Sub-alphabet sampling

Dwyer, Diep and Elbaum propose a novel mechanism to guaranteeing low run-
time overhead even in the presence of multiple monitoring properties and in
cases where programs need to update the internal state of monitors for these
properties very frequently [23]. The authors first propose to combine multiple
properties over objects of the same class into one large “integrated” property.

http://pql.sourceforge.net/


As the work shows, monitoring of this integrated property can be more effi-
cient than monitoring of the individual original properties. Then second, the
authors propose to project the monitor for this integrated property onto multi-
ple sub-alphabet monitors, where each monitor monitors exactly one subset of
the original alphabet Σ of events. These sub-alphabet monitors form a lattice
that is isomorphic to the power-set lattice of Σ. By the way in which Dwyer et
al. define their state-machine semantics, each individual monitoring automaton
in this lattice is sound, i.e., cannot report any false positives. The authors show
that programmers can gain fine-grained control over the perceived monitoring
overhead by selecting a subset of monitors from the lattice. Further, the authors
present several heuristics that attempt to select reasonable subsets automati-
cally. As the results show, the sub-alphabet lattice allows for a flexible selection
of monitors that gives programmers fine-grained control over their overhead. We
therefore believe that the authors’ technique is a valuable addition to our own
efforts of reducing the runtime-monitoring overhead, in particular to Clara’s
component for Collaborative Runtime Verification.

4.9 QVM

Arnold, Vechev and Yahav present QVM, the “Quality Virtual Machine”, an
extension of IBM’s J9 Java Virtual Machine that implements a set of tech-
niques that aim at aiding programmers to debug their programs [3]. QVM comes
equipped with support for virtual-machine-level monitoring of single-object type-
state properties. Programmers can use a simple syntax to define typestate prop-
erties for any given Java class. QVM then instruments instances of such classes
to track the instances’ typestate at runtime. Once QVM detects and report
that a typestate property was violated, it starts sampling method calls that the
program issues on objects that are allocated at the same allocation site as the
object for which the violation occurred. Naturally, the calling sequences for both
objects are not necessarily the same. Yet, the authors argue that in most cases
these sequences will be similar enough such that the sampled trace will help the
programmers pinpoint the actual problem on the violating sequence and hence
fix the bug in their program code. QVM’s techniques are complementary to all of
the static techniques that Clara provides and it would be interesting to integrate
both tools into a common solution.

5 Typestate analysis

In the previous section we have described several approaches to runtime-verifying
program properties through monitoring. Many of these properties are finite-state
properties, i.e., one can express the properties using finite-state machines. In the
scientific literature, there is a large body of work that attempts to determine
finite-state properties of program already at compile time. In this literature,
finite-state properties are often called typestate properties, and the related static
analyses are called typestate analysis.



5.1 Typestate by Strom and Yemini

In their original paper on typestate [39], Strom and Yemini first describe the idea
of having a value’s type depend on an internal state, the typestate, associated
with that value. Certain operations can change a value’s type by transition-
ing from one typestate to another. Strom and Yemini used state charts [32] to
describe the possible state transitions for a class of objects.

In the description by Strom and Yemini, typestate properties are restricted
to describing the state of single objects. For example, their model does not
allow the state of an iterator i to change when the iterator’s collection c is
modified. This is because the authors’ model has no means of associating i with
c. Recently, typestate properties have been enjoying renewed interest, and many
current analyses, including ours, do support the analyses of such “generalized”
typestate properties.

5.2 Fink et al.

Fink et al. present a static analysis of typestate properties [26]. Their approach,
like ours, uses a staged analysis which starts with a flow-insensitive pointer-
based analysis, followed by flow-sensitive checkers. The authors’ analyses allow
only for specifications that reason about a single object at a time. This prevents
programmers from expressing multi-object properties such as FailSafeIter. Like
us, Fink et al. aim to verify properties fully statically. However, our approach
nevertheless provides specialized instrumentation and recovery code, while their
approach only emits a compile-time warning. Also, Clara supports a range
of input languages so that developers can conveniently specify the properties
to be verified, while Fink et al. do not say how developers might specify their
properties.

5.3 Bierhoff and Aldrich

Bierhoff and Aldrich [7] recently presented an intra-procedural approach that
enables the checking of typestate properties in the presence of aliasing. The
authors’ approach aims at being modular, and therefore abstains from potentially
expensive whole-program analyses like the ones that Clara uses. To be able to
reason about aliases nevertheless, Bierhoff and Aldrich associate references with
special access permissions. Their abstraction is based on linear logic, and using
access permissions it can relate the states of one object (e.g. an iterator) with the
state of another object (e.g. a collection). These permissions classify how many
other references to the same object may exist, and which operations the type
system allows on these references. The authors use reference counters to reclaim
permissions to help their type system to accept more valid programs. In their
approach, they assume that every method is annotated with information about
how access permissions and typestates change when this method is executed.
Of course this does not necessarily imply that it has to be the programmer who
adds these annotations. Many approaches exist [2,25,27–29,31,33,34,37,42] that



can infer program properties. Some can even infer typestate properties. All of
these tools operate under the assumption that programs are “mostly correct”:
by observing mostly correct program runs, the tools can infer which behavior is
“usual”. Deviations from this usual behavior can then be encoded as typestate
properties.

In comparison to Fink et al., Bierhoff and Aldrich’s approach has the ad-
vantage of being modular: given appropriate annotations it can analyze any
method, class or package on its own. Clara on the other hand needs the whole
program to be present, and in particular expects a complete but nevertheless
sufficiently precise call graph. When the whole program is available, and can
be analyzed, then Clara gives programmers the advantage that it does not re-
quire any program annotations. Clara only requires annotations that describe
error situations, not the program, and then automatically analyzes the program
to see whether such error situations can occur. We have found that worst-case
assumptions coupled with coarse-grained side-effect information are surprisingly
effective.

Bierhoff and Aldrich define typestate properties via a textual representa-
tion of statecharts. Hence, programmers can conveniently model behavioral sub-
typing, as in the original typestate-checking methodology that Strom and Yemini
proposed.

Because Bierhoff and Aldrich’s work defines a type system and not a static
checker like Clara, the workflow that a programmer has to follow in Bierhoff
and Aldrich’s approach is slightly different than it is in the case of using Clara.
Clara allows the programmer to define a program that may violate the given
safety property. Clara then tries to verify that the program is correct, and when
this verification fails it delays further checks until runtime. Bierhoff and Aldrich’s
approach defines a type checker, and hence the idea is that the programmer is
prevented from compiling a potentially property-violating program in the first
place. This gives the advantage of strong static guarantees. After all, if the
program does compile then the programmer knows that the program must fulfill
the stated property. On the other hand, the type checker may reject useful
programs that appear to violate the stated property but will not actually violate
the property at runtime.

5.4 DeLine and Fähndrich

DeLine and Fähndrich’s approach [21] is similar in flavor to Bierhoff and Aldrich’s.
The authors implemented their approach in the Fugue tool for specifying and
checking typestates in .NET-based programs. Fugue checks typestate specifica-
tions statically, in the presence of aliasing. The authors present a programming
model of typestates for objects with a sound modular checking algorithm. The
programming model handles typical features of object-oriented programs such
as down-casting, virtual dispatch, direct calls, and sub-classing. The model also
permits subclasses to extend the interpretation of typestates and to introduce
additional typestates, similar to the statecharts-based approach by Strom and
Yemini. As in Bierhoff and Aldrich’s approach, DeLine and Fähndrich assume



that a programmer (or tool) has annotated the program under test with infor-
mation about how calls to a method change the typestate of the objects that
the method references. One fundamental difference between the two approaches
is the treatment of aliasing. While Bierhoff and Aldrich used access permis-
sions to reason about aliases, Fugue’s type system tracks objects merely as “not
aliased” or “maybe aliased”. Objects typically remain “not aliased” as long as
they are only referenced by the stack. The respective objects can change state
only during this period. Once they become “maybe aliased”, Fugue forbids any
state-changing operations on these objects. This makes Fugue’s type system less
permissive than the system that Bierhoff and Aldrich describe: in the latter type
system objects can change states even when they are aliased.

5.5 Dwyer and Purandare

Dwyer and Purandare use existing typestate analyses to specialize runtime mon-
itors [24]. Their work identifies “safe regions” in the code using a simple static
typestate analysis similar to [22]. Safe regions can be methods, single statements
or compound statements (e.g. loops). A region is safe if its deterministic transi-
tion function does not drive the typestate automaton into a final state. A special
case of a safe region would be a region that does not change the automaton’s
state at all. The authors call such a region an identity region. For regions that
are safe but no identity regions, the authors summarize the effect of this region
and change the program under test to update the typestate with the region’s ef-
fects all at once when the region is entered, instead of at the individual shadows
that the region contains. This has the advantage that the analyzed program will
execute faster because it will execute fewer transitions at runtime. One possible
disadvantage of such summary transitions may be that one loses the connection
between the places in the code that perform a state transition and the places
that actually cause these transitions. This makes it harder for programmers to
investigate these program places manually to decide for themselves whether this
part of the program could or could not violate the property at hand. Our static
analysis does not attempt to determine regions; we instead decide if each sin-
gle shadow is a nop-shadow. Dwyer and Purandare’s analysis should be easily
implementable in Clara and we encourage such an implementation.

6 Conclusion

In this work, we have described the general architecture of Clara and have
given pointers to related work from the literature, work both by ourselves and
others. Clara is available as open source at http://bodden.de/clara/ and
we encourage researchers to use it and extend it. The website also includes a
mailing list, on which we will be happy to answer any questions that may arise.

Acknowledgements We thank everybody who contributed to the design and im-
plementation of Clara, including the developers and maintainers of Soot [40]

http://bodden.de/clara/


and abc [4], but in particular Laurie Hendren, Grigore Roşu, Feng Chen, Oege
de Moor, Pavel Avgustinov, Julian Tibble, Ondřej Lhoták and Manu Sridharan.

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding Trace Matching with
Free Variables to AspectJ. In: OOPSLA. pp. 345–364 (Oct 2005)

2. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: Symposium on
Principles of Programming Languages (POPL). pp. 4–16 (Jan 2002)

3. Arnold, M., Vechev, M., Yahav, E.: QVM: an efficient runtime for detecting defects
in deployed systems. In: OOPSLA. pp. 143–162. ACM Press (2008)

4. Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, J., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: abc: An extensible AspectJ
compiler. In: AOSD. pp. 87–98 (Mar 2005)

5. Avgustinov, P., Tibble, J., Bodden, E., Lhoták, O., Hendren, L., de Moor, O.,
Ongkingco, N., Sittampalam, G.: Efficient trace monitoring. Tech. Rep. abc-2006-
1 (March 2006), http://www.aspectbench.org/

6. Avgustinov, P., Tibble, J., de Moor, O.: Making trace monitors feasible. In: OOP-
SLA. pp. 589–608 (Oct 2007)

7. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In: OOP-
SLA. pp. 301–320 (Oct 2007)

8. Bodden, E.: J-LO - A tool for runtime-checking temporal assertions. Master’s the-
sis, RWTH Aachen University (Nov 2005), http://www.bodden.de/pubs/

9. Bodden, E.: Verifying finite-state properties of large-scale programs. Ph.D. thesis,
McGill University (Jun 2009), http://www.bodden.de/pubs/, available through
ProQuest.

10. Bodden, E.: Efficient hybrid typestate analysis by determining continuation-
equivalent states. In: ICSE ’10: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering. pp. 5–14. ACM, New York, NY, USA (2010)

11. Bodden, E., Chen, F., Roşu, G.: Dependent advice: A general approach to opti-
mizing history-based aspects. In: AOSD. pp. 3–14 (Mar 2009)

12. Bodden, E., Hendren, L., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative runtime
verification with tracematches. In: 7th workshop on Runtime Verification at the 6th
International Conference on Aspect-Oriented Software Development, Vancouver,
Canada. LNCS, vol. 4839, pp. 22–37 (2007)

13. Bodden, E., Hendren, L., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative runtime
verification with tracematches. Journal of Logics and Computation (Nov 2008),
doi:10.1093/logcom/exn077

14. Bodden, E., Hendren, L.J., Lhoták, O.: A staged static program analysis to improve
the performance of runtime monitoring. In: ECOOP. LNCS, vol. 4609, pp. 525–549.
Springer (2007)

15. Bodden, E., Lam, P., Hendren, L.: Finding Programming Errors Earlier by Eval-
uating Runtime Monitors Ahead-of-Time. In: Symposium on the Foundations of
Software Engineering (FSE). pp. 36–47 (Nov 2008)

16. Bodden, E., Lam, P., Hendren, L.: Object representatives: a uniform abstraction for
pointer information. In: Visions of Computer Science - BCS International Academic
Conference. British Computing Society (Sep 2008), http://www.bcs.org/server.
php?show=ConWebDoc.22982

http://www.aspectbench.org/
http://www.bodden.de/pubs/
http://www.bodden.de/pubs/
http://www.bcs.org/server.php?show=ConWebDoc.22982
http://www.bcs.org/server.php?show=ConWebDoc.22982


17. Bodden, E., Lam, P., Hendren, L.: Clara: a Framework for Statically Evaluating
Finite-state Runtime Monitors. In: 1st International Conference on Runtime Ver-
ification (2010), in these proceedings.

18. Chen, F., Roşu, G.: MOP: an efficient and generic runtime verification framework.
In: OOPSLA. pp. 569–588 (Oct 2007)

19. Clavel, M., Eker, S., Lincoln, P., Meseguer, J.: Principles of maude. Electronic
Notes in Theoretical Computer Science (ENTCS) 4 (1996)

20. Dahm, M.: BCEL, http://jakarta.apache.org/bcel
21. DeLine, R., Fähndrich, M.: Typestates for objects. In: ECOOP. LNCS, vol. 3086,

pp. 465–490. Springer (Jun 2004)
22. Dwyer, M.B., Clarke, L.A., Cobleigh, J.M., Naumovich, G.: Flow analysis for ver-

ifying properties of concurrent software systems. ACM Transactions of Software
Engineering and Methodolology (TOSEM) 13(4), 359–430 (Oct 2004)

23. Dwyer, M.B., Diep, M., Elbaum, S.: Reducing the cost of path property monitoring
through sampling. In: ASE. pp. 228–237. Washington, DC, USA (2008)

24. Dwyer, M.B., Purandare, R.: Residual dynamic typestate analysis: Exploiting
static analysis results to reformulate and reduce the cost of dynamic analysis.
In: ASE. pp. 124–133 (May 2007)

25. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Transactions on
Software Engineering (TSE) 27(2), 99–123 (Feb 2001)

26. Fink, S., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate verifi-
cation in the presence of aliasing. In: International Symposium on Software Testing
and Analysis (ISSTA). pp. 133–144 (Jul 2006)

27. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
Formal Methods for Increasing Software Productivity, International Symposium
of Formal Methods Europe (FME). LNCS, vol. 2021, pp. 500–517. Springer (Mar
2001)

28. Gabel, M., Su, Z.: Javert: fully automatic mining of general temporal properties
from dynamic traces. In: Symposium on the Foundations of Software Engineering
(FSE). pp. 339–349 (Nov 2008)

29. Gabel, M., Su, Z.: Online inference and enforcement of temporal properties. In:
ICSE ’10: Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering. pp. 15–24. ACM, New York, NY, USA (2010)

30. Goldsmith, S., O’Callahan, R., Aiken, A.: Relational queries over program traces.
In: OOPSLA. pp. 385–402 (Oct 2005)

31. Hangal, S., Lam, M.S.: Tracking down software bugs using automatic anomaly
detection. In: ICSE. pp. 291–301 (May 2002)

32. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

33. Li, Z., Zhou, Y.: PR-Miner: automatically extracting implicit programming rules
and detecting violations in large software code. In: Symposium on the Foundations
of Software Engineering (FSE). pp. 306–315 (Sep 2005)

34. Lo, D., Maoz, S.: Specification mining of symbolic scenario-based models. In: Work-
shop on Program analysis for software tools and engineering (PASTE). pp. 29–35
(Nov 2008)

35. Martin, M., Livshits, B., Lam, M.S.: Finding application errors using PQL: a pro-
gram query language. In: OOPSLA. pp. 365–383 (Oct 2005)

36. Naeem, N.A., Lhoták, O.: Typestate-like analysis of multiple interacting objects.
In: OOPSLA. pp. 347–366 (Oct 2008)

http://jakarta.apache.org/bcel


37. Pradel, M., Gross, T.R.: Automatic generation of object usage specifications from
large method traces. In: ASE. pp. 371–382. IEEE Computer Society, Washington,
DC, USA (2009)

38. Stolz, V., Huch, F.: Runtime verification of concurrent haskell programs. Electronic
Notes in Theoretical Computer Science (ENTCS) 113, 201–216 (Jan 2005)

39. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhanc-
ing software reliability. IEEE Transactions on Software Engineering (TSE) 12(1),
157–171 (Jan 1986)

40. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot -
a Java bytecode optimization framework. In: CASCON. p. 13. IBM Press (1999)

41. Walker, R., Viggers, K.: Implementing protocols via declarative event patterns. In:
Symposium on the Foundations of Software Engineering (FSE). pp. 159–169 (Oct
2004)

42. Wasylkowski, A., Zeller, A., Lindig, C.: Detecting object usage anomalies. In: Sym-
posium on the Foundations of Software Engineering (FSE). pp. 35–44 (Sep 2007)


	Clara: Partially Evaluating Runtime Monitors at Compile Time
	Eric Bodden and Patrick Lam

