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Abstract: The Android operating system is currently dominating the mobile device
market in terms of penetration and growth rate. An important contributor to its suc-
cess are a wealth of cheap and easy-to-install mobile applications, known as apps.
Today, installing untrusted apps is the norm, though this comes with risks: malware is
ubiquitous and can easily leak confidential and sensitive data.

In this work, we investigate the extent to which we can specify complex infor-
mation flow properties using existing specification languages for runtime monitoring,
with the goal to encapsulate potentially harmful apps and prevent private data from
leaking. By modelling a set of representative, Android-specific security policies with
Tracematches, JavaMOP, Dataflow Pointcuts and PQL, we are able to identify policy-
language features that are crucial for effectively defining runtime-enforceable Android
security properties.

Our evaluation demonstrates that while certain property languages suit our pur-
poses better than others, they all lack essential features that would, if present, allow
users to provide effective security guarantees about apps. We discuss those shortcom-
ings and propose several possible mechanisms to overcome them.

1 Introduction

According to a recent study [Cor12], Android now has about 75% market share in the
mobile-phone market, with a 91.5% growth rate over the past year. With Android phones
being ubiquitous, they become a worthwhile target for security and privacy violations.
Attacks range from broad data collection for the purpose of targeted advertisement, to
targeted attacks, such as the case of industrial espionage. Attacks are most likely to be
motivated primarily by a social element: a significant number of mobile-phone owners
uses their device both for private and work-related communication [Bit12]. Furthermore,
the vast majority of users install apps containing code whose trustworthiness they cannot
judge and which they cannot effectively control.

These problems are well known, and indeed the Android platform does implement state-
of-the-practice measures to impede attacks. The Android platform is built as a stack, with
various layers running on top of each other [And12].



The lower levels consist of an embedded Linux system and its libraries, with Android
applications residing at the very top. Users typically acquire these applications through
various channels (e.g., the Google Play marketplace1). The underlying embedded Linux
system provides the enforcement mechanisms common to the Linux kernel, such as a user-
based permission model, process isolation and secure inter-process communication. By
default, an application is not allowed to directly interact with other applications, operating
system processes, or a user’s private data [Goo12]. The latter includes, for example, access
to the contacts list. Access to such private data is regulated by Android via a permission-
based security model, where applications have to statically declare the permissions they
require in order to access security-sensitive API functions. An application may only be
installed following the user’s informed consent, yet users currently have little control over
the installation process, as they must either grant all of the permissions that an app de-
mands, or else forego installation.

Popular Android extensions such as AppGuard [BGH+12] mitigate this problem by instru-
menting apps with dynamic permission checks at installation time. Through this mecha-
nism, users can revoke permissions they had initially granted at installation time. While a
definite improvement, permission revocation is not a complete solution. Part of the prob-
lem originates from the coarse-grained nature of Android permissions [NKZ10, ZZJF11].
For instance, an app may require internet and phone-book access permissions to func-
tion correctly, in which case revoking either would not be an option. Nevertheless, one
may wish to forbid the app from transmitting phone book entries over the internet. Such
fine-grained restrictions on information flow are not possible with Android’s existing
permission-based security model.

One possible solution to the problem are specialized runtime monitoring approaches for
information flow properties. In the past, researchers have proposed several different moni-
tor specification languages for specifying policies that, through a runtime monitoring tool,
are automatically enforced as the monitored program executes. These tools typically in-
strument the program artifact directly rather than its source code. Given a policy definition
and a potentially unsafe or insecure program, a specialized compiler or weaver instruments
the program with security checks which ensure that every program execution that violates
the policy is detected. Developers can use this information, e.g. for logging violations or
defining countermeasures to abort or gracefully handle problematic executions.

Yet, how well do these specification languages address the problems at hand? Can any of
the currently available languages be used to effectively specify and enforce security and
privacy policies that are of practical interest in the context of Android? In this work, we
aim to answer this question by evaluating four different monitor specification languages.
Our work focuses on languages, rather than tools, because we believe that approaches for
information-flow analysis need to be customizable, and that users of those tools should be
able to prove security guarantees over monitored apps. Languages have the potential to
allow for a level of abstraction that permits such proofs.

We specifically exclude pure information-flow analysis tools that do not offer a policy lan-
guage, for instance TaintDroid [EGgC+10]. While such tools present important backend

1Available at https://play.google.com/ (December 2012)
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technology that allows for efficient analysis, in this paper we aim to answer important
questions on specification languages, i.e., on frontend technology. With respect to tooling,
TaintDroid also differs from the approaches studied here in that it requires modification to
the Android runtime, which in an end-user scenario is undesired. All approaches presented
here work by instrumenting the app under test; the instrumented app can then execute in a
standard execution environment.

We have formulated different Android code snippets that include information-flow prop-
erties and tried to enforce security properties of them using the finite-state monitoring lan-
guages Tracematches [AAC+05] and JavaMOP [CR07], the AspectJ language extension
Dataflow Pointcuts [MK03, ABB+09] and the program query language PQL [MLL05].
We found that some of the languages are effective at securing well-structured programs
against input-driven attacks such as SQL injections, a concern typically reserved for server
applications. However, in our scenario we must assume that it is the app, not the input,
that is malicious, and hence we cannot expect programs to be well-structured, as they can
be arbitrarily obfuscated. None of the existing approaches allow security experts to de-
fine policies in a way that would allow detecting violations in such a setting. We discuss
this problem in detail and present a range of possible solutions that designers of policy
languages can choose from to mitigate the problem.

To summarize, this work presents the following original contributions:

• an investigation of the suitability of Tracematches, JavaMOP, Dataflow Pointcuts
and PQL for the monitoring of security policies,

• a discussion of the reasons why these languages fail to provide practically enforce-
able security guarantees, and

• a discussion of possible language-design options that could mitigate the problem
covering the areas of recursion and reuse, variable and member access, custom mon-
itor states, global and persistent state, for implicit information flow detection, han-
dling of primitive data types and native code, placement of sanitizers, “proceed”
instructions and specification language typing.

2 Example Properties

Recently, several works [ZJ12, EOMC11, EGgC+10, GCEC12, FHM+12, KB12] have
investigated the detection of different forms of vulnerabilities in Android apps. A principal
concern is the leakage of sensitive information, including the IMEI, IMSI2 and location
information. In addition, there are malicious applications that harm the user financially,
for instance by sending premium-rate SMS/MMS messages [EOMC11], or eavesdropping
on online banking transactions, stealing the mTAN3 and withdrawing money from the
victim’s account [KB12]. Furthermore, Fahl et al. [FHM+12] found various forms of
SSL/TLS misuse in Android applications.

2International Mobile Equipment/Subscriber Identity
3One-time password sent to a user’s phone by an online banking service to authorize a transaction.



The most prevalent vulnerabilities in the mobile scenario are related to information-flow
properties, such as sending sensitive information to a specific target. Therefore, we created
three different kinds of malicious code snippets (pseudocode) that could be implemented
in real Android applications. These snippets will be used as a basis for our evaluation to
demonstrate the respective strengths and weaknesses of the different property languages.
Listing 1 shows an example of an information-flow property. The sensitive information
IMEI together with the location is read from the device and is propagated through the code
until it arrives at the “sendTextMessage” sink. At this point the sensitive information is
leaked because it leaves the device in form of an SMS message to a specific phone number.
This leads to an explicit information-flow violation in the present example. However,
Listing 2 shows almost the same example (excluding the location information), but with
the difference of an implicit flow. The example converts the IMEI into a bit stream and
iterates over the bits. There exists an implicit flow in line 8 for the string argument “0” that
is only sent to the specific target under the condition that the bit is 0. Line 10 performs the
corresponding action in case the bit is 1, sending the string “1”.

1 String imei =
TelephonyManager.getDeviceID();

2
3 double latitude =

LocationManager.getLatitude();
4
5 String message = "IMEI: " + imei;
6 message += "LOCATION: " +

latitude;
7
8 sendTextMessage("+44 020 7321

0905", message);
9

10 ...

Listing 1: Violation of an information-flow
property (explicit flow)

1 String imei =
TelephonyManager.getDeviceID();

2
3 int[] imeiAsBitStream =

imei.toBitStream();
4
5 for(int bit : imeiAsBitStream)
6 if(bit == 0)
7 sendTextMessage("+44 020 7321

0905", "0");
8 else
9 sendTextMessage("+44 020 7321

0905", "1");
10 ...

Listing 2: Violation of an information-flow
property (implicit flow)

The example in Listing 3 shows a code snippet that iterates through every phone number
in the mobile device’s contact list and sends a spam message (“I love you!”) to these
numbers. In contrast with the previous examples, countermeasures for this code will be
more concerned with the frequency of transmission of messages, rather than information
leaking into messages. For instance, the policy “allow at most 3 text messages to be
sent from a specific app per day” would require some kind of counting mechanism in the
monitoring language.

1 String[] contactPhoneNumbers = getAllPhoneNumbersOfContacts();
2
3 for(String number : contactPhoneNumbers)
4 sendTextMessage(number, "I love you!");
5 ...

Listing 3: Spam message to all contacts



3 Tracematches

Tracematches [AAC+05] are an extension to the aspect-oriented programming language
AspectJ [KHH+01]. The extension provides users with the ability to define runtime mon-
itors that can match the program’s dynamic execution trace against a regular expression of
events. Tracematches support free variables in those events, which allows users to relate
events to one another on a consistent group of objects. This makes Tracematches an ideal
specification language for defining properties in cases where each such group of objects,
as well as the state that they share, is finite.

Listing 4 details a compact Tracematch designed to detect and prevent the SMS-spamming
behaviour described in Listing 3. The property is triggered whenever two consecutive
SMS messages are sent with no intervening user interaction. Security events of interest
are defined using AspectJ pointcuts, which map points in the program to symbolic event
names. In this case, a pointcut for the SMS sending method is specified, along with a
pointcut userInteraction defined elsewhere.

The sequence of interest is defined as a regular expression, where events are received and
matched against the defined expression. The expression send_sms send_sms matches a trace
“send_sms send_sms” but not “send_sms user_input send_sms”. Therefore, the error handler
would trigger exactly if two consecutive SMS messages are sent without an intervening
user action. When the handler triggers, it replaces the call to sendTextMessage.

Tracematches are not suitable, however, for defining information-flow properties. This is
due to the fact that information flow can propagate through an arbitrary number of vari-
ables and objects. While it is possible to define a Tracematch that can detect insecure
information flows for any particular code example, one often finds that such properties
do not scale very well, and can be very fragile. For example, consider Listing 5, which
describes a Tracematch designed to detect the violation of the explicit flow property pre-
sented in Listing 1. In Java, string concatenation via the + operator is implemented as
a series of append operations on a StringBuilder structure. As a result, the Tracematch
must attempt to follow the sensitive data elements as they traverse multiple structures.
Consequently, even a seemingly innocuous change of concatenation operators would foil
detection. Similarly, detection would be avoided were one to rearrange the sequence in
which the concatenation operators take place, or by introducing additional intermediate
steps, which may also re-encode the sensitive information, making it harder to keep track
of propagations. It is also not possible to generalize a Tracematch such that it would track
flows of arbitrary length: any given Tracematch can only reason about a fixed number of
values, but information flows can involve an arbitrary number of objects.

1 tracematch() {
2 sym user_input before: userInteraction();
3 sym send_sms around: call(* SmsSession.sendTextMessage(..));
4
5 send_sms send_sms {
6 System.err.println("Sms spam detected! Sending aborted."); }
7 }

Listing 4: Tracematch detecting SMS spam



1 tracematch(String imei, double lat, Object msg1, Object msg2, Object msg2_sb,
Object merged, String msg1_s, String msg2_s, String merged_s) {

2 sym ret_imei after returning(imei): call(* TelephonyManager.getDeviceID());
3 sym ret_lat after returning(lat): call(* LocationManager.getLatitude());
4 // Trigger when appending sensitive data to a string
5 sym appendI after returning(msg1): call(* *.append(..)) && args(imei);
6 sym appendL after returning(msg2): call(* *.append(..)) && args(lat);
7 // Translating from internal representation to strings ("message" is a String)
8 sym appendI_s after returning(msg1_s): call(* *.toString()) && target(msg1);
9 sym appendL_s after returning(msg2_s): call(* *.toString()) && target(msg2);

10 sym merge_s after returning(merged_s):call(* *.toString()) && target(merged);
11 // Trigger on conversion from String to internal representation
12 sym appendL_sb after returning(msg2_sb):call(*.new(..)) && args(msg1_s);
13 // Sensitive data (IMEI and Latitude) have been merged into a single string
14 sym merge_sb after returning(merged): call(* *.append(..)) && target(msg2_sb)

&& args(msg2_s);
15 // Sensitive data leaked via SMS
16 sym sendSms around: call(* SmsSession.send*(..)) && args(*, merged_s);
17
18 // The regular expression
19 ret_imei ret_lat appendI appendI_s+ appendL_sb appendL appendL_s+ merge_sb

merge_s sendSms {
20 proceed(sanitize(merged_s)); //send a sanitized version of the SMS
21 }
22 }

Listing 5: Tracematch detecting explicit information flow of secret strings

4 JavaMOP

JavaMOP [CR07] is designed to monitor properties defined in a range of different temporal
logics. Listing 6 is a reformulation of the security property for detecting SMS spamming.
Similar to the Tracematch property described in Listing 4, this property identifies a set of
methods related to user interaction, along with the method for transmitting a message. In
this example, the property has been expressed as a Linear-Temporal Logic (LTL) formula,
which states that a send_sms event should be followed by a user_input.

Listing 7 describes an approach to performing taint tracking in the context of the problem
defined in Listing 1. The property definition is less fragile than the Tracematch definition.
In particular, it completely abstracts from the order in which events occur. Also, by using
a custom data structure taintedStrings with membership queries, the specification can
define the property recursively: a string is tainted if it is returned from a source or it is
built from a tainted string. As HashSets use equality, and not identities, this solution may
flag (string-representations of) values as tainted regardless of their source.

While JavaMOP improves on the Tracematch specification, it is interesting to note that

1 SmsSpam() {
2 event user_input before() : userInteraction() { }
3 event send_sms before() : call(* SmsSession.sendTextMessage(..)) { }
4 // If SMS sent, next event must be an interaction
5 ltl: [](send_sms => o user_input)
6
7 @violation { System.err.println("Sms spam detected!"); }
8 }

Listing 6: JavaMOP (LTL plugin) detecting SMS spam



1 ExplicitSpec() {
2 Set <String> taintedStrings = new HashSet<String>();
3
4 void taint(String s) { taintedStrings.add(s); }
5
6 boolean isTainted(String s) { return taintedStrings.contains(s); }
7
8 event retImei after() returning (String imei):
9 call(* TelephonyManager.getDeviceID()) { taint(imei); }

10
11 event retLat after() returning (double lat):
12 call(* LocationManager.getLatitude()) { taint(new Double(lat).toString()); }
13
14 event propagate_strings after(StringBuilder sb, String s):
15 (call(* StringBuilder.append(String)) || call (StringBuilder.new(String)))

&& target(sb) && args(s) {
16 if (isTainted(s)) taint(sb.toString());
17 }
18
19 event propagate_doubles after(StringBuilder sb, double d):
20 (call(* StringBuilder.append(double )) || call (StringBuilder.new(double)))

&& target(sb) && args(d) {
21 String s = new Double(d).toString();
22 if(isTainted(s)) taint(sb.toString());
23 }
24
25 event sink before(String s):
26 call (* sendTextMessage(String, String)) && args(t, s) {
27 if (isTainted(s))
28 System.err.println("Sensitive information (" + s + ") is sent to:" + t);
29 }
30 }

Listing 7: Taint tracking using events in JavaMOP

Listing 7 basically uses no JavaMOP features any longer: the same monitor could just as
well have been written in plain AspectJ.

5 Dataflow Pointcuts

Alhadidi et al. [ABB+09] have proposed a formal framework for the dataflow pointcut,
an original contribution by Masuhara and Kawauchi [MK03]. The dataflow pointcut de-
scribes where aspects should be applied based on the origins of data. The suggested use
case is the detection of input-validation vulnerabilities, in which case a sanitizer, being the
crosscutting concern, is applied.

1 pointcut sendIMEI(String o) :
2 call(SmsSession.sendTextMessage(String)) && args(o)
3 && dflow[o,i](call(String TelephonyManager.getDeviceID())
4 && returns(i));

Listing 8: Dataflow pointcut for a sanitization task

A dataflow pointcut for a sanitization task could be defined as in Listing 8. The second line
matches calls to the sendTextMessage method and binds the parameter string to variable o.
The dflow pointcut is used to limit the join points to those whose parameter string was filled



with the return value of getDeviceID at a previous join point. Masuhara and Kawauchi
also provide an additional declaration form which makes it possible to specify explicit
propagation of dataflow through external program parts. This proves useful when using
third party libraries, native code or in any other situation where analyzable code is not
available. The example from [MK03] demonstrates the syntax:

1 aspect PropagateOverEncryption {
2 declare propagate: call(byte[] Cipher.update(byte[]))
3 && args(in) && returns(out) from in to out;
4 }

Here, the system will assume that the return value from Cipher.update originates from its
argument. As a result, if a string matches the dataflow pointcut, the encrypted string also
matches the dataflow pointcut. This idea of explicit data flow propagation has not been
adapted by Alhadidi et al. in their formal framework [ABB+09].

The framework proposed by Alhadidi et al. uses dataflow tags which discriminate dataflow
pointcuts. These are propagated statically between expressions to keep track of data de-
pendencies. If an expression matches the pointcut of a dataflow pointcut, it is tagged. This
tag is then propagated to expressions which depended on the original expression. The goal
is to do as much of the tagging as possible statically, with dynamic methods being used
for the remaining tags. This combination minimizes the necessary runtime overhead.

Monitoring properties like the one for SMS spamming (Listing 3), which requires the
tracking of abstract state, cannot be supported by DFlow pointcuts, as such properties
cannot be expressed as pure information flow.

6 PQL

Martin et al. have proposed a language called PQL (Program Query Language) in which
queries about programs can be expressed declaratively [MLL05]. A PQL query matches
sequences of method calls and field accesses in a target program. For every match, some
user-defined Java code can be executed (optionally replacing the original method call in
the target program). The following example calls a privacy checker (line 11) whenever
private information (location, IMEI, etc.) is sent out in an SMS message:

1 query main ()
2 uses
3 object * privObj, tainted;
4 matches {
5 privObj = TelephonyManager.getDeviceID()
6 | LocationManager.getLatitude()
7 | ... ;
8 tainted := propagateStar(privObj);
9 }

10 replaces sendTextMessage(tainted)
11 with checkAndSend(tainted);
12
13 query propagateStar(object * tainted)
14 returns object * y;



15 uses
16 object * temp;
17 matches {
18 y = tainted | { temp := propagate(tainted); y := propagateStar(temp); }
19 }
20
21 query propagate(object * tainted)
22 returns object * y;
23 matches {
24 y = tainted.toString() | y = String.concat(tainted) | ... ;
25 }

Listing 9: Simple taint propagation in PQL

The main() query contains two matching-statements that must both apply for the overall
query to match. Firstly, an object (we do not expect a concrete type here) must be obtained
by a call to one of the listed functions, e.g. TelephonyManager.getDeviceID() for obtaining
the IMEI. This object is bound to privObj and then followed through various propagation
operators, such as direct assignment or string concatenation, using the patterns specified
in the propagateStar query. If a match is found which is then used as a parameter for a call
to sendTextMessage, this call is intercepted and the checkAndSend function is called instead.
This function could then, for instance, ask the user for permission before actually sending
the data.

This query shows that PQL supports modularity quite well. propagate is a second query
that is used to filter executions based on what happens with the value previously matched
for the privObj variable. The overall main query only matches if there is a suitable value
for privObj returned by a call to one of the listed functions which then also matches the
propagate query during further program execution. The propagate query can be reused in
all queries that need to track information propagation.

The example above also shows that PQL supports recursive queries. String propagation
may not occur at all (i.e., the variable of the ”get” call is used directly) or an arbitrary
number of times. This is implemented using recursive references to the propagateStar

query in which each reference corresponds to one propagate action. Additionally, one
should note that matching in PQL works on black-box method calls and field accesses.
Therefore, it does not matter whether the body of the called method is implemented in
native code or in Java, or whether or not the source code is available, as long as the call
site is located in analyzable Java code. In this respect, PQL is superior to many approaches.

7 Lessons learned / tradeoffs

We next briefly outline how well the four languages we studied address the requirements
that we identified for the case of security monitoring of Android applications.

Reuse Among all surveyed languages, PQL is the only one that allows reuse of queries
and have them call each other recursively. Query reuse is beneficial because it enables
sharing of joint sub-queries. This decreases development time and also allows for a more



efficient runtime evaluation, as shared sub-queries need to be evaluated just once. Other
languages that support some form of query reuse include PSLang [Erl03].

Recursion Recursion increases expressiveness: Tracematches cannot effectively model
information-flow properties because they can only reason about a fixed number of objects.
JavaMOP generally shares this limitation; the only escape route is through resorting to
plain AspectJ language features. Recursive queries in PQL avoid this problem through
a renaming from actual to formal parameters, which effectively allows a query to reason
about arbitrarily many objects.

Variable and member access Assume a policy that forbids the sending of any informa-
tion about calendar entries marked as private. In such a case, the query language must pro-
vide a mechanism to restrict tracking to such entries e for which a predicate e.isPrivate()

returns true. Tracematches, JavaMOP and Dataflow Pointcuts support such member ac-
cesses through a pointcut if(e.isPrivate()), PQL does not have such a mechanism. The
only way to implement such a policy in PQL is thus to eagerly track all calendar entries
accessed by the app. If a match is found, the handler can then check e.isPrivate() to see
if e needs to be handled or not. This approach wastes runtime performance, as PQL must
track objects which will never need to be handled later on. Furthermore, the filtering step
is not part of the language, but of external code, making it harder to reason about the prop-
erty actually being enforced. It also hinders the implementation of generic handlers (e.g.
“ask the user for permission and then continue execution if granted”) as the handler code
must know the specific objects to filter them appropriately.

Customized monitor state Only JavaMOP allows queries to use custom data structures
for tracking internal state. In Tracematches, Dataflow Pointcuts and PQL, matching is
fully declarative. Customized monitor state increases expressiveness, which has both ad-
vantages and drawbacks. For instance, while the taint-tracking Tracematch from Listing 5
is very fragile with regard to code changes, the JavaMOP specification in Listing 7 is less
so: using the custom data structure taintedStrings, the JavaMOP specification can track
tainted objects recursively, and irrespective of any temporal order. Because any Trace-
match specification can only track a fixed number of objects, this is a feature that Trace-
match cannot support. The drawback is that custom data structures decrease readability
and take away potential for static optimizations. After all, such data structures are out-
side the control of the specification-language compiler, which therefore cannot possibly
reason about them. In the example, it may be beneficial to never add a certain string s to
taintedStrings in the first place if it can be statically determined that s will never leak. An
ideal language would provide fixed data structures that are expressive enough to support
all common use cases.

Global, persistent state Unlike regular desktop programs, Android apps have to adhere
to a specific life cycle in which they can be preempted by the virtual machine if the re-
sources taken up by the app are required elsewhere. This life cycle requires monitors to



serialize their state to disk, and resume monitoring when the app’s execution is resumed.
Another reason for allowing persistent state are properties that span multiple executions.
For instance, a policy stating that an app may not send more than 10 SMS a month, no
matter how often it was restarted, cannot be enforced without persisting state. None of the
surveyed systems has automated support for such persistent state. It could, however, be
supported through variable declarations whose values the runtime persists automatically.
There are languages (e.g. ConSpec [AN08]) which support such a feature.

Implicit information flow None of the four languages are able to handle implicit in-
formation flow. In Listing 2, an attacker can fully reconstruct the IMEI, even though its
value does not explicitly flow into any variable sent over the network. There is no direct
path from a confidential source to an untrusted sink when considering just data flow. Fur-
thermore, there is no trivial pattern (i.e., the IMEI may not flow into some toBitStream
function) as the app is considered malicious and may thus employ any kind of code obfus-
cation. In the general case, the app’s source code is not even known to the author of the
security monitor. The one approach that would have potential to handle implicit flow is
Dataflow Pointcuts. A pointcut dflow[o,i] states that data can flow from i to o without stat-
ing how data can flow. One could envision an implementation of Dataflow Pointcuts that
included implicit flows in the pointcut matching process. For the concrete formalization
by Alhadidi et al. [ABB+09], this is however not the case: their formal language does not
even contain branching statements syntactically. For Tracematches, JavaMOP and PQL,
implicit flows are impossible to handle simply because all approaches match against traces
of explicitly mentioned events. A possible solution to this problem would be to make im-
plicit flows explicit by exposing them as an event-like primitive implicitFlow(o,i). This
primitive would then be implemented similarly to Dataflow Pointcuts. Such a feature
would in any case require static analysis beyond pure optimization and could not be han-
dled solely at runtime since implicit flows need to take all possible executions into account
and not just one concrete instance.

Primitive data types A similar problem regards the tracking of values of primitive types.
All four studied languages can easily track objects, also through assignments between local
variables, fields, arrays or even through reflection. This is possible because objects come
with an identity, encoded in their object header. But primitive data types pose problems:
Assume a user’s phone book contains a phone number 12345, and an app sends the number
12345 to an untrusted server. But does this mean that the app is sending the phone number,
or is it just coincidentally sending the same sequence of digits? In our running example,
an attacker could exploit this ambiguity by obfuscating the code as follows:

1 String myObfuscatedCopy(String in) {
2 String resString = "";
3 for (int i = 0; i < in.length(); i++)
4 resString += in.charAt(i);
5 return resString;
6 }



Here, myObfuscatedCopy("12345") will be equal to "12345" but not the same. Moreover,
the name of the function myObfuscatedCopy is generally unknown. This problem can be
solved by two different means. One possible solution is to regard all primitive types as
objects, as, for instance, the case in Smalltalk [GR83]. Such an approach, however, could
lead to significant performance degradation. A second possible approach is to use totally
declarative information-flow specifications such as in Dataflow Pointcuts. In this case, the
compiler would generate special code to track a primitive value’s identity.

Native code Native code poses a quite similar problem. The contents of a method such as
native String myObfuscatedCopy(String in); are not ready to be intercepted and analyzed
by the security monitor. All four languages allow for manual specifications of the seman-
tics of native calls, by instrumenting code at every call to those native methods. Manual
specifications are only viable, however, if the native methods are known, e.g. because they
are part of the standard library. Native code under control of the adversary cannot be spec-
ified. For such methods, a security monitor should make implicit worst-case assumptions
(“The argument might flow into the return value.”). None of the four studied approaches
implements such a semantics.

Placement of sanitizers A sanitizer is a user-supplied function that converts a sensitive
value into an innocent one, for instance by anonymizing, truncating or escaping data.
Sanitized values do not require further tracking. It would therefore be beneficial if a query
language would allow users to track all data “that has not been sanitized”. In PQL, such
behaviour could theoretically be emulated using negative patterns. The query should only
apply if no sanitize method has been called:

1 query main ()
2 uses
3 object * privObj, tainted;
4 matches {
5 privObj = ... ;
6 tainted := propagate(source);
7 ˜sanitize(tainted);
8 conn.httpSend(tainted);
9 }

10 executes
11 with Privacy.logViolation(source, tainted);

This concept however has several problems. Firstly, PQL can only apply negation to di-
rect method calls or field accesses, not to queries. In the given example, sanitize must
therefore be the name of a concrete method, no abstraction using query references is pos-
sible. Furthermore, the semantics of negated expressions can be quite surprising. It is
important to place correct bounds on the scope of the negation. In our example, the query
matches when the sink is called without the string having passed an anonymizer after its
last propagation. In more complex flows, there might however be multiple positions where
sanitization can occur. In such a case, the user would have to explicitly denote all of them
in his query to avoid erroneous matches. The other three approaches show similar prob-
lems. Possible solutions include (1) fully automated sanitizer placement [LC13], (2) a
scoping mechanism, allowing flexible negated queries with an intuitive semantics, and (3)



a mechanism that would allow query programmers to restrict propagate-like queries within
a set of user-defined sanitizer methods, i.e., define that the propagate query never matches
inside a set of well-known sanitizer methods.

Support for proceed calls Tracematches and Dataflow Pointcuts support AspectJ-like
proceed calls. This feature allows the specification to call the originally intercepted event
with a possibly updated set of arguments. For instance, the Tracematch in Listing 5 pro-
ceeds with sending an SMS message, but first sanitizes the call argument, e.g. by removing
or anonymizing private data. (More elaborate sanitizers are possible but outside the scope
of this paper.) JavaMOP has no direct support for proceed, and neither has PQL. The
latter requires users to explicitly enumerate the method calls that are intercepted and the
handlers by which they are replaced (cf. Listing 9, lines 10–11). This is more verbose than
just using proceed and hinders reuse.

Typing of the specification language A language to model (and enforce) security fea-
tures needs convenient means of specifying data sources and sinks. We must be able to
specify the default behaviour of operations that are not explicitly matched in a property.
In an adversarial setting, this default would indicate that operations propagate tainted in-
formation, while if we would like to avoid too many false positives, we would assume in-
formation flow by default to sanitize data. Through a clear semantics, the language should
communicate the intended behaviour clearly. Although a property could be encoded by
just matching events and referring to global state (as in aspect-oriented programming in
general or in the JavaMOP example in Listing 7), we consider an encoding on the sequence
of events more readable than a solution where permitted/forbidden sequences of events are
implicit.

The development environment for the specification language should adhere to the general
concept of static typing. On the one hand, this will avoid load- or runtime issues where,
for instance, operations in event handlers are badly defined (missing/wrong signatures).
On the other hand, we do not seem to gain much flexibility through lax typing. PQL for
example allows regular expression-based matches on method names across classes in a
query, leading to a result of type Object. The handler method hence can only extract
further information after inspection with instanceof.

For improved readability of specifications, (static) types provide a convenient means to
classify abstract categories of data-types (e.g. “personal data”, “security relevant”), and
how operations on them propagate information. Any aspect-based approach may easily
take advantage of this. Consider, for example, that the Tracematch specification in List-
ing 5 needs to track string operations for both the IMEI and the latitude in lines 2 & 3.
Both could be subsumed in a case for arguments of type “security relevant” (again ignor-
ing complications through primitive data types). Such a classification is implicitly carried
out by means of state in the AspectJ/JavaMOP example in Listing 7.

Note that events do not only correspond to functions where the result has a particular
property (derived from the parameters). In an imperative language, in addition to the
return value, the classification of the callee may also change as a side-effect. For instance,



a class could offer a sanitize() method. Whenever this method is called on an object, this
object should no longer be tracked.

Discussion As explained above, all of the surveyed languages provide the one or other
interesting feature that can be useful for security enforcement. However, no language is
ideal, each one is lacking crucial features that are required to make enforcement truly re-
liable, in particular in light of obfuscated app code. Some of the points discussed above
require tool support will require changes and additions mostly to the backend of the lan-
guage implementations (native code, primitive types, implicit flow), while others do re-
quire substantial modifications to the languages’ syntax and semantics.

While we studied a range of languages, there are other specification languages which
we are unable to include here for reasons of brevity. Of particular relevance is Con-
Spec [AN08]. For the purpose of this study, suffice it to say that ConSpec is syntactically
and semantically very close to Tracematches and JavaMOP, and presents roughly the same
tradeoffs.

For practical usability, it must be sufficiently easy to express common security policies.
Therefore, we argue for integrating the features discussed above into a single consistent
language that allows flexibility where required, but also saves the user from details where
unnecessary. The reuse of subqueries in PQL is a good example of providing such levels of
abstraction. Furthermore, the languages need to be implemented efficiently and correctly.
During our research, for instance, we found several issues with the PQL implementation,
while there is no implementation for the DFlow pointcuts at all.

Ideally, users would be able to deploy their set of specifications onto their applications
through the same well-known techniques that are already in use in existing monitoring
frameworks.

8 Conclusions & Future Work

In this work we have investigated the suitability of using Tracematches, JavaMOP, DFlow
Pointcuts and PQL for enforcing privacy-related security properties on Android apps. As
we found, while each language has some interesting and useful elements, none of those
languages fully address all requirements for this application area. An ideal language would
define a minimal set of language constructs to solve the use cases we discussed. A flexi-
ble specification language for information flow properties allows reasoning about security
guarantees and, together with instrumentation, the enforcement of such properties.

In the light of our observations, we would like to investigate whether we can also give
recommendations with regards to API design. Usage of constructs that complicate a dy-
namic analysis could be discouraged by “marketplaces” like Google Play and the Apple
App Store, which already run analyses on the code for quality assurance and to detect
suspicious apps. For example, the ContactsContract content provider exposes the
entire contents of the contacts. Here, for many applications being able to look up a partic-



ular entry e.g. by name or phone number might already be sufficient, without any need to
explicitly crawl the address book.

For the examples in this study, we have mostly considered a “black and white” classi-
fication of data, i.e., no sensitive information may leak at all. When augmenting the
analysis with user-defined data types, we might as well consider the case of gradual or
fractional measures for quantifying information leakage and enforcing an upper bound on
the amount of privacy-sensitive data leaving the user’s device. In this case, a user could
define an individual balance between privacy needs and application requirements in cases
where information leakage cannot be fully prevented without losing functionality.
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