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Abstract

Quasi cyclic codes over a finite field are viewed as cyclic codes over a non commutative ring of matrices
over a finite field. This point of view permits to generalize some known results about linear recurring
sequences and to propose a new construction of some quasi cyclic codes and self dual codes.

1. Introduction

Let p be a prime number, r ∈ ℕ, q = pr and Fq the Galois field with q elements.
Let n ∈ ℕ. As usual, we define the shift map from Fn

q to Fn
q denoted T by:

∀c = (c0, c1, . . . , cn−1) ∈ Fn
q , T c = (cn−1, c0, . . . , cn−2). (1)

Let C be a code of length n over Fq. Let ℓ ∈ ℕ∗. We say that C is a quasi-cyclic code of index ℓ over Fq

if T ℓC = C (if ℓ = 1, C is cyclic). It is well known that ℓ divides n. In the sequel, we write n = mℓ.

Quasi-cyclic codes are well-known and studied since the 60’s. We can find, for example in [5] an introduc-
tion to their applications, their interests and a good bibliography about this subject. Since the articles
of J. Conan and G. Séguin in 1993 (see [2]) for the algebraic structure of quasi-cyclic codes and their
enumeration, many authors have proposed different approaches to describe this structure and to propose
different constructions.
For example in [10] codes are considered as concatenated codes. In [3] the authors consider a quasi-cyclic
code of index ℓ over Fq as a sub-module of the quotient ring of Fqℓ [X] by the ideal generated by the
polynomial Xm − 1 which permits to give a complete classification of self-dual codes of index 2. In [5]
and [6], the authors consider the quasi-cyclic codes as linear codes over a commutative ring and use the
canonical decomposition of Fqℓ [X]/(Xm − 1) to study the structure of quasi-cyclic codes and so deduce
the construction of codes of this type.

In this article we propose a new approach. We consider quasi-cyclic codes as cyclic codes over a ring of
matrices over Fq.

Let A = Fℓ
q. For v = (v0, . . . , vℓ−1) a row vector of A, we design by t(v0, . . . , vℓ−1) the corresponding

column vector.

We consider the isomorphism (of vector spaces) Θ of Fn
q in Am given by:

∀c = (c0, c1, . . . , cn−1) ∈ Fn
q , Θc = (t(c0, . . . , cℓ−1),t (cℓ, . . . , c2ℓ−1), . . . ,t (c(m−1)ℓ, . . . , cmℓ−1)).
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Chabot), abdelkader.necer@unilim.fr (Abdelkader Necer)
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We extend the shift map defined above (equation (1)) to Am by:

∀v = (tv0, . . . ,
t vm−1) ∈ Am, T v = (tvm−1,

t v0, . . . ,
t vm−2).

So, it easy to see that for a given code C of length n over Fq, C is a quasi-cyclic code of index ℓ over Fq

if and only if Θ(C) is a cyclic code over A.

As Θ(C) is composed of words of vectors, the matricial formalism is a natural interpretation. We will deal
with Θ(C) (identified with C) as a code over Fq (classical approach) and over Mℓ(Fq) the non commutative
ring of ℓ× ℓ matrices with coefficients in Fq.

By identifying the shift with the indeterminate X, we define over Θ(C) a structure of left module over
the algebra Mℓ(Fq)[X] of the polynomials with matricial coefficients. This permits first, to see a quasi-
cyclic code as a cyclic code over Mℓ(Fq) and secondly, to describe the quasi-cyclic codes for which the
annihilator is generated by a single matricial polynomial. Finally it gives a new construction of self-dual
codes (Euclidean or Hermitian).

The correspondence between linear recurring sequences over a finite field (sequences generated by a linear
feedback shift register) and cyclic codes is well known. The characteristic polynomial of a linear recur-
ring sequence u of period L ∈ ℕ∗ is, up to reciprocation, the quotient of the polynomial XL − 1 by the
generator polynomial of the cyclic code corresponding to u. One of the main results of this article is to
generalize this correspondence to the case of linear recurring sequences over a ring of matrices.

In the first section we deal with linear recurring sequences over the ring Mℓ(Fq). This ”point of view”
is not new : we can find in [9] an application of these sequences to the generation of pseudo-random
numbers. However we show in this part directly (it’s a new construction to our knowledge) the existence
of the exponent for a polynomial with matricial coefficients.

In the second section of this article, after the definition of the structure of Mℓ(Fq)[X]/(Xm − 1) as left
module over Am, we present some results on the families of (Fℓ

q)m cancelled by matricial polynomials of

Mℓ(Fq)[X]/(Xm − 1). And then we deal with the opposite problem which is, given a subset C of (Fℓ
q)m,

to determine the ideal of Mℓ(Fq)[X]/(Xm − 1) formed by the polynomials cancelling C.

The last section is devoted to the construction of new quasi-cyclic codes and self-dual Euclidean codes
(and Hermitian over F4). Our construction permits to find, for instance, new self-dual Euclidean codes
with parameters [28, 14, 9] over F4.

This construction is essentially based on the result which generalizes the one announced above for the
linear recurring sequences: if Xm−1 = fg in Mℓ(Fq)[X]/(Xm−1), so the dual (Euclidean or Hermitian)
of the family of the vectors of (Fℓ

q)m cancelled by f is a family of vectors cancelled by a completely
determined polynomial.

2. Linear recurring sequences with matricial coefficients

Let A = Fℓ
q and S(A) = Aℕ be the set of sequences of A. In this section, after setting over S(A) a

structure of left module on the ring of polynomials with coefficients in Mℓ(Fq), we will show directly that
any polynomial (reversible) with coefficients in this ring has an exponent. Therefore each linear recur-
ring sequence with matricial coefficients is periodic and we give the dimension of the associated cyclic code.

Let v = (v(n))n≥0 in S(A). We define the sequence Tv by: ∀n ∈ ℕ, T v(n) = v(n + 1). This morphism
of vector spaces will allow us to provide S(A) with a multiplication by the elements of Mℓ(Fq)[X] by
setting:

∀p ∈Mℓ(Fq)[X], ∀v ∈ S(A), p(X)v = p(T )v.
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Example 2.1. For ℓ = 2 and p(X) = A.X + B where A = (ai,j)1≤i,j≤2 and B = (bi,j)1≤i,j≤2 are two
2× 2 matrices and for (v(n))n =t (v1(n)n, v2(n)n), if we let p.v =t (w1, w2) then:

∀n ∈ ℕ, w1(n) = a11v1(n+ 1) + a12v2(n+ 1) + b11v1(n) + b12v2(n)
w2(n) = a21v1(n+ 1) + a22v2(n+ 1) + b21v1(n) + b22v2(n).

We can easily check that we obtain the next proposition.

Proposition 1.
With the notation above, S(A) provided with the usual operations and multiplication by a matrix polyno-
mial is an Mℓ(Fq)[X]-left module.

Definition 1. Let v ∈ S(A). We say that v is a linear recurring sequence (with matricial coefficients) if
its annihilator in Mℓ(Fq)[X] contains a monic polynomial.

Remark 2.1. 1. It has been shown (see [7] or [9]) that a sequence over A is a linear recurring sequence
if and only if the scalar components sequences are linear recurring sequences over Fq. The compu-
tation of the period of each of this sequences permits to find the period of the sequence of vectors.
However we will give a direct proof of this result via the computation of the exponent of a matrix
polynomial.

2. The annihilator of a linear recurring sequence, unlike in the classical case ℓ = 1, is not a principal
ideal (left or right). However, we can say something about this ideal in some cases.

Definition 2.
We call a polynomial f ∈ Mℓ(Fq)[X] reversible if its leading and constant coefficients are invertible
matrices.

We can now give the following proposition.

Proposition 2.
Let f ∈Mℓ(Fq)[X]. We suppose that f is reversible. Then, there exists e ∈ ℕ∗ such that f ∣(Xe − 1).

Proof
We can suppose without loss of generality that f is monic.

Consider the sequence (Xn)n∈ℕ. The quotient set Mℓ(Fq)[X]/fMℓ(Fq)[X] has a particular structure of
module and of Fq-vector space. Moreover, it is an Fq-vector space of finite dimension. There exist two
integers s and t ∈ ℕ∗ such that: Xt = Xs mod f. Therefore, f divides Xt −Xs. It is assumed that t > s
then f ∣Xs(Xt−s − 1).
Now we claim that:

f ∣Xs(Xt−s − 1)⇒ f ∣(Xt−s − 1).

Suppose that Xt − Xs = q(X)f(X) with f(0) invertible, f monic and s < t. First, if s = 0, there is
nothing to prove. Let us suppose that s ≥ 1. Then:

Xs(1−Xs−t) = q(X)f(X) (2)

Secondly, the Euclidean division of (1−Xt−s) by f(X), which is possible because f is monic, is:

(1−Xt−s) = b(X)f(X) + r(X) with deg(r) < deg(f).

Thus

Xs(1−Xs−t) = Xsb(X)f(X) +Xsr(X) (3)

By evaluating at X = 0, we find, q(0)f(0) = 0. Since f(0) is invertible, q(0) = 0.
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Consequently, q(X) = X.q′(X). Since s ≥ 1, we have:

X([Xs−1b(X)− q′(X)]f(X) +Xs−1r(X)) = 0.

We are therefore reduced to the equality:

[Xs−1b(X)− q′(X)]f(X) +Xs−1r(X) = 0.

If s = 1, then the result is shown: (1−Xs−t) = q′(X)f(X).
Otherwise, we iterate the reasoning until q(X) = Xsℎ(X). Then, by putting Xs in factor, we obtain:

[b(X)− ℎ(X)]f(X) + r(X) = 0.

If b(X) ∕= ℎ(X), then we can see that deg([b(X) − ℎ(X)]f(X)) ≥ deg(f) because f is monic (hence the
leading term cannot be canceled) deg(r) < deg(f) which is impossible.

Consequently, b(X) = ℎ(X) and r(X) = 0. Thus, we have

f ∣(Xe − 1).

□
Definition 3. The exponent of a reversible matricial polynomial f is the smallest non-zero e such that
f divides Xe − 1 on the right side.

Definition 4. Let f ∈Mℓ(Fq)[X]. We define the socle of f to be the set {u ∈ S(A) ; f.u = 0} which
we denote Ω(f).

Proposition 3.
Let f ∈Mℓ(Fq)[X] be reversible then we have the following.

1. There exists m ∈ ℕ such that each element of Ω(f) is periodic of period m.

2. The set C(f) = {(u(0), . . . , u(m − 1)) ∈ Am ; u ∈ Ω(f)} is a cyclic code (over Fq and over
Mℓ(Fq)).

3. We have: dimFq
Ω(f) = ℓ deg(f).

Proof
For 1., we just have to take m equal to the exponent of f . We can check easily the 2. and we can exhibit
a basis to show the third point. □

Remark 2.2.

1. The set Ω(f) is in fact a quasi-cyclic code of index l and length ℓm over Fq.

2. The computation of the period of a linear recurring sequence with matricial coefficients can be ob-
tained, like in [9], through the computation of the determinant polynomial of the companion matrix
of the linear recurring sequence.

3. Let p a polynomial in Fq[x]. We denote by p∗ its reciprocal polynomial. When we replace Mℓ(Fq)
by Fq we know that Ω(f) is an Fq-vector space of dimension deg(f) and that C(f) is a cyclic code

generated by

(
Xm − 1

f

)∗
. We will see in the next section how to generalize this result in the case

of matricial cyclic codes.

4. We know, in the scalar case, that a sequence is linear recurring if and only if its generator series is
a rational fraction. By using methods similar to those developed in the proof of Proposition 2, we
get a direct proof of the proposition which is a generalization of this result to the case of sequences
of vectors with matricial coefficients.
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3. Construction of quasi-cyclic codes

3.1. Quasi-cyclic codes as cyclic codes over a ring

Let A = Fl
q, n = ℓm, C a code over Fq of length ℓ and Θ the isomorphism of linear vector spaces from Fn

q

to Am defined by:

∀c = (c0, c1, . . . , cn−1), Θc = (t(c0, . . . , cℓ−1),t (cℓ, . . . , c2ℓ−1), . . . ,t (c(m−1)ℓ, . . . , cmℓ−1)).

We show that C is a quasi-cyclic code of index ℓ if and only if ΘC is a cyclic code over A.
Let V0, V1, . . . , Vm−1 be m column vectors of A , we denote by V = (V0, V1, . . . , Vm−1) a vector of Am.
Let T be the shift operator in Am defined by:

∀V = (V0, V1, . . . , Vm−1) ∈ Fn
q , TV = (Vm−1, V0, . . . , Vm−2). (4)

Let M ∈Mℓ(Fq). For V as above, we define MV by

MV = (MV0, . . . ,MVm−1).

Now let d ∈ ℕ and P (X) = M0 + M1.X + ⋅ ⋅ ⋅ + Md.X
d in Mℓ(Fq)[X] the polynomial algebra of ℓ × ℓ

matrices over Fq (the indeterminate X commutes with matrices).

P (X).V = P (T )(V ). (5)

Let Xm − 1 = IℓX
m − Iℓ where Iℓ is the identity matrix of order ℓ. Let ℐ be the two-sided ideal of

Mℓ(Fq)[X] generated by Xm − 1 and ℬ the ring Mℓ(Fq)[X]/ℐ. We have the following result.

Proposition 4. With the usual addition and the product defined above (5), the Fq–vector space Am is a
left ℬ-module.

Let F ⊂ ℬ and C ⊂ Am. We define as in the case of linear recurring sequences, the socle of F and the
annihilator of C as follows.

Definition 5. Let F ⊂ ℬ and C ⊂ Am.
The annihilator of C is the set Ann(C) = {P ∈ ℬ/ ∀c ∈ C, P.c = 0}. The socle of F , denoted by
Ω(F ) is the subset of Am given by Ω(F ) = {y ∈ Am/ ∀f ∈ F, f.y = 0}.

An interesting question is to know when the two equalities hold:

Ann(Ω(F )) = F and Ω(Ann(C)) = C.

It will be found in ([8]) some results about this question. Here we are interested in the ”principal” case:
the subset F is reduced to a single element. In this situation, we have some good results.
For example, as in the case of linear recurring sequences, we have the following proposition.

Proposition 5. Let f ∈ ℬ and C an Fq vector subspace of Am, then:

1. the set Ω(f) is an Fq vector space of dimension ℓ deg(f),

2. the set Ann(C) is a left ideal of ℬ.

Proof
Similar to the proof of proposition 3.

□
Another example of results about this question will be found in the following section.
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Remark 3.1.
1. A cyclic code C of length m over A can be seen as a particular vector subspace of S(A) the set of the
sequences over A in the following way:

For c = (c0, . . . , cm−1) ∈ C, we associate u ∈ S(A), such that

∀i ∈ ℕ, ui = c
i mod m

.

2. The ideal Ann(C) is not necessarily principal.

In spite of the fact that Ann(C) is not a principal ideal we have the following result.

Proposition 6.
Let f in ℬ be reversible. Assume that there exists g reversible in ℬ such that fg = Xm − 1. Then
Ann(Ω(f)) is a principal ideal in ℬ and is exactly the ideal generated by f :

Ann(Ω(f)) =< f > .

Proof
Based on the fact that Ann(Ω(f)) cannot contain a polynomial of degree smaller than the degree of f .

□

3.2. Construction of Ω(P )-codes

In this section we will only consider factorization of the form Xm − 1 = P.Q with P and Q reversibles.
We will show how to construct such codes and consider particular families with good minimal distances.

3.2.1. Generator Matrix

This first result is similar to the cyclic case. Indeed, in the cyclic case, if Xn − 1 = P.Q, it implies that
< P > is the ideal cancelled by Q. It means : ∀R, R ∈< P >⇐⇒ Q.R = 0.

Proposition 7. Let P and Q such that Xm − 1 = PQ in Ml(Fq)[X]. Then:

Ω(P ) = Q.Am = {Q.x∣x ∈ Am}.

Proof
(cf. Appendix).

Let Q(X) =

m−1∑
i=0

qiX
i ∈Mℓ(Fq)[X] where, for i ∈ {1, . . . ,m− 1}, qi is the matrix (qia,b)a,b=0,...,ℓ−1.

Let, for i ∈ {1, . . . ,m − 1}, tqi be the transpose of qi. Then, with the same notations as above we have
the following corollary.

Corollary 3.1. A generator matrix of Ω(P ) is

GΩ(P ) =

⎛⎜⎝
tq0

tq1
tq2 ⋅ ⋅ ⋅ tqdegQ 0 0 ⋅ ⋅ ⋅ 0

0 tq0
tq1 ⋅ ⋅ ⋅ tqdegQ−1

tqdeg(Q) 0 ⋅ ⋅ ⋅ 0
. . .

. . .

⎞⎟⎠
Proof
If P.Q = Xm − 1 with P and Q two reversible polynomials, from Proposition 7, we have Ω(P ) = Q.Am.
Let ci,j ∈ Am (i ∈ {0, . . . , deg(P )−1}, j ∈ {0, . . . , ℓ−1}) be the vectors (0, . . . , 0, 1, 0, . . . , 0) where the ’1’
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is in position iℓ+ j.
Hence, all Q.ci,j are codewords of Ω(P ) and Q.ci,j is the codeword

(0, . . . , 0︸ ︷︷ ︸
iℓ zeros

, colj(q0), colj(q1), . . . , colj(qdeg(Q)), 0, . . . , 0)

where colj(A) is the jtℎ column of the matrix A.
The codewords Q.c0,0, . . . , Q.c0,ℓ−1 are linearly independent since q0 and qdeg Q are invertible. Hence all
Q.ci,j are linearly independent. Finally, since dim(Ω(P )) = ℓdeg(P ), Ω(P ) is spanned by all these Q.ci,j .

□

3.2.2. Constructions of general codes

The most difficult part of the construction of such codes is the factorization of Xm − 1 into polynomials
with matricial coefficients. In a first part, we will use an easy but expensive way to factorize it. And
then, for the particular case of self-dual codes, we will use Groebner basis tools to solve a multivariate
polynomial system. But it is well known that it becomes uncomputable very fast when the number of
variables and the degree of equations grow.

3.2.2.a. With prescribed length

In this case, we use the most naive way to factorize Xm − 1.

Input: ℓ,m, degmax

Algorithm:
listpoly ← [ ];
for d from 1 to degmax do

for P ∈Mℓ(Fq)[X] monic of degree d do
if P divides Xm − 1 then Add P into listpoly;

end for;
end for;

Output: listpoly

Figure 1: Algorithm 1

It is easy to understand that one cannot reach high lengths and degrees of polynomials this way.

3.2.2.b. With prescribed dimension

In this method, we will set the degree of our polynomial P but we won’t be able to control the length of
our code, and in most of the cases, the length of the code obtained is very large. This algorithm is based
on Proposition 5 and uses the existence of an exponent for every reversible polynomial.

Input: ℓ, deg, nbsteps
Algorithm:

list← [ ];
for i from 1 to nbsteps do

Pick a random reversible polynomial P ∈Mℓ(Fq)[X] of degree deg;
Compute m its exponent;
Add [P,m] into list;

end for;
Output: list

Figure 2: Algorithm 2
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At the end of this algorithm, every element [P,m] of list corresponds to the ℓ-quasi-cyclic code of length
ℓ.m and dimension ℓ.deg cancelled by P .
With this method, we find one code at every step but we cannot control the length, and this it is large
very often.

Example 3.1. Let q = 4 and ℓ = 2. Let F4 = F2[w] where w2 + w + 1 = 0.

∙ Let f(X) =

(
1 0
0 1

)
X

5
+

(
w w

2

0 w
2

)
X

4
+

(
0 w

0 w
2

)
X

3
+

(
w

2
0

1 w
2

)
X

2
+

(
w

2
w

2

w 1

)
X +

(
1 1
1 0

)
.

Calculation gives m = 255, f(X)∣(X255 − 1) and we obtain a [510, 10, 204] 2-quasicyclic code.

∙ Let f(X) =

(
1 0
0 1

)
X

5
+

(
w

2
0

1 w

)
X

4
+

(
0 1
0 1

)
X

3
+

(
1 w
1 0

)
X

2
+

(
w

2
1

1 0

)
X +

(
w w
0 1

)
.

Here m = 1020, f(X)∣(X1020 − 1) and we obtain a [2040, 10, 1020] 2-quasicyclic code.

3.2.3. Construction of self-dual codes

Self-Dual codes are codes such that they are equal to their dual code. In order to study these codes, we
need to know more about the dual code of a Ω(P )-code. Fortunately, it is still a Ω(P ′)-code. Furthermore
this P ′ is easy to compute. We will study two types of duals, those for the Euclidean inner product and
those for the Hermitian one.

3.2.3.a. Construction of Euclidean self-dual codes

Definition 6. Let ℛ be a commutative ring and n ∈ ℕ∗. The Euclidean inner product in ℛn is defined
by:

∀a = (a1, . . . , an) ∈ ℛn,∀b = (b1, . . . , bn) ∈ ℛn, < a, b >e=

n∑
i=1

aibi

Definition 7. Let ℛ be a commutative ring and n ∈ ℕ∗. Let C and D be codes over ℛ (ℛ-submodules
of ℛn).
Then D is said to be the Euclidean dual code of C (and noted D = C⊥e) if

∀c ∈ C, ∀d ∈ D, < c, d >e= 0.

In our case, we have this following Theorem:

Theorem 1. With our notations, if Xm − 1 = P.Q in Mℓ(Fq)[X] then

Ω(P )⊥e = Ω(tQ∗)

Proof
(cf. Appendix).

From now on, m has to be even; m = 2m′. Hence, in order to find Euclidean self-dual codes, we have
to find P ’s of degree m′ such that Xm − 1 = P.tP ∗. This method requires the solving, with a Groebner
basis, of a multivariate polynomial system with about ℓ2m′ variables and ℓ2m equations of degree 2.
However, if P = tP ∗, it is sufficient to construct such codes and fortunately most of the best codes (with
good minimal distance) are in this family. And this way, the number of variables is considerably reduced.
Indeed, we have about ℓ2m′/2 and still ℓ2m equations of degree 2. Good codes were found only on F4

and results obtained with this method can be found in the following table.
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n Bounds Largest Distance Number of Codes Remarks
8 4 4 2 Remark 3.2
12 6 4 2
16 6 6 3
20 8 7 2
24 8-10 8 9
28 9-11 9 2 Remark 3.3
32 10-12 10 8
36 10-14 10 22
40 12-16 12 8

Figure 3: Table of Euclidean self-dual codes obtained by our construction

Here ”Largest Distance” means largest distance found with our codes. Il the first column, in the notation
a − b, the number a is the best known distance and b is ths theorical upper bound (see [11] for more
supplementary information).
In most of cases, the highest bound known is reached by at least one of such codes (except n = 12, 20).
It was not unexpected because the family of quasicyclic codes is known to contain good codes [4].

Remark 3.2. One of these [8, 4, 4]-codes has a binary generator polynomial

f(X) =

(
1 0
0 1

)
X2 +

(
1 1
1 1

)
X +

(
1 0
0 1

)
Hence, its generator matrix is:

GΩ(f) =

⎛⎜⎜⎝
1 0 0 0 1 0 1 1
0 1 0 0 0 1 1 1
0 0 1 0 1 1 1 0
0 0 0 1 1 1 0 1

⎞⎟⎟⎠ .

Remark 3.3. In [1], Boucher and Ulmer found four [28, 14, 9]-Euclidean self-dual codes on F4. These
codes were constructed from skew polynomial rings. The two codes we found are conjugated and not
equivalent (by permutations) to theirs. They are all not equivalent to the extended quadratic residue code.
Let F4 = F2[w] (w2 + w + 1 = 0). Our codes are respectively canceled by

f1(X) =

(
1 0
0 1

)
X7 +

(
w w2

1 w

)
X6 +

(
1 w2

1 1

)
X5 +

(
0 1
1 0

)
X4

+

(
0 1
1 0

)
X3 +

(
1 1

w2 1

)
X2 +

(
w 1

w2 w

)
X +

(
1 0
0 1

)

and f2(X) =

(
1 0
0 1

)
X7 +

(
w2 w

1 w2

)
X6 +

(
1 w
1 1

)
X5 +

(
0 1
1 0

)
X4

+

(
0 1
1 0

)
X3 +

(
1 1
w 1

)
X2 +

(
w2 1

w w2

)
X +

(
1 0
0 1

)
.

3.2.3.b. Construction of Hermitian self-dual codes

In this part, we will only deal with codes on F4. We note � the Froebenius map on F4 (�(x) = x2).

Definition 8. Let ℛ be a commutative ring, n ∈ ℕ∗ and � be a automorphism of ℛ of order 2. The
Hermitian inner product in ℛn is defined by:

∀a = (a1, . . . , an) ∈ ℛn,∀b = (b1, . . . , bn) ∈ ℛn, < a, b >ℎ=

n∑
i=1

ai�(bi).
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If ℛ = F4, �(x) = x2 and < a, b >ℎ=

n∑
i=1

aib
2
i

Definition 9. Let ℛ be a commutative ring and n ∈ ℕ∗. Let C be a code over ℛ (a ℛ-submodule of
ℛn).
D is said to be the Hermitian dual code of C and noted D = C⊥ℎ if

∀c ∈ C, ∀d ∈ D, < c, d >ℎ= 0.

In our case, we have this following Theorem:

Theorem 2. Let Xm − 1 = P.Q in Mℓ(Fq)[X] then

Ω(P )⊥ℎ = Ω(�(tQ∗))

(� is applied to every component of every matricial coefficient of tQ∗).

Proof
(cf. Appendix).

Like in the Euclidean part, we look for P ’s of degree m′ such that Xm − 1 = P.�(tP ∗). This method
requires the solving, with a Groebner basis, of a multivariate polynomial system with about ℓ2m′ variables
and ℓ2m equations of degree 3 (because of the existence of �).
However in this case it is not useful to look for P ’s such that P = �(tP ∗), because it implies that all
components of matrices are in F2, and these polynomials do not give good codes. Hence, we keep ℓ2m′

variables, and computations are longer than in the Euclidean case.

n Bounds Largest Distance Number of Codes
8 4 4 1
12 4 4 1
16 6 6 1
20 8 8 1
24 8 8 7
28 10 10 2

Figure 4: Table of Hermitian self-dual codes obtained by our construction

Remark 3.4. 1. In this case, we cannot reach large length of codes because of the number of variables
of the Groebner basis we have to compute. But for all of these values, we reach the highest distance known.

2. It is easy to construct codes with a trivial annihilator.

3. The quasicyclic codes are not all Ω(P )-codes where P is a polynomial : the dimension of an Ω(P )-code
is l deg(P ).
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4. Appendix

Notations

If Q ∈Mℓ(Fq)[X], Q(X) =

m−1∑
i=0

qiX
i, with qi ∈Mℓ(Fq), where qi = (qia,b)a,b=0,...,ℓ−1.

If c ∈ Am, c = (c0, c1, . . . , cm−1) with ci ∈ A,∀i = 0, . . . ,m − 1 and for i ∈ {0, . . . ,m − 1}, we denote
ci = (ci,0, . . . , ci,l−1) with ci,j ∈ Fq,∀i = 0, . . . ,m− 1 ,∀j = 0, . . . , l − 1.

If Q(X) =

m−1∑
i=0

qiX
i ∈Mℓ(Fq)[X], we assimilate qj by qj mod m (caught between 0 and m− 1).

Similarly if c = (c0, . . . , cm−1) ∈ Am, we assimilate cj by cj mod m (caught between 0 and m− 1).

Proposition 7
If Xm − 1 = P.Q, with P,Q reversible, then

Ω(P ) = Q.Am

= {Q.x∣x ∈ Am}.

Proof
Let y ∈ Q.Am, then ∃ y0 ∈ Am such that y = Q.y0 and thus P.y = P.Q.y0 = (Xm − 1).y0 = 0 thus
y ∈ Ω(P ). Hence Q.Am ⊆ Ω(P ).
Consider :

ΦQ : Am → Am

y 7→ Q.y

The application ΦQ is Fq linear.

We have ker(ΦQ) = Ω(Q) and im(Φq) = Q.Am thus:

dim(Q.Am) = = ℓm− dim(Ω(Q))
= ℓm− ℓ deg(Q)
= ℓm− ℓ(m− deg(P ))
= ℓ deg(P )
= dim(Ω(P )).

Since Q.Am ⊆ Ω(P ) and dim(Q.Am) = dim(Ω(P )) we deduce the equality :

Ω(P ) = Q.Am

□
Theorem 1 (Euclidean case)
Let P,Q ∈Mℓ(Fq)[X] be reversibles such that P.Q = Xm − 1. Then :

Ω(P )⊥e = Ω(tQ∗)
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Proof

Lemma 1
Let d ∈ (Fl

q)m, then :

d ∈ Ω(P )⊥e ⇔ ∀y ∈ Am,

m−1∑
i=0

m−1∑
j=0

ℓ−1∑
a=0

ℓ−1∑
b=0

qja,byi+j,bdi,a = 0.

Proof

Let A be Am or A. We will denote < .; . >A the Euclidean inner product in A.

d ∈ Ω(P )⊥e ⇔ ∀c ∈ Ω(P ), < c; d >Am= 0

⇔ ∀y ∈ Am, < Q.y; d >Am= 0

⇔ ∀y ∈ Am,

m−1∑
i=0

< (Q.y)i; di >A= 0

⇔ ∀y ∈ Am,

m−1∑
i=0

<

m−1∑
j=0

qj .yi+j ; di >A= 0

⇔ ∀y ∈ Am,

m−1∑
i=0

m−1∑
j=0

< qj .yi+j ; di >A= 0

⇔ ∀y ∈ Am,

m−1∑
i=0

m−1∑
j=0

< (

ℓ−1∑
b=0

qja,b.yi+j,b)a=0,...,ℓ−1; (di,a)a=0,...,ℓ−1 >A= 0

⇔ ∀y ∈ Am,

m−1∑
i=0

m−1∑
j=0

ℓ−1∑
a=0

ℓ−1∑
b=0

qja,byi+j,bdi,a = 0

□
Lemma 2
Let d ∈ Am, then :

d ∈ Ω(tQ∗)⇔ ∀j, k = 0, . . . ,m− 1,

m−1∑
i=0

ℓ−1∑
a=0

q−ia,jdi+k,a = 0.

Proof
Let R ∈Mℓ(Fq)[X] and d ∈ Am. We have:

13



R.d = (

m−1∑
i=0

riX
i)(d)

= (

m−1∑
i=0

riX
i)(d0, . . . , dm−1)

= (

m−1∑
i=0

ridi+k)k=0,...,m−1

= (

m−1∑
i=0

(

ℓ−1∑
a=0

rij,adi+k,a)j=0,...,m−1)k=0,...,m−1

Hence R.d = 0 ⇔ ∀j, k = 0, . . . ,m− 1,

m−1∑
i=0

ℓ−1∑
a=0

rij,adi+k,a = 0

Computing tQ∗ ∗ d, we have:

Q(X) =

m−1∑
i=0

qiX
i, qi = (qij,a)j=0,...,m−1;a=0,...,m−1

tQ(X) =

m−1∑
i=0

tqiX
i, with tqi = (qia,j)j=0,...,m−1;a=0,...,m−1

tQ∗(X) =

m−1∑
i=0

tqdeg(Q)−iX
i, with tqdeg(Q)−i = (q

deg(Q)−i
a,j )j=0,...,m−1;a=0,...,m−1

hence,

tQ∗ ∗ d = 0 ⇔ ∀j, k = 0, . . . ,m− 1,

m−1∑
i=0

ℓ−1∑
a=0

q
deg(Q)−i
a,j di+k,a = 0

⇔ ∀j, k = 0, . . . ,m− 1,

m−1∑
i=0

ℓ−1∑
a=0

q−ia,jdi+deg(Q)+k,a = 0

⇔ ∀j, k = 0, . . . ,m− 1,

m−1∑
i=0

ℓ−1∑
a=0

q−ia,jdi+k,a = 0

□
We now have all the tools to demonstrate the main theorem.

Show first Ω(P )⊥e ⊂ Ω(tQ∗).

Let d ∈ Ω(P )⊥e , Ω(P )⊥e being ℓ-quasi-cyclic,

∀k = 0, . . . ,m− 1, Xk.d ∈ Ω(f)⊥e

Hence from the Lemma 1,

∀y ∈ Am, ∀k = 0, . . . ,m− 1,

m−1∑
i=0

m−1∑
j=0

ℓ−1∑
a=0

ℓ−1∑
b=0

qja,byi+j,bdi+k,a = 0 (6)
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Let j ∈ {0, . . . ,m− 1}, for y = (ej ; 0; . . . ; 0), (ej : jth vector of the canonical basis of A = Fℓ
q).

We have:

yi+j,b = �jb if i+ j = 0 mod m and 0 otherwise

So for this y, the equation 6 gives us:

∀k = 0, . . . ,m− 1,

m−1∑
i=0

ℓ−1∑
a=0

q−ia,jdi+k,a = 0

But this is true for arbitrary j.
Hence :

∀k = 0, . . . ,m− 1, ∀j = 0, . . . ,m− 1,

m−1∑
i=0

ℓ−1∑
a=0

q−ia,jdi+k,a = 0

Thus from the Lemma 2, d ∈ Ω(tQ∗). So

Ω(P )⊥e ⊂ Ω(tQ∗).

Hence

dim(Ω(P )⊥e) = ℓm− dim(Ω(P ))
= ℓm− ℓdeg(P ) via the Proposition 3
= ℓ(m− deg(P ))
= ℓdeg(Q)

and,

dim(Ω(tQ∗)) = ℓdeg(tQ∗) via the Proposition 3
= ℓdeg(Q) because Q is reversible

= dim(Ω(P )⊥e)

Hence the equality. □
Theorem 2 (Hermitian case)
Let P,Q ∈Mℓ(Fq)[X] reversibles such that P.Q = Xm − 1. Then :

Ω(P )⊥ℎ = Ω(�(tQ∗)).

Proof

Lemma 3
Let d ∈ (Fl

q)m, then :

d ∈ Ω(P )⊥ℎ ⇔ ∀y ∈ Am,

m−1∑
i=0

m−1∑
j=0

ℓ−1∑
a=0

ℓ−1∑
b=0

qja,byi+j,b�(di,a) = 0.

Proof
The proof is the same as in Lemma 1. The � comes from the Hermitian inner product.

□
Lemma 4
Let d ∈ Am, then :

d ∈ Ω(�(tQ∗))⇔ ∀j, k = 0, . . . ,m− 1,

m−1∑
i=0

ℓ−1∑
a=0

�(q−ia,j)di+k,a = 0.
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Proof
In Lemma 2 we have

tQ∗(X) =

m−1∑
i=0

tqdeg(Q)−iX
i, with tqdeg(Q)−i = (q

deg(Q)−i
a,j )j=0,...,m−1;a=0,...,m−1

hence

�(tQ∗)(X) =

m−1∑
i=0

�(tqdeg(Q)−i)X
i, with �(tqdeg(Q)−i) = (�(q

deg(Q)−i
a,j ))j=0,...,m−1;a=0,...,m−1

and the result follows.

□
We now have all the tools to demonstrate the main theorem.

Show first Ω(P )⊥ℎ ⊂ Ω(�(tQ∗)).

Let d ∈ Ω(P )⊥ℎ , Ω(P )⊥ℎ being ℓ-quasi-cyclic,

∀k = 0, . . . ,m− 1, Xk.d ∈ Ω(f)⊥ℎ

Hence from the Lemma 3,

∀y ∈ Am, ∀k = 0, . . . ,m− 1,

m−1∑
i=0

m−1∑
j=0

ℓ−1∑
a=0

ℓ−1∑
b=0

qja,byi+j,b�(di+k,a) = 0 (7)

Let j ∈ {0, . . . ,m− 1}, for y = (ej ; 0; . . . ; 0), (ej : jth vector of the canonical basis of A = Fℓ
q).

We have:

yi+j,b = �jb if i+ j = 0 mod m and 0 otherwise

So for this y, the equation 7 gives us:

∀k = 0, . . . ,m− 1,

m−1∑
i=0

ℓ−1∑
a=0

q−ia,j�(di+k,a) = 0

But this is true for arbitrary j.
The rest of the proof is similar to the end of the proof of the main theorem (Euclidean case). We replace
di+k,a by �(di+k,a).

□
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