
IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 275305 (17pp) doi:10.1088/1751-8113/43/27/275305

Complete sets of cyclic mutually unbiased bases
in even prime-power dimensions

Oliver Kern1, Kedar S Ranade1,2 and Ulrich Seyfarth1

1 Institut für Angewandte Physik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
2 Institut für Quantenphysik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany

E-mail: oliver.kern@physik.tu-darmstadt.de

Received 23 December 2009, in final form 12 May 2010
Published 11 June 2010
Online at stacks.iop.org/JPhysA/43/275305

Abstract
We present a construction method for complete sets of cyclic mutually
unbiased bases (MUBs) in Hilbert spaces of even prime-power dimensions. In
comparison to the usual complete sets of MUBs, complete cyclic sets possess
the additional property of being generated by a single unitary operator. The
construction method is based on the idea of obtaining a partition of multi-qubit
Pauli operators into maximal commuting sets of operators with the help of a
suitable element of the Clifford group. As a consequence, we explicitly obtain
complete sets of cyclic MUBs generated by a single element of the Clifford
group in dimensions 2m for m = 1, 2, . . . , 24.

PACS numbers: 03.65.Ta, 03.65.Aa, 03.67.-a

1. Introduction

One of the basic features of quantum mechanics is that there exist physical observables which
cannot be measured simultaneously. Given, for example, the measurement outcome of the
z-component of the electron spin, the x-component is completely undetermined, i.e. given by
a uniform probability distribution. In mathematical terms, the existence of such measurements
arises through the existence of non-commuting operators, and one may say that the operators
for the z- and the x-component are maximally non-commuting because measurement of one
observable completely destroys the knowledge of the other. Generalized to arbitrary finite-
dimensional quantum systems, this leads to the concept of mutually unbiased bases (MUBs),
usually abbreviated as MUBs: two orthonormal bases of the d-dimensional Hilbert space
H = C

d are said to be mutually unbiased, if the absolute value of the inner product of any of
the basis vectors of the first basis and any of the basis vectors of the second basis is given by
1/

√
d. The concept of MUBs was introduced by Schwinger in the context of ‘complementary

pairs of operators’ and an explicit construction method for a pair of MUBs in C
d was discussed

as early as 1960 [1]. Twenty years later, motivated by the complete measurement (tomography)
of an unknown quantum state, Ivanović [2] generalized this concept: since a quantum state
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is described by a density operator that can be represented by a Hermitian matrix with a
unit trace, the number of real parameters is d2 − 1. Every measurement operator can lead
to at most d different outputs; thus, there are d − 1 free parameters due to normalization.
Ivanović consequently stated that the minimum number of operators to describe an arbitrary
d-dimensional quantum state is d + 1. He gave an explicit construction method for a ‘complete
set’ of these operators in prime dimensions, subsequently. Wootters coined the notion of
‘mutually unbiased bases’ for different complementary bases [3].

As another example for the application of MUBs, consider two observables A and B on
C

d whose eigenbases are mutually unbiased. Kraus conjectured and Maassen and Uffink have
shown that the optimal uncertainty relation is given by H(A) + H(B) � ln d, where H(A)

and H(B) denote the Shannon entropies of the measurements of A and B, respectively [4, 5].
For any given dimension d there exists a maximum size for any set consisting of pairwise

MUBs which is at most d + 1 [6]. A set of MUBs of this maximum size is called complete.
When d is a prime power, i.e. d = qm for a prime q and m ∈ N, it is known that the maximum
size is exactly d + 1 and construction methods for complete sets of MUBs are known [6–8].
For non-prime-power dimensions the maximum size is unknown; for example in dimension
d = 6 only the lower bound 3 is known in addition to the upper bound 7 [9].

A complete set of cyclic MUBs in dimension d = 2m is a complete set of MUBs, which is
fully characterized by a single unitary operator U satisfying Ud+1 = 1d , with 1d denoting the
d×d identity operator, such that each of the basis vectors of the different bases is obtained from
the basis vectors of the standard basis by the application of powers of U. The generator U of a
complete set of cyclic MUBs in dimensions d = 2m can be considered as a generalization of
the operator that was used by Gottesman to cyclically transform the three Pauli operators [10].
A generator U for d = 2 was also helpful in security proofs of the six-state protocol [11, 12],
and it was shown [13] that generators U for d > 2 can be used to prove the security of higher
dimensional quantum key distribution protocols. Additionally, a single unitary generator
might be useful to experimentally implement quantum state tomography. The existence of the
complete sets of cyclic MUBs in even prime-power dimensions was proven by Chau [13] and
recently by Gow [14], who uses a representation theoretical argument.

In this paper, we present a construction method for complete sets of cyclic MUBs which is
based on the idea of obtaining a partition of m-qubit Pauli operators into maximal commuting
sets of orthogonal operators [7, 15]. This construction is more explicit and provides more
insights than the previous ones [13, 14]. Starting with a fixed set of commuting operators,
the residual sets are generated with the help of a suitable element of the Clifford group.
By applying our method, we obtain complete sets of cyclic MUBs in dimensions 2m for
m = 1, 2, . . . , 24. (For non-cyclic MUBs an explicit construction for the partition of Pauli
operators was given in [7].)

In section 2, we start by giving the precise definition of a complete set of cyclic MUBs,
define an equivalence relation for complete sets of MUBs and introduce the necessary
preliminaries for this paper, such as Pauli operators and the Clifford group. We then describe
our construction method in section 3 and provide complete sets of cyclic MUBs for m � 24 in
section 4. In section 5 we conclude our paper. In the appendices we provide some analytical
results used in the main part.

2. Basic concepts

2.1. Complete sets of MUBs

A set of MUBs consists of pairwise MUBs, which are defined as follows.
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Definition 2.1 (MUBs). Two orthonormal bases Bk = {∣∣ψk
0

〉
, . . . ,

∣∣ψk
d−1

〉}
and Bl ={∣∣ψl

0

〉
, . . . ,

∣∣ψl
d−1

〉}
of the d-dimensional Hilbert space H = C

d are said to be mutually
unbiased, if there holds∣∣〈ψk

i

∣∣ψl
j

〉∣∣ = 1/
√

d

for all 0 � i, j < d.

For any given dimension d there exists a maximum size N(d) for any set of MUBs, and
it is known that N(d) � d + 1 [6].

Definition 2.2 (Complete sets of MUBs). In the d-dimensional Hilbert space H = C
d , a set

of MUBs of the maximum size N(d) is called complete.

When d is a prime power, i.e. d = qm for a prime q and m ∈ N, it is known that
N(d) = d + 1 and construction methods for complete sets of MUBs are known [6–8], while
for non-prime-power dimensions N(d) is unknown.

Definition 2.3 (Complete sets of cyclic MUBs). In dimension d = 2m a complete set of cyclic
MUBs is a complete set of MUBs {B1, . . . ,Bd+1}, with B1 = {|0〉, |1〉, . . . , |d − 1〉} denoting
the standard basis3, which is fully characterized by a single unitary operator U satisfying
Ud+1 = 1d , with 1d denoting the d × d identity operator, as follows: each of the basis vectors
of the bases Bk = {∣∣ψk

0

〉
, . . . ,

∣∣ψk
d−1

〉}
(with 2 � k � d + 1) is obtained from the basis vectors

of B1 by the application of powers of U such that
∣∣ψk

i

〉 = Uk−1|i〉.

2.2. Equivalence of MUBs

Let us assume that we have two complete sets of MUBs {B1, . . . ,Bd+1} and {A1, . . . ,Ad+1} in
a Hilbert space H = C

d of prime-power dimension d = qm. We will employ the convention
to write the components bk

i,j of the basis vectors

∣∣ψk
i

〉 =
d−1∑
j=0

bk
i,j |j 〉 (1)

of a basis Bk = {|ψk
0 〉, . . . , |ψk

d−1〉} in the columns of a matrix Bk,

Bk =

⎛
⎜⎜⎜⎜⎜⎝

bk
0,0 bk

1,0 · · · bk
d−1,0

bk
0,1 bk

1,1 bk
d−1,1

...
...

bk
0,d−1 bk

1,d−1 · · · bk
d−1,d−1

⎞
⎟⎟⎟⎟⎟⎠ ; (2)

i.e. for the standard basis B1, we obtain B1 = 1d . The two sets of MUBs are equivalent, if
there exists some fixed unitary V taking one set into the other. There are two caveats: first,
any of the basis vectors is fixed only up to an arbitrary global phase; second, the order of the
basis vectors of a certain basis is irrelevant as is the order of the different bases. Hence, we
have the following definition.

Definition 2.4 (Equivalence of MUBs). Two complete sets of MUBs {B1, . . . ,Bd+1} and
{A1, . . . ,Ad+1} are said to be equivalent, if there exists a unitary matrix V ∈ Md(C), matrices

3 To be precise, a complete set of cyclic MUBs does not need to contain the standard basis, but it can always be
brought into such a form by a unitary transformation.
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Wk, k ∈ {1, . . . , d + 1}, which contain exactly one non-zero entry per row and column, the
absolute value of which must be unity, and a permutation π on {1, . . . , d + 1}, such that there
holds

Ak = V Bπ(k)Wk

for all values k ∈ {1, . . . , d + 1}.

2.3. Pauli operators

We start with the definition of Pauli operators acting on a one-qudit Hilbert space Hq = C
q

of prime dimension q. The Pauli X and Z operators are defined by

X|i〉 = |i + 1 (mod q)〉 (3)

Z|i〉 = ωi |i〉, (4)

where ω = exp(2πı/q) denotes a complex primitive qth root of unity. It follows that
ZX = ωXZ. For any vector �a = (�ax |�az) = (ax

1 , . . . , ax
m|az

1, . . . , a
z
m) ∈ F

2m
q , let the Pauli

operator XZ(�a) acting on the m-qudit Hilbert space H = H⊗m
q of dimension d = qm be

defined by

XZ(�a) =
{

ıa
x
1 az

1Xax
1 Zaz

1 ⊗ . . . ⊗ ıa
x
maz

mXax
mZaz

m, q = 2

Xax
1 Zaz

1 ⊗ . . . ⊗ Xax
mZaz

m, q � 3,
(5)

so that the eigenvalues of XZ(�a) are the powers of ω. If we represent the one-qubit Pauli
operators in the standard basis, we obtain the well-known Pauli matrices,

XZ(0|0) =
(

1 0

0 1

)
XZ(1|0) =

(
0 1

1 0

)
(6)

XZ(1|1) =
(

0 −ı

ı 0

)
XZ(0|1) =

(
1 0

0 −1

)
, (7)

which we will also denote as 12, X, Y and Z. For q � 3 we obtain

XZ(�a) · XZ(�b) = ω
∑

i az
i b

x
i XZ(�a + �b), (8)

while for q = 2 this expression holds up to the powers of ı. As a consequence, XZ(·) gives
rise to a unitary projective representation of F

2m
q , which by itself forms a group under addition

modulo q. We denote the set containing all m-fold tensor products of Pauli operators as

Pm
q = {

XZ(�a)
∣∣�a ∈ F

2m
q

}
. (9)

Finally, the symplectic inner product between elements �a and �b of F
2m
q is defined as

(�a, �b)sp =
m∑

i=1

az
i b

x
i − ax

i bz
i (mod q). (10)

With the help of the inner product defined above, the order of a product of two Pauli operators
XZ(�a) and XZ(�b) can be inverted:

XZ(�a) · XZ(�b) = ω(�a,�b)spXZ(�b) · XZ(�a). (11)

It follows that two Pauli operators XZ(�a) and XZ(�b) commute if and only if the symplectic
inner product between �a and �b vanishes.

4



J. Phys. A: Math. Theor. 43 (2010) 275305 O Kern et al

2.4. Clifford group operators

We consider a d = qm dimensional Hilbert space H of m qudits of dimension q. The Clifford
group Cm

q on H is defined as the group of unitary operators U which map m-qudit Pauli
operators onto m-qudit Pauli operators [16],

Cm
q = {

U ∈ Md(C) unitary
∣∣(∀�a ∈ F

2m
q

)(∃ �a′ ∈ F
2m
q , j ∈ Fq

)
(UXZ(�a)U † = ωjXZ(�a′))

}
,

(12)

with Md(C) denoting the set of d × d matrices with entries in C.
Any member U of the Clifford group is fully specified when the action ωjXZ(�a′) =

UXZ(�a)U † of U on a generating set of elements of the Pauli group Pm
q is known. In the

following we assume that such a generating set is given by the operators XZ(�xi) and XZ(�zi)

with

�xi = (0, . . . , 0, 1, 0, . . . 0|0, . . . , 0) ∈ F
2m
q

having a one in position 1 � i � m and

�zi = (0, . . . , 0|0, . . . , 0, 1, 0, . . . 0) ∈ F
2m
q

having a one in position m+1 � m+i � 2m. To understand this fact, we note that any �a ∈ F
2m
q

can be expressed as a linear superposition of these generators, �a = ∑
i a

x
i �xi +

∑
i a

z
i �zi . As a

consequence, we obtain

UXZ(�a)U † =
m∏

i=1

(UXZ(�xi)U
†)a

x
i

m∏
i=1

(UXZ(�zi)U
†)a

z
i

= ωjXZ(�a′), (13)

with �a′ = ∑
i a

x
i �x ′

i +
∑

i a
z
i �z′

i and j ∈ Fq . It follows that the mapping of a generator
�g ∈ {�x1, . . . , �xm, �z1, . . . , �zm} onto its image �g′ can be described as �g′T = C · �gT using a
2m × 2m matrix C ∈ M2m(Fq) whose first m columns contain the transposed row vectors
�x ′
i and whose second m columns contain the transposed �z′

i . In addition, the image �a′ of an
arbitrary element �a ∈ F

2m
q can easily be expressed as �a′T = C · �aT . Since the commutator

relations for the XZ(�xi) and XZ(�zi), namely

(�xi, �xj )sp = 0, (�zi, �zj )sp = 0, (�zi, �xj )sp = δij (14)

for all 1 � i, j � m, have to remain unchanged for the XZ(�x ′
i ) and XZ(�z′

i ), the matrix C
underlies the constraint

CT ·
(

0m −1m

1m 0m

)
· C =

(
0m −1m

1m 0m

)
(mod q), (15)

and is called symplectic.
If only the matrix C describing the action of a Clifford unitary U is known, a (non-unique)

matrix U can be reconstructed as follows: the first m columns of C contain the transpose of
the images �x ′

i of the generators �xi , while columns m + 1, . . . , 2m contain the transpose of the
images �z′

i of the generators �zi (with 1 � i � m). Let us use the corresponding commuting
Pauli operators XZ(�z′

i ) to define the so-called stabilizer state |�0〉L as the common eigenvector
of eigenvalue +1:

XZ(�z′
i )|�0〉L = +1 · |�0〉L for all 1 � i � m. (16)

5
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We obtain the so-called logical orthonormal basis BL = {|�0〉L, |�1〉L, . . . , |−−−−→
2m − 1〉L}, with

�i = (i1, . . . , im) ∈ F
m
2 and i = ∑m

j=1 ij · 2m−j , by applying the operator
∏

j XZ(ij · �x ′
j ) onto

|�0〉L. It is easy to verify that

XZ(�z′
j )|�i〉L = ωij |�i〉L (17)

XZ(�x ′
j )|�i〉L = |(i1, . . . , ij + 1, . . . , im)〉L, (18)

which is why the XZ(�z′
j ) and XZ(�x ′

j ) are called the logical Pauli Zj and Xj operators,
respectively. Expressed in the standard basis, the d × d unitary matrix U = (cjk)

contains in its kth column the components of the vector |�k〉L = ∑
j cjk|�j 〉 and satisfies

U |�k〉 = |�k〉L.

3. Construction method

3.1. Complete MUBs and maximal commuting operator bases

Let Md(C) denote the set of all d × d matrices with entries in C. Two matrices A and B from
the set Md(C) are said to be orthogonal if their trace inner product 〈A,B〉 = tr(A†B) vanishes.
A maximal commuting unitary operator basis for Md(C) is a set M = {u1, . . . , ud2} of unitary
matrices containing the identity matrix 1d that can be partitioned as M = {1d}∪C1 ∪· · ·∪Cd+1

into d + 1 disjoint sets Cj containing d − 1 commuting operators each. The following theorem
due to Bandyopadhyay et al [7] allows the construction of a complete set of MUBs in prime-
power dimensions with the help of a maximal commuting unitary operator basis that consists
of pairwise orthogonal operators only; see also Lawrence et al [15] for the special case of
qubits and Pauli operators.

Theorem 3.1 (Construction of MUBs). A maximal commuting unitary operator basis
for Md(C) consisting of pairwise orthogonal operators defines a complete set of d + 1
MUBs.

Proof. Each of the sets C′
j = {1d} ∪ Cj contains d orthogonal and commuting

unitary operators which define a common eigenbasis Bj = {∣∣ψj

1

〉
, . . . ,

∣∣ψj

d

〉}
(unique up

to phases). Let us denote the elements of C′
j as C′

j = {uj,0, uj,1, . . . , uj,d−1} with uj,0 = 1d .
Expressing these elements in terms of the eigenbasis Bj leads to the diagonal representations
uj,t = ∑d

k=1 λj,t,k

∣∣ψj

k

〉〈
ψ

j

k

∣∣ (0 � t � d − 1). Using the orthogonality of the unitaries uj,t , we
obtain the equation

dδt,0δt ′,0 = tr(u†
j,t · uj ′,t ′) =

d∑
k,k′=1

λ∗
j,t,kλj ′,t ′,k′

∣∣〈ψj

k

∣∣ψj ′
k′

〉∣∣2

for 0 � t, t ′ � d −1 and 1 � j < j ′ � d +1. Defining the unitary d ×d matrices Mj = (mtk)

with entries mtk = λj,t,k/
√

d, the above equation can be written as M∗
j ⊗ Mj ′ · �vT =

(1, 0, . . . , 0)T with the vector �v = (∣∣〈ψj

1

∣∣ψj ′
1

〉∣∣2
,
∣∣〈ψj

1

∣∣ψj ′
2

〉∣∣2
, . . . ,

∣∣〈ψj

d

∣∣ψj ′
d

〉|2). Inversion of
this vector equation leads to �v = (1/d, 1/d, . . . , 1/d) and hence shows that the bases Bj and
Bj ′ are mutually unbiased. Since this proof applies to all 1 � j < j ′ � d + 1, the set of
eigenbases {B1, . . . ,Bd+1} forms a complete set of MUBs. �

6
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3.2. Pauli operators and maximal commuting operator bases

As is discussed in [7], in prime-power dimensions d = qm the set Pm
q of Pauli operators can

always be partitioned as Pm
q = {1d} ∪ C1 ∪ · · · ∪ Cd+1 in order to form a maximal commuting

operator basis for d × d matrices. Let us give an explicit example for q = 2 and m = 2:

{14} ∪ C1 = {12⊗12, Z⊗12, 12⊗Z , Z⊗Z}
{14} ∪ C2 = {12⊗12, X⊗12, 12⊗X, X⊗X}
{14} ∪ C3 = {12⊗12, Y ⊗X, X⊗Z ,−Z⊗Y }
{14} ∪ C4 = {12⊗12, Y ⊗Y , Y ⊗12, 12⊗Y }
{14} ∪ C5 = {12⊗12, Y ⊗Z , Z ⊗X,−X⊗Y }.

(19)

The common eigenbasis of the operators in {14} ∪ C1 is the standard basis B1 =
{|00〉, |01〉, |10〉, |11〉} of m = 2 qubits, or equivalently the standard basis B1 =
{|0〉, |1〉, |2〉, |3〉} of one qudit of dimension d = 2m. The common eigenbasis B2 of {14} ∪ C2

consists of the basis vectors
∣∣ψ2

i

〉 = ∑3
j=0 b2

i,j |j 〉. Let us write the components of the
∣∣ψ2

i

〉
in

the columns of a matrix B2 = (
b2

k,j

)
, and we obtain

B2 = 1

2

⎛
⎜⎜⎝

ı ı 1 −1
ı −ı 1 1
ı ı −1 1
ı −ı −1 −1

⎞
⎟⎟⎠ , (20)

where we used a special choice of global phases for the
∣∣ψ2

i

〉
. Setting U = B2, it can be

verified that the remaining bases B3, B4 and B5 are given by the matrices B3 = U 2, B4 = U 3

and B5 = U 4 (also note that U 5 = 14). This means that our example describes a complete
set of cyclic MUBs in dimension d = 4. Since we are interested in the construction of cyclic
MUBs for q = 2, the question is how such a partition of Pm

2 can be obtained for arbitrary m.
Unfortunately, the method for the construction of partitions of Pm

q mentioned in [7] does not
lead to cyclic MUBs in general.

3.3. Construction of cyclic MUBs

As can be seen from the example for m = 2 given in equation (19), a complete set of cyclic
MUBs in dimension d = 2m can be obtained if we find a partition of the Pauli operators Pm

2
into d + 1 disjoint sets Cj of size d − 1 containing commuting operators, such that

Cj+1 = UCjU
† (21)

for some unitary U with Ud+1 = 1d . In this case the common eigenbases Bj of the operators
Cj are simply obtained by applying the unitaries Uj−1 onto the elements of the common
eigenbasis B1 of the operators C1. Let us now assume that we always choose C1 to consist of
all d − 1 tensor products of Z operators, i.e. of all Pauli operators XZ(�a) such that �a = (�0|�az)

with �az ∈ F
m
2 \ {�0} and �0 = (0, . . . , 0). In this case the common eigenbasis of {1d} ∪ C1 is

always the standard basis B1 = {|0 . . . 00〉 ≡ |0〉, |0 . . . 01〉 ≡ |1〉, . . . , |1 . . . 11〉 ≡ |d − 1〉}.
As in subsection 2.2, we will employ the convention to write the components of the basis
vectors of a basis Bk = {∣∣ψk

0

〉
, . . . ,

∣∣ψk
d−1

〉}
in the columns of a matrix Bk.

Note that we can store exponentially many members of C1 in an efficient form by writing
{1d}∪C1 = {XZ(�a)|�a = �c ·G1 with �c ∈ F

m
2 } with the m×2m generator matrix G1 = (0m|1m).

A unitary U which generates the remaining sets Cj with j � 2 via (21) maps m-qubit Pauli
operators onto m-qubit Pauli operators and hence is a member of the Clifford group.

Using the representation of a Clifford group unitary U in terms of a symplectic matrix
C ∈ M2m(F2), we can reformulate condition (21) as follows: let the set {1d} ∪ Cj be specified

7
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by an m × 2m generator matrix Gj, i.e. {1d} ∪ Cj = {XZ(�a)|�a = �c · Gj with �c ∈ F
m
2 }; then

the set Cj+1 has to be specified by the generator matrix Gj+1 = Gj · CT .
Let us summarize the results so far. We are interested in finding a partition of the set of

Pauli operators Pm
2 = {1d} ∪ C1 ∪ · · · ∪ Cd+1 into disjoint sets Cj of size d − 1 containing

commuting operators, such that Cj+1 = UCjU
† for a Clifford unitary U with Ud+1 = 1d .

Fixing the first set C1 by choosing the generator matrix G1 = (0m|1m) leads to the basis
B1 = 1d , and the remaining bases are specified by the matrices Bj = Uj−1, or in other words
by the basis U = B2. If in addition Ud+1 = 1d , we have a complete set of cyclic MUBs in
dimension d = 2m which is specified by the powers {Uj |0 � j � d} of a single matrix U.
Instead of looking for such a d × d dimensional Clifford unitary U directly, it is easier to look
for its 2m × 2m dimensional representation C ∈ M2m(F2): we have to find C ∈ M2m(F2)

such that

(I) C satisfies equation (15) (i.e. C is symplectic),
(II) the generator matrices Gj = G1 · (Cj−1)T (with 1 � j � d + 1 and G1 = (0m|1m))

span non-overlapping vector spaces,
(III) Gd+2 = G1, or in other words Cd+1 = 12m.

If such a C is found, the last step is to construct the unitary U corresponding to C.

3.4. Finding a suitable C

Let us now describe how for every m ∈ N a 2m × 2m matrix C with entries in F2 satisfying
the three conditions (I), (II) and (III) stated at the end of the last subsection can be found. We
start with the assumption that there always exists such a matrix C having the form

C =
(

B 1m

1m 0m

)
, (22)

with B ∈ Mm(F2). Note that in order for C to satisfy condition (I) (being symplectic), B has
to be symmetric, i.e. B = BT . Equation (22) allows us to write Cn as

Cn =
(

fn(B) fn−1(B)

fn−1(B) fn−2(B)

)
, (23)

using the recursively defined polynomials fn over the finite field F2 satisfying

fn(x) = fn−1(x) · x + fn−2(x), (24)

with f−1(x) = 0, f0(x) = 1 and f1(x) = x. We prove some properties of the fn we are going
to use in the following in appendix A.

Starting with the generator matrix G1 = (0m|1m) generating the set {1d} ∪ C1, our
particular choice of C leads to the generator list {G1,G2, . . . ,Gd+1} with Gj = G1 ·(Cj−1)T =
(fj−2(B)|fj−3(B)). Now in order to satisfy condition (II), any two generators Gj and Gk (with
1 � j < k � d + 1 and d = 2m) have to span non-overlapping vector spaces, or in other
words the 2m × 2m matrix(

fj−2(B) fj−3(B)

fk−2(B) fk−3(B)

)
(25)

with entries in F2 has to be invertible; this can be checked with the help of lemmas A.5 and
C.2 as follows: according to lemma C.2 a 2m × 2m block matrix as (25) is invertible if and
only if the m × m matrix fj−2(B) · fk−3(B) − fj−3(B) · fk−2(B) = f|j−k|−1(B) ∈ Mm(F2)

is invertible, where the latter identity is obtained by lemma A.5. Hence, all fj (B) with
1 � j � d − 1 have to be invertible. Finally, in order to satisfy condition (III), we have to

8
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demand that Gd+2 = (fd(B)|fd−1(B)) = G1 with d = 2m. This latter condition demands
(due to the fact that fn−2(x) = fn−1(x) · x + fn(x)) that the equation fd−1−j (B) = fj (B)

holds for any j = 1, . . . , 2m−1. It is interesting to note that the polynomials fd−1(B) and
fd−2(B) have simple forms, see lemmata A.3 and A.4, e.g. fd−1(B) = Bd−1. Combined with
the previous conditions, we obtain the following conditions which are faster to verify:

(i) B = BT ,
(ii) fj (B) is invertible for all 1 � j � 2m−1,

(iii) f2m−1(B) = f2m−1−1(B).

3.4.1. Construction of U. So far, we showed that in order to find a symplectic C for a fixed
value of m ∈ N, it suffices to find a B ∈ Mm(F2) satisfying the above conditions. Before we
proceed to explain how we found such matrices B for different values of m up to m = 24, let
us construct the unitary Clifford operator U corresponding to a matrix C of the form (22) in
the way it was explained in subsection 2.4. The stabilizer state |�0〉L is defined as the common
eigenvector with the eigenvalue +1 of the logical Pauli Zj operators, which are now simply
given by the usual Pauli Xj operators. Hence,

|�0〉L = 1√
2m

(1,...,1)∑
F

m
2 ��i=(0,...,0)

|�i〉. (26)

To obtain |�j 〉L ≡ |(j1, . . . , jm)〉L, we have to apply the operator
∏

k XZ(�x ′
k)

jk , where the �x ′
k

are given by

�x ′
k = (Bk1, . . . , Bkm|δ1k, . . . , δmk) ∈ F

2m
2 , (27)

and it follows that

|�j〉L = 1√
2m

(1,...,1)∑
F

m
2 ��i=(0,...,0)

p�j (−1)
�i·�j |�i〉, (28)

where the phases p�j ∈ {±1,±ı} are obtained from B as follows: let �b = (B11, . . . , Bmm) ∈ F
m
2

be the diagonal of B, let �Bk = (Bk1, . . . , Bkm) ∈ F
m
2 be the kth row of B and let

�v→k = (v1, . . . , vk, 0, . . . , 0) for any vector �v = (v1, . . . , vk, vk+1, . . . , vm). Then (with
expx(y) = xy)

p�j = expı (
�b · �j) · exp−1

(
m∑

k=1

jk · ( �Bk · �j→k)

)
. (29)

Since U contains the components of the |�j 〉L as columns, we can write it as

U = H⊗m · diag(p�0, p�1, . . . , p−−→2m−1
) · eıψ , (30)

where H⊗m denotes the m-fold tensor product of the Hadamard matrix

H = 1√
2

(
1 1
1 −1

)
. (31)

If we assume that our conjecture (B.1) is valid, we can choose the trace of our cyclic U of
order 2m + 1 to be equal to −1 and apply a global phase eıψ , which is determined by

eıψ = −tr(H⊗m · diag(p∗
�0, p

∗
�1, . . . , p

∗−−→2m−1
)), (32)

where p∗
�j denotes the complex conjugate of p�j .

9
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3.4.2. Search for B. Even though the number 2m(m+1)/2 of symmetric matrices B ∈ Mm(F2)

seems to be rather large for a complete search and large m, it turns out that a suitable B can
quite easily be found for the moderate values of m. For m � 4, we make the guess that a
suitable matrix B = (bij ) exists with entries bij = βij + αij for 1 � i, j � m, with

βij =
{

1, if j + i � m + 1
0, else,

(33)

and αij representing a symmetric 2 × 2 matrix A = (aij ) located in the lower-right corner of
B. For example, for m = 5 we assume that B has the form

B =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1
1 1 1 1 0
1 1 1 0 0
1 1 0 a11 a12

1 0 0 a12 a22

⎞
⎟⎟⎟⎟⎠ , (34)

and it remains to search through the 23 = 8 possible values for the aij. As is shown in the next
section, we find indeed solutions for B which are of this form for values of m up to 24 (with
the only exception that for m = 12, 20 and 21 we had to take a 3 × 3 matrix A). It appears
that for B of the form of equation (34), the global phase eıψ of U determined by equations (32)
and (29) does not depend on the small A matrix, but depends solely on m:

eıψ =
{−1+ı√

2
, for m odd

ı, for m even,
(35)

but we do not have a rigorous proof for general m. Note that this implies that the entries of U
are roots of unity of order 4 for even m and roots of order 8, but not of order 4 for odd m.

3.4.3. Equivalence of matrices B. Given some B satisfying conditions (i)–(iii), it is easy
to verify that any matrix B ′ = PBP T obtained from B by multiplication with a permutation
matrix P also satisfies these conditions. We are now going to prove the following lemma.

Lemma 3.2 (Equivalent Bs). The complete set of cyclic MUBs specified by the matrices
{1d , U

′, U ′2, . . . , U ′d} with U ′ denoting the Clifford unitary corresponding to C ′ = (
B ′
1d

1d

0d

)
and B ′ = PBP T for some permutation matrix P is equivalent to the complete set of cyclic
MUBs specified by {1d, U,U 2, . . . , Ud} with U denoting the Clifford unitary corresponding
to C = (

B

1d

1d

0d

)
.

Proof. From

C ′ =
(

P 0d

0d P

)
C

(
P T 0d

0d P T

)
(36)

we obtain the corresponding equation U ′ = V UV −1 with the (d = 2m)-dimensional Clifford
group unitary V corresponding to the symplectic matrix

(
P

0d

0d

P

)
. Since the stabilizer state

|�0〉L of the latter matrix is given by |�0〉 ≡ |00 . . . 0〉, it follows that V is also a permutation
matrix. Hence, according to definition 2.4,

U ′k = V Uπ(k)Wk (37)

for all 1 � k � d + 1, with π(k) = k and Wk = V −1. �

Since there are m! possible permutation matrices, it is obvious that we may get up to m!
equivalent cyclic MUBs with this method.

10
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4. Results

Performing the search for a symplectic matrix C ∈ M2m(F2), defining a Clifford unitary U of
dimension d = 2m and satisfying the conditions of subsection 3.3, we obtained such C’s for
m = 1, 2, . . . , 24. Each of these C’s is of the form of equation (22) and defines a complete
set of cyclic MUBs via the corresponding unitary U given by equations (30) and (35). As
a reminder, the search for C reduces to a search for a matrix B ∈ Mm(F2) satisfying the
following three conditions of subsection 3.4:

(i) B = BT ,
(ii) fj (B) is invertible for all 1 � j � 2m−1,

(iii) f2m−1(B) = f2m−1−1(B).

4.1. The case m = 1

The matrix B is a scalar now and f1(B) = B has to be equal to f0(B) = 1 which leads to the

single solution B = 1 and C = (1 1
1 0

)
. The corresponding unitary U is given by

U = H · diag(1,−ı) · −1 + ı√
2

= −1 + ı

2

(
+1 −ı

+1 +ı

)
(38)

and has the eigenvalues {ω,ω2} with ω = exp
(
2πı/3

)
. Note that U can also be expressed as

U = − exp(−ıπ(X + Y + Z)/(3
√

3)), (39)

which is a rotation on the Bloch sphere around the axis (1, 1, 1) with the rotation angle 2π/3
that corresponds to the operator T used by Gottesman and Lo [10–12].

4.2. The case m = 2

The 2 × 2 matrix B has to fulfill the condition that f2(B) = 12 + B2 equals f1(B) = B which
leads to the equation 12 + B + B2 = 02 having m! = 2 symmetric solutions, which can be
obtained via B ′ = PBP T from the matrix

B =
(

1 1
1 0

)
, (40)

by applying all m! permutation matrices P. The unitary U corresponding to the matrix
C = (

B

12

12

02

)
is given by

U = H⊗2 · diag(1, 1,−ı, ı) · ı = 1

2

⎛
⎜⎜⎝

+ı +ı +1 −1
+ı −ı +1 +1
+ı +ı −1 +1
+ı −ı −1 −1

⎞
⎟⎟⎠ , (41)

and has the eigenvalues {ω,ω2, ω3, ω4} with ω = exp(2πı/5).

4.3. The case m = 3

The 3 × 3 matrix B has to fulfill the condition that f4(B) = 13 + B2 + B4 is equal to
f3(B) = B3 which leads to 13 + B2 + B3 + B4 = 03, or using factorization modulo 2,
(13 + B + B3) · (13 + B) = 03. Since in addition f2(B) = 13 + B2 = (13 + B)2 has to be
invertible, (13 + B) has to be invertible as well. Hence, all valid matrices B satisfy

13 + B + B3 = 03 and B = BT . (42)

11
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A computer search reveals that there are m! = 6 such matrices, which can be obtained from

B =
⎛
⎝1 1 1

1 1 0
1 0 0

⎞
⎠ (43)

via B ′ = PBP T by applying all m! permutation matrices P. The unitary U corresponding to
C = (

B

13

13

03

)
is given by

U = H⊗3 · diag(1, 1,−ı,−ı,−ı, ı, 1,−1) · −1 + ı√
2

= −1 + ı

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1 +1 −ı −ı −ı +ı +1 −1
+1 −1 −ı +ı −ı −ı +1 +1
+1 +1 +ı +ı −ı +ı −1 +1
+1 −1 +ı −ı −ı −ı −1 −1
+1 +1 −ı −ı +ı −ı −1 +1
+1 −1 −ı +ı +ı +ı −1 −1
+1 +1 +ı +ı +ı −ı +1 −1
+1 −1 +ı −ı +ı +ı +1 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(44)

The eigenvalues of U are given by {ωk|k = 1, 2, . . . , 8} with ω = exp(2πı/9). According to
lemma 3.2, the Clifford unitaries U corresponding to the remaining five matrices B generate
equivalent sets of MUBs.

4.4. The case m = 4

The 4 × 4 matrix B has to fulfill the condition that f8(B) = 14 + B4 + B6 + B8 equals
f7(B) = B7. Applying factorization modulo 2, we find that all valid matrices B satisfy
B = BT and

(14 + B + B4) · (14 + B + B2 + B3 + B4) = 04. (45)

It turns out that there are 96 such matrices B, which can be grouped into two sets of 48 matrices
each.

The solutions of the first set satisfy 14 + B + B4 = 04 and B15 = 14 and can be further
divided into two subsets, one of which is given by the matrices B ′ = PBP T with P denoting
the m! = 24 permutation matrices and

B =

⎛
⎜⎜⎝

1 1 1 1
1 1 1 0
1 1 0 1
1 0 1 0

⎞
⎟⎟⎠ , (46)

and the other one given by the matrices B ′ = PBP T with

B =

⎛
⎜⎜⎝

1 1 1 0
1 0 0 0
1 0 0 1
0 0 1 1

⎞
⎟⎟⎠ . (47)

12
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Table 1. This table shows a matrix A which corresponds to the lower right corner of a matrix
B ∈ Mm(F2) of the form of equation (34) satisfying conditions (i)–(iii).

m 4 5 6 7 8 9 10

A

(
0 0
0 1

) (
0 0
0 0

) (
0 0
0 0

) (
0 0
0 1

) (
0 1
1 1

) (
0 0
0 0

) (
1 0
0 0

)

m 11 12 13 14 15 16 17

A

(
0 0
0 0

) ⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ (

0 0
0 1

) (
0 0
0 0

) (
0 1
1 1

) (
0 0
0 1

) (
0 0
0 1

)

m 18 19 20 21 22 23 24

A

(
0 0
0 0

) (
0 0
0 1

) ⎛
⎝1 0 0

0 0 0
0 0 1

⎞
⎠

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ (

1 0
0 0

) (
0 0
0 0

) (
1 0
0 1

)

The solutions of the second set satisfy 14 +B +B2 +B3 +B4 = 04 and B5 = 14 and can be
further divided into two subsets, one of which is given by the m! = 24 matrices B ′ = PBP T

and

B =

⎛
⎜⎜⎝

1 1 1 1
1 1 1 0
1 1 0 0
1 0 0 1

⎞
⎟⎟⎠ , (48)

and the other one given by the m! = 24 matrices B ′ = PBP T with

B =

⎛
⎜⎜⎝

1 1 1 0
1 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ . (49)

4.5. The cases m � 4

For m � 4 we assume that there exists a matrix B of the form of equation (34), and we check
whether one of the eight symmetric 2×2 matrices A leads to a B satisfying conditions (i)–(iii).
If for a particular value of m no such A is found, we increase the dimension of A and search
for a suitable 3 × 3 matrix. In table 1 we present suitable matrices A for m = 4, . . . , 24.
According to this table for m = 4 for example, a suitable B is given by (48) and the unitary U
corresponding to C = (

B

14

14

04

)
is given by

U = H⊗4 · diag(1,−ı, 1,−ı,−ı,−1, ı, 1,−ı, 1, ı,−1, 1, ı, 1, ı) · ı, (50)

where we obtained the phases p�j from B with the help of equation (29). For values of
m � 24 the test whether condition (ii) is satisfied for a particular matrix B starts to consume
a considerable amount of time, preventing us from finding suitable matrices B for values of m
higher than 24.

13
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5. Conclusion

In this paper, we presented a method to construct complete sets of cyclic MUBs in even
prime-power dimensions. We used this method to explicitly compute unitaries which generate
such MUBs in all dimensions 2m with m ∈ {1, . . . , 24}, and this limit arises only due to limits
of computational power. We have reason to believe that is is possible to prove the existence
of at least one suitable matrix B as in sections 3 and 4 for every m ∈ N, which would yield a
simple proof for the existence of cyclic MUBs in these dimensions, but this is not within the
scope of this work.
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Appendix A. Properties of the polynomials fk

In this appendix, we prove some properties of the polynomials fk over the finite field F2, defined
by f−2(x) = 1, f−1(x) = 0 and fk(x) = fk−1(x) · x + fk−2(x) for k ∈ N0. By this recursion,
it is obvious that fk is a normalized polynomial of degree k for k ∈ N0. Its coefficients are
determined in the following lemma.

Lemma A.1 (Coefficients of the polynomial fk). For k ∈ N0 there holds fk(x) = ∑k
i=0 a

(k)
i xi

with

a
(k)
i =

{(
(k+i)/2
(k−i)/2

)
mod 2, if i ≡ k mod 2,

0, otherwise.

In other words, fk(x) = ∑[k/2]
r=0

{(
k−r

r

)
mod 2

}
· xk−2r .

Proof. We have f0(x) = 1 and f1(x) = x, so that the statement holds in these cases. The
recursion formula can be restated as a

(k)
i = a

(k−1)
i−1 + a

(k−2)
i . In the case i ≡ k mod 2, we have

to show ( k+i
2

k−i
2

)
≡

( k+i
2 − 1
k−i

2

)
+

( k+i
2 − 1

k−i
2 − 1

)
mod 2,

but this is a standard result from combinatorics and the case i �≡ k mod 2 holds in a similar
fashion. �

We now want to find a criterion, when there holds
(
n

k

) = n!
(n−k)! k! ≡ 0 mod 2 for a binomial

coefficient. For this, let P be the set of prime numbers and denote by [x] := max {n ∈ Z|n � x}
Gauss’ floor function.

Lemma A.2 (Factorization of binomial coefficients). For any n ∈ N there holds
n! = ∏

p∈P
pe(n,p) with e(n, p) := ∑∞

j=1[n/pj ]; given some k ∈ {0, . . . , n} there holds(
n

k

) = ∏
p∈P

pe′(n,k,p) with

e′(n, k, p) :=
∑∞

j=1
{[n/pj ] − [(n − k)/pj ] − [k/pj ]}.

14
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Proof. There are [n/p] multiples of p contained in n! (counted once), [n/p2] multiples of p2

(counted twice), etc which shows the first part. The second part is an immediate consequence
thereof. �

Since the terms in the curly brackets are either 0 or 1 for any j , we have
(
n

k

) ≡ 0 mod 2,
if and only if at least one term [n/2j ] − [(n − k)/2j ] − [k/2j ] is positive. This is the case, if
and only if (n − k) mod 2j + k mod 2j � 2j holds for at least one j ∈ N. We use this fact in
the proof of the next two lemmata.

Lemma A.3 (Polynomials f 2m−1). If k = 2m − 1 for some m ∈ N, then fk(x) = xk .

We shall give a direct proof here; another proof may be obtained from lemma A.7.

Proof. By construction k is odd, and by lemma A.1 all coefficients a
(k)
i = 0 with

even i vanish. We have a
(k)
k = 1 and for the remaining odd i, we have to show

a
(k)
i = ( k+i

2
k−i

2

)
mod 2 = 0. Let us now write k−i

2 = 2e · r for odd r and e ∈ {1, . . . , m − 2}. We

find k+i
2 − k−i

2 = i = 2m − 1 − 2e+1 · r ≡ −1 mod 2e+1; thus i mod 2e+1 = 2e+1 − 1 is the
maximally possible value and k−i

2 mod 2e+1 �= 0. Therefore, i mod 2e+1+ k−i
2 mod 2e+1 � 2e+1.

�

Lemma A.4 (Polynomials f 2m−2). For m ∈ N, there holds f2m−2(x) = ∑m
j=1 x2m−2j

.

Proof. Let k := 2m −2. According to lemma A.1 all a(k)
i with odd i vanish. For the even i, we

consider k−i
2 and i in a similar fashion as in lemma A.3. We will write these numbers in m bit

binary notation, i.e. k = (1 . . . 10)2 and i = (im−1im−2 . . . i10)2; we have i0 = 0, since i is even,
and we use commata as appropriate. Therefore k−i

2 = (0, 1−im−1, 1−im−2, . . . , 1−i2, 1−i1)2.
The condition k−i

2 mod 2j + i mod 2j � 2j holds, if at the j th position, j ∈ {1, . . . , m − 2},
there occurs an overflow, i.e. if (1 − ij+1) + ij > 1 or ij+1 = 1 ∧ ij = 0. This holds for no
choice of j , if and only if i is of the form (1 . . . 10 . . . 0)2, i.e. i = 2m − 2j for some j . �

Lemma A.5 (Block determinants of polynomials). For the polynomials fk, there holds

fk(x)fl−1(x) − fl(x)fk−1(x) = f|k−l|−1(x).

Proof. Let u(k, l) := fk(x)fl−1(x) − fl(x)fk−1(x). By the recursion fk(x) =
fk−1(x)x + fk−2(x) we may write

fk(x)fl−1(x) = fk−1(x)fl−1(x)x + fk−2(x)fl−1(x)

and similarly for k and l exchanged. Subtracting these terms yields u(k, l) = −u(k−1, l −1).
Assuming without loss of generality k � l, this results in u(k, l) = (−1)lu(k − l, 0). Since
f−1(x) = 0 and f0(x) = 1, there holds u(k, l) = (−1)l+1fk−l−1(x), and since we work over
the field F2, we ignore the prefactor (−1)l+1. �

In the following, we will consider the divisibility properties of the polynomials fk. For
this, it is useful to note the generalized recursion fk+l = fkfl +fk−1fl−1, which can be directly
read off from equation (23) or proven by induction.

Lemma A.6 (Divisibility of polynomials). If k′ ∈ N divides k ∈ N, then fk′−1 divides fk−1.

Proof. Let k = nk′ for an appropriate n ∈ N. We note that the case n = 1 is trivial
and proceed by induction over n. By the generalized recursion, we find that there holds
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f(n+1)k′−1 = fnk′+(k′−1) = fnk′fk′−1 + fnk′−1fk′−2, where fk′−1 and fnk′−1 are divisible by
fk′−1. �

Lemma A.7 (Factorization of fk for odd k). There holds f2k+1(x) = fk(x)2 · x for k ∈ N0. If
we set k + 1 = 2e · r for odd r, we have fk(x) = fr−1(x)2e · x2e−1.

Proof. By the generalized recursion, we find the relation f2k+1 = f(k+1)+k = fk+1fk+fkfk−1 =
fk(fk+1 + fk−1) and use the fact that fk+1(x) + fk−1(x) = xfk(x). The second part follows by
induction over e. �

Thus, in order to check for invertibility of fk(B) for all k ∈ {0, . . . , kmax} for some
kmax ∈ N (as in condition (ii) of the main text), we only have to check the invertibility of B
itself and the fk(B) with even k. If we define the polynomials gk(x) := ∑k

i=0 b
(k)
i xi with

b
(k)
i := (

k+i

k−i

)
mod 2, we have f2k(x) = gk(x

2), and we only have to deal with this reduced set
of polynomials in x2.

Appendix B. Eigenvalues of matrices which generate cyclic MUBs

Let us consider a unitary matrix U ∈ Md(C) which generates a complete set of cyclic MUBs.
We were not able to give a formal proof for the following conjecture, but our results indicate
that it may be true for all matrices produced by our method.

Conjecture B.1 (Spectrum of generators of MUBs). Let U be a generator of a complete
set of cyclic MUBs. Then, its spectrum is non-degenerate and consists of all roots of unity of
order d + 1 with precisely one exception.

By definition, Ud+1 = 1d , i.e. all eigenvalues of U are roots of unity of order d + 1, and
the second part follows immediately from the non-degeneracy. Since we may multiply U with
an arbitrary power of ω = exp

(
2πı
d+1

)
, we may choose 1 not to lie in the spectrum. In this case,

we have tr U = −1.

Appendix C. Results from algebra

Let R be a commutative ring with identity and consider a matrix A ∈ Mm(R). We
then define the complementary matrix of A as Ã = (ãij )

m
i,j=1 ∈ Mm(R) with coefficients

ãij = (−1)i+j det Aji , where Aji ∈ Mm−1(R) is constructed from A by removing the j th row
and the ith column. We then have the following criterion for invertibility of a matrix; cf e.g.
Hungerford [17], proposition VII.3.7 on p 353, or Bourbaki [18], section 8.6, proposition 12
on p III.99.

Theorem C.1 (Cramer’s rule). Let R be a commutative ring with identity. For every matrix
A ∈ Mm(R), there holds ÃA = AÃ = (det A)1m. In particular, A is invertible, if and only if
det A is an invertible element in R.

Proof. The main statement follows by direct calculation, and we have det A · det A−1 =
det(AA−1) = det 1m = 1, if A is invertible. �

In this paper, we need only the following lemma.
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Lemma C.2 (Invertible matrices). Let A, B, C, D ∈ Mm(F2) be commuting matrices.

Then the block matrix
(
A B

C D

) ∈ M2m(F2) is invertible, if and only if AD − BC ∈ Mm(F2) is

invertible.

Proof. Let R be the commutative subring with identity generated by the elements
A, B, C, D ∈ Mm(F2) in the matrix ring M2m(F2). Then the statement follows immediately
from theorem C.1. �
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