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Abstract

Multi-label classification is the task of predicting a set of labels for a given input
instance. Classifier chains are a state-of-the-art method for tackling such problems,
which essentially converts this problem into a sequential prediction problem, where
the labels are first ordered in an arbitrary fashion, and the task is to predict a
sequence of binary values for these labels. In this paper, we replace classifier
chains with recurrent neural networks, a sequence-to-sequence prediction algorithm
which has recently been successfully applied to sequential prediction tasks in many
domains. The key advantage of this approach is that it allows to focus on the
prediction of the positive labels only, a much smaller set than the full set of possible
labels. Moreover, parameter sharing across all classifiers allows to better exploit
information of previous decisions. As both, classifier chains and recurrent neural
networks depend on a fixed ordering of the labels, which is typically not part of a
multi-label problem specification, we also compare different ways of ordering the
label set, and give some recommendations on suitable ordering strategies.

1 Introduction

There is a growing need for developing scalable multi-label classification (MLC) systems, which, e.g.,
allow to assign multiple topic terms to a document or to identify objects in an image. While the simple
binary relevance (BR) method approaches this problem by treating multiple targets independently,
current research in MLC has focused on designing algorithms that exploit the underlying label
structures. More formally, MLC is the task of learning a function f that maps inputs to subsets of
a label set L = {1, 2, · · · , L}. Consider a set of N samples D = {(xn,yn)}Nn=1, each of which
consists of an input x ∈ X and its target y ∈ Y , and the (xn,yn) are assumed to be i.i.d following
an unknown distribution P (X,Y ) over a sample space X × Y . We let Tn = |yn| denote the size
of the label set associated to xn and C = 1

N

∑N
n=1 Tn the cardinality of D, which is usually much

smaller than L. Often, it is convenient to view y not as a subset of L but as a binary vector of size L,
i.e., y ∈ {0, 1}L. Given a function f parameterized by θ that returns predicted outputs ŷ of inputs x,
i.e., ŷ ← f(x; θ), and a loss function ` : (y, ŷ)→ R which measures the discrepancy between y and
ŷ, the goal is to find an optimal parametrization f∗ that minimizes the expected loss on an unknown
sample drawn from P (X,Y ) such that f∗ = arg minf EX

[
EY |X [`(Y , f(X; θ))]

]
. While the

expected risk minimization over P (X,Y ) is intractable, for a given observation x it can be simplified
to f∗(x) = arg minf EY |X [` (Y , f(x; θ))] . A natural choice for the loss function is subset 0/1
loss defined as `0/1(y, f (x; θ)) = I [y 6= ŷ] which is a generalization of the 0/1 loss in binary
classification to multi-label problems. It can be interpreted as an objective to find the mode of the
joint probability of label sets y given instances x: EY |X

[
`0/1 (Y , ŷ)

]
= 1− P (Y = y|X = x).

Conversely, 1− `0/1(y, f (x; θ)) is often referred to as subset accuracy in the literature.
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2 Subset Accuracy Maximization in Multi-label Classification

For maximizing subset accuracy, there are two principled ways for reducing a MLC problem to
multiple subproblems. The simplest method, label powerset (LP), defines a set of all possible label
combinations SL = {{1}, {2}, · · · , {1, 2, · · · , L}}, from which a new class label is assigned to each
label subset consisting of positive labels in D. LP, then, addresses MLC as a multi-class classification
problem with min(N, 2L) possible labels such that

P (y1, y2, · · · , yL|x)
LP−−→ P (yLP = k|x) (1)

where k = 1, 2, · · · ,min(N, 2L). While LP is appealing because most methods well studied in multi-
class classification can be used, training LP models becomes intractable for large-scale problems with
an increasing number of labels in SL. Even if the number of labels L is small enough, the problem is
still prone to suffer from data scarcity because each label subset in LP will in general only have a
few training instances. An effective solution to these problems is to build an ensemble of LP models
learning from randomly constructed small label subset spaces [29].

An alternative approach is to learn the joint probability of labels, which is prohibitively expensive
due to 2L label configurations. To address such a problem, Dembczyński et al. [3] have proposed
probabilistic classifier chain (PCC) which decomposes the joint probability into L conditionals:

P (y1, y2, · · · , yL|x) =

L∏
i=1

P (yi|y<i,x) (2)

where y<i = {y1, · · · , yi−1} denotes a set of labels that precede a label yi in computing conditional
probabilities, and y<i = ∅ if i = 1. For training PCCs, L functions need to be learned independently
to construct a probability tree with 2L leaf nodes. In other words, PCCs construct a perfect binary tree
of height L in which every node except the root node corresponds to a binary classifier. Therefore,
obtaining the exact solution of such a probabilistic tree requires to find an optimal path from the
root to a leaf node. A naïve approach for doing so requires 2L path evaluations in the inference step,
and is therefore also intractable. However, several approaches have been proposed to reduce the
computational complexity [4, 13, 24, 19].

Apart from the computational issue, PCC has also a few fundamental problems. One of them is a
cascadation of errors as the length of a chain gets longer [25]. During training, the classifiers fi in the
chain are trained to reduce the errors E(yi, ŷi) by enriching the input vectors x with the corresponding
previous true targets y<i as additional features. In contrast, at test time, fi generates samples ŷi or
estimates P (ŷi|x, ŷ<i) where ŷ<i are obtained from the preceding classifiers f1, · · · , fi−1.

Another key limitation of PCCs is that the classifiers fi are trained independently according to a fixed
label order, so that each classifier is only able to make predictions with respect to a single label in a
chain of labels. Regardless of the order of labels, the product of conditional probabilities in Eq. (2)
represents the joint probability of labels by the chain rule, but in practice the label order in a chain
has an impact on estimating the conditional probabilities. This issue was addressed in the past by
ensemble averaging [23, 3], ensemble pruning [17] or by a previous analysis of the label dependencies,
e.g., by Bayes nets [27], and selecting the ordering accordingly. Similar methods learning a global
order over the labels have been proposed by [13], who use kernel target alignment to order the chain
according to the difficulty of the single-label problems, and by [18], who formulate the problem of
finding the globally optimal label order as a dynamic programming problem. Aside from PCC, there
has been another family of probabilistic approaches to maximizing subset accuracy [9, 16].

3 Learning to Predict Subsets as Sequence Prediction

In the previous section, we have discussed LP and PCC as a means of subset accuracy maximization.
Note that yLP in Eq. (1) denotes a set of positive labels. Instead of solving Eq. (1) using a multi-class
classifier, one can consider predicting all labels individually in yLP, and interpret this approach as a
way of maximizing the joint probability of a label subset given the number of labels T in the subset.
Similar to PCC, the joint probability can be computed as product of conditional probabilities, but
unlike PCC, only T � L terms are needed. Therefore, maximizing the joint probability of positive
labels can be viewed as subset accuracy maximization such as LP in a sequential manner as the
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way PCC works. To be more precise, y can be represented as a set of 1-of-L vectors such that
y = {ypi}Ti=1 and ypi ∈ RL where T is the number of positive labels associated with an instance x.
The joint probability of positive labels can be written as

P (yp1 ,yp2 , · · · ,ypT |x) =

T∏
i=1

P (ypi |y<pi ,x). (3)

Note that Eq. (3) has the same form with Eq. (2) except for the number of output variables. While
Eq. (2) is meant to maximize the joint probability over the entire 2L configurations, Eq. (3) represents
the probability of sets of positive labels and ignores negative labels. The subscript p is omitted unless it
is needed for clarity. A key advantage of Eq. (3) over the traditional multi-label formulation is that the
number of conditional probabilities to be estimated is dramatically reduced from L to T , improving
scalability. Also note that each estimate itself again depends on the previous estimates. Reducing the
length of the chain might be helpful in reducing the cascading errors, which is particularly relevant
for labels at the end of the chain. Having said that, computations over the LT search space of Eq. (3)
remain infeasible even though our search space is much smaller than the search space of PCC in
Eq. (2), 2L, since the label cardinality C is usually very small, i.e., C � L.

As each instance has a different value for T , we need MLC methods capable of dealing with a
different number of output targets across instances. In fact, the idea of predicting positive labels only
has been explored for MLC. Recurrent neural networks (RNNs) have been successful in solving
complex output space problems. In particular, Wang et al. [31] have demonstrated that RNNs
provide a competitive solution on MLC image datasets. Doppa et al. [6] propose multi-label search
where a heuristic function and cost function are learned to iteratively search for elements to be
chosen as positive labels on a binary vector of size L. In this work, we make use of RNNs to
compute

∏T
i=1 P (ypi |y<pi

,x) for which the order of labels in a label subset yp1 ,yp2 , · · · ,ypT need
to be determined a priori, as in PCC. In the following, we explain possible ways of choosing label
permutations, and then present three RNN architectures for MLC.

3.1 Determining Label Permutations

We hypothesize that some label permutations make it easier to estimate Eqs. (2) and (3) than others.
However, as no ground truth such as relevance scores of each positive label to a training instance is
given, we need to make the way to prepare fixed label permutations during training.

The most straightforward approach is to order positive labels by frequency simply either in a
descending (from frequent to rare labels) or an ascending (from rare to frequent ones) order. Although
this type of label permutation may break down label correlations in a chain, Wang et al. [31] have
shown that the descending label ordering allows to achieve a decent performance on multi-label
image datasets. As an alternative, if additional information such as label hierarchies is available
about the labels, we can also take advantage of such information to determine label permutations.
For example, assuming that labels are organized in a directed acyclic graph (DAG) where labels are
partially ordered, we can obtain a total order of labels by topological sorting with depth-first search
(DFS), and given that order, target labels in the training set can be sorted in a way that labels that have
same ancestors in the graph are placed next to each other. In fact, this approach also preserves partial
label orders in terms of the co-occurrence frequency of a child and its parent label in the graph.

3.2 Label Sequence Prediction from Given Label Permutations

A recurrent neural network (RNN) is a neural network (NN) that is able to capture temporal
information. RNNs have shown their superior performance on a wide range of applications where
target outputs form a sequence. In our context, we can expect that MLC will also benefit from the
reformulation of PCCs because the estimation of the joint probability of only positive labels as in
Eq. (3) significantly reduces the length of the chains, thereby reducing the effect of error propagation.

A RNN architecture that learns a sequence of L binary targets can be seen as a NN counterpart of
PCC because its objective is to maximize Eq. (2), just like in PCC. We will refer to this architecture
as RNNb (Fig. 1b). One can also come up with a RNN architecture maximizing Eq. (3) to take
advantage of the smaller label subset size T than L, which shall be referred to as RNNm (Fig. 1c). For
learning RNNs, we use gated recurrent units (GRUs) which allow to effectively avoid the vanishing
gradient problem [2]. Let x̄ be the fixed input representation computed from an instance x. We shall
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Figure 1: Illustration of PCC and RNN architectures for MLC. For the purpose of illustration, we
assume T = 3 and x consists of 4 elements.

explain how to determine x̄ in Sec. 4.2. Given an initial state h0 = finit (x̄), at each step i, both
RNNb and RNNm compute a hidden state hi by taking x̄ and a target (or predicted) label from the
previous step as inputs: hi = GRU

(
hi−1,Vyi−1 , x̄

)
for RNNb and hi = GRU

(
hi−1,Vypi−1 , x̄

)
for RNNm where V is the matrix of d-dimensional label embeddings. In turn, RNNb computes the
conditional probabilities Pθ (yi|y<i,x) in Eq. (2) by f

(
hi,Vyi−1

, x̄
)

consisting of linear projection,
followed by the softmax function. Likewise, we consider f (hi,Vyi−1, x̄) for RNNm. Note that the
key difference between RNNb and RNNm is whether target labels are binary targets yi or 1-of-L
targets yi. Under the assumption that the hidden states hi preserve the information on all previous
labels y<i, learning RNNb and RNNm can be interpreted as learning classifiers in a chain. Whereas
in PCCs an independent classifier is responsible for predicting each label, both proposed types of
RNNs maintain a single set of parameters to predict all labels.

The input representations x̄ to both RNNb and RNNm are kept fixed after the preprocessing of
inputs x is completed. Recently, an encoder-decoder (EncDec) framework, also known as sequence-
to-sequence (Seq2Seq) learning [2, 28], has drawn attention to modeling both input and output
sequences, and has been applied successfully to various applications in natural language processing
and computer vision [5, 14]. EncDec is composed of two RNNs: an encoder network captures the
information in the entire input sequence, which is then passed to a decoder network which decodes
this information into a sequence of labels (Fig. 1d). In contrast to RNNb and RNNm, which only
use fixed input representations x̄, EncDec makes use of context-sensitive input vectors from x. We
describe how EncDec computes Eq. (3) in the following.

Encoder. An encoder takes x and produces a sequence of D-dimensional vectors x =
{x1,x2, · · · ,xE} where E is the number of encoded vectors for a single instance. In this work, we
consider documents as input data. For encoding documents, we use words as atomic units. Consider a
document as a sequence of E words such that x = {w1, w2, · · · , wE} and a vocabulary of V words.
Each word wj ∈ V has its own K-dimensional vector representation uj . The set of these vectors con-
stitutes a matrix of word embeddings defined as U ∈ RK×|V|. Given this word embedding matrix U,
words in a document are converted to a sequence of K-dimensional vectors u = {u1,u2, · · · ,uE},
which is then fed into the RNN to learn the sequential structures in a document

xj = GRU(xj−1,uj) (4)
where x0 is the zero vector.

Decoder. After the encoder computes xi for all elements in x, we set the initial hidden state of
the decoder h0 = finit(xE), and then compute hidden states hi = GRU (hi−1,Vyi−1, ci) where
ci =

∑
j αijxj is the context vector which is the sum of the encoded input vectors weighted by

attention scores αij = fatt (hi−1,xj) , αij ∈ R. Then, as shown in [1], the conditional probability
Pθ(yi|y<i,x) for predicting a label yi can be estimated by a function of the hidden state hi, the
previous label yi−1 and the context vector ci:

Pθ(yi|y<i,x) = f(hi,Vyi−1, ci). (5)

Indeed, EncDec is potentially more powerful than RNNb and RNNm because each prediction is
determined based on the dynamic context of the input x unlike the fixed input representation x̄ used
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Table 1: Comparison of the three RNN architectures for MLC.
RNNb RNNm EncDec

hidden states GRU
(
hi−1,Vyi−1 , x̄

)
GRU (hi−1,Vyi−1, x̄) GRU (hi−1,Vyi−1, ci)

prob. of output labels f
(
hi,Vyi−1 , x̄

)
f (hi,Vyi−1, x̄) f (hi,Vyi−1, ci)

in PCC, RNNb and RNNm (cf. Figs. 1a to 1d). The differences in computing hidden states and
conditional probabilities among the three RNNs are summarized in Table 1.

Unlike in the training phase, where we know the size of positive label set T , this information is not
available during prediction. Whereas this is typically solved using a meta learner that predicts a
threshold in the ranking of labels, EncDec follows a similar approach as [7] and directly predicts a
virtual label that indicates the end of the sequence.

4 Experimental Setup

In order to see whether solving MLC problems using RNNs can be a good alternative to classifier
chain (CC)-based approaches, we will compare traditional multi-label learning algorithms such as
BR and PCCs with the RNN architectures (Fig. 1) on multi-label text classification datasets. For a
fair comparison, we will use the same fixed label permutation strategies in all compared approaches
if necessary. As it has already been demonstrated in the literature that label permutations may affect
the performance of classifier chain approaches [23, 13], we will evaluate a few different strategies.

4.1 Baselines and Training Details

We use feed-forward NNs as a base learner of BR, LP and PCC. For PCC, beam search with beam
size of 5 is used at inference time [13]. As another NN baseline, we also consider a feed-forward NN
with binary cross entropy per label [21]. We compare RNNs to FastXML [22], one of state-of-the-arts
in extreme MLC.1 All NN based approaches are trained by using Adam [12] and dropout [26]. The
dimensionality of hidden states of all the NN baselines as well as the RNNs is set to 1024. The size
of label embedding vectors is set to 256. We used the NVIDIA Titan X to train NN models including
RNNs and base learners. For FastXML, a machine with 64 cores and 1024GB memory was used.

4.2 Datasets and Preprocessing

We use three multi-label text classification datasets for which we had access to the full text as it is
required for our approach EncDec, namely Reuters-21578,2 RCV1-v2 [15] and BioASQ,3 each of
which has different properties. Summary statistics of the datasets are given in Table 2. For preparing
the train and the test set of Reuters-21578 and RCV1-v2, we follow [21]. We split instances in
BioASQ by year 2014, so that all documents published in 2014 and 2015 belong to the test set. For
tuning hyperparameters, we set aside 10% of the training instances as the validation set for both
Reuters-21578 and RCV1-v2, but chose randomly 50 000 documents for BioASQ.

The RCV1-v2 and BioASQ datasets provide label relationships as a graph. Specifically, labels in
RCV1-v2 are structured in a tree. The label structure in BioASQ is a directed graph and contains
cycles. We removed all edges pointing to nodes which have been already visited while traversing the
graph using DFS, which results in a DAG of labels.

Document Representations. For all datasets, we replaced numbers with a special token and then
build a word vocabulary for each data set. The sizes of the vocabularies for Reuters-21578, RCV1-v2
and BioASQ are 22 747, 50 000 and 30 000, respectively. Out-of-vocabulary (OOV) words were also
replaced with a special token and we truncated the documents after 300 words.4

1Note that as FastXML optimizes top-k ranking of labels unlike our approaches and assigns a confidence
score for each label. We set a threshold of 0.5 to convert rankings of labels into bipartition predictions.

2http://www.daviddlewis.com/resources/testcollections/reuters21578/
3http://bioasq.org
4By the truncation, one may worry about the possibility of missing information related to some specific

labels. As the average length of documents in the datasets is below 300, the effect would be negligible.
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Table 2: Summary of datasets. # training documents (Ntr), # test documents (Nts), # labels (L), label
cardinality (C), # label combinations (LC), type of label structure (HS).

DATASET Ntr Nts L C LC HS
Reuters-21578 7770 3019 90 1.24 468 -
RCV1-v2 781 261 23 149 103 3.21 14 921 Tree
BioASQ 11 431 049 274 675 26 970 12.60 11 673 800 DAG

We trained word2vec [20] on an English Wikipedia dump to get 512-dimensional word embeddings
u. Given the word embeddings, we created the fixed input representations x̄ to be used for all of the
baselines in the following way: Each word in the document except for numbers and OOV words
is converted into its corresponding embedding vector, and these word vectors are then averaged,
resulting in a document vector x̄. For EncDec, which learns hidden states of word sequences using
an encoder RNN, all words are converted to vectors using the pre-trained word embeddings and we
feed these vectors as inputs to the encoder. In this case, unlike during the preparation of x̄, we do not
ignore OOV words and numbers. Instead, we initialize the vectors for those tokens randomly. For a
fair comparison, we do not update word embeddings of the encoder in EncDec.

4.3 Evaluation Measures

MLC algorithms can be evaluated with multiple measures which capture different aspects of the
problem. We evaluate all methods in terms of both example-based and label-based measures.

Example-based measures are defined by comparing the target vector y = {y1, y2, · · · , yL} to the predic-
tion vector ŷ = {ŷ1, ŷ2, · · · , ŷL}. Subset accuracy (ACC) is very strict regarding incorrect predictions
in that it does not allow any deviation in the predicted label sets: ACC (y, ŷ) = I [y = ŷ] . Hamming ac-
curacy (HA) computes how many labels are correctly predicted in ŷ: HA (y, ŷ) = 1

L

∑L
j=1 I [yj = ŷj ] .

ACC and HA are used for datasets with moderate L. If C as well as L is higher, entirely correct
predictions become increasingly unlikely, and therefore ACC often approaches 0. In this case, the
example-based F1-measure (ebF1) defined by Eq. (6) can be considered as a good compromise.

Label-based measures are based on treating each label yj as a separate two-class prediction problem,
and computing the number of true positives (tpj), false positives (fpj) and false negatives (fnj)
for this label. We consider two label-based measures, namely micro-averaged F1-measure (miF1)
and macro-averaged F1-measure (maF1) which are defined by Eq. (7) and Eq. (8), respectively.

ebF1 (y, ŷ)

=
2
∑L

j=1 yj ŷj∑L
j=1 yj +

∑L
j=1 ŷj

(6)

miF1

=

∑L
j=1 2tpj∑L

j=1 2tpj + fpj + fnj

(7)

maF1

=
1

L

L∑
j=1

2tpj

2tpj + fpj + fnj

(8)

miF1 favors a system yielding good predictions on frequent labels, whereas higher maF1 scores are
usually attributed to superior performance on rare labels.

5 Experimental Results

In the following, we show results of various versions of RNNs for MLC on three text datasets which
span a wide variety of input and label set sizes. We also evaluate different label orderings, such as
frequent-to-rare (f2r), and rare-to-frequent (r2f ), as well as a topological sorting (when applicable).

5.1 Experiments on Reuters-21578

Figure 2 shows the negative log-likelihood (NLL) of Eq. (3) on the validation set during the course
of training. Note that as RNNb attempts to predict binary targets, but RNNm and EncDec make
predictions on multinomial targets, the results of RNNb are plotted separately, with a different scale
of the y-axis (top half of the graph). Compared to RNNm and EncDec, RNNb converges very slowly.
This can be attributed to the length of the label chain and sparse targets in the chain since RNNb is
trained to make correct predictions over all 90 labels, most of them being zero. In other words, the
length of target sequences of RNNb is 90 and fixed regardless of the content of training documents.
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Figure 2: Negative log-likelihood of RNNs
on the validation set of Reuters-21578.

Table 3: Performance comparison on Reuters-21578.

ACC HA ebF1 miF1 maF1

No label permutations
BR(NN) 0.7685 0.9957 0.8515 0.8348 0.4022
LP(NN) 0.7837 0.9941 0.8206 0.7730 0.3505
NN 0.7502 0.9952 0.8396 0.8183 0.3083

Frequent labels first (f2r)
PCC(NN) 0.7844 0.9955 0.8585 0.8305 0.3989
RNNb 0.6757 0.9931 0.7180 0.7144 0.0897
RNNm 0.7744 0.9942 0.8396 0.7884 0.2722
EncDec 0.8281 0.9961 0.8917 0.8545 0.4567

Rare labels first (r2f )
PCC(NN) 0.7864 0.9956 0.8598 0.8338 0.3937
RNNb 0.0931 0.9835 0.1083 0.1389 0.0102
RNNm 0.7744 0.9943 0.8409 0.7864 0.2699
EncDec 0.8261 0.9962 0.8944 0.8575 0.4365

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0
Subset accuracy

0 10 20 30 40
0.975

0.980

0.985

0.990

0.995

1.000
Hamming accuracy

0 10 20 30 40
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Example-based F1

0 10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

Micro-averaged F1

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Macro-averaged F1

RNNb f2r RNNb r2f RNNm f2r RNNm r2f EncDec f2r EncDec r2f

Figure 3: Performance of RNN models on the validation set of Reuters-21578 during training. Note
that the x-axis denotes # epochs and we use different scales on the y-axis for each measure.

In particular, RNNb has trouble with the r2f label ordering, where training is unstable. The reason
is presumably that the predictions for later labels depend on sequences that are mostly zero when
rare labels occur at the beginning. Hence, the model sees only few examples of non-zero targets in a
single epoch. On the other hand, both RNNm and EncDec converge relatively faster than RNNb and
do obviously not suffer from the r2f ordering. Moreover, there is not much difference between both
strategies since the length of the sequences is often 1 for Reuters-21578 and hence often the same.

Figure 3 shows the performance of RNNs in terms of all evaluation measures on the validation set.
EncDec performs best for all the measures, followed by RNNm. There is no clear difference between
the same type of models trained on different label permutations, except for RNNb in terms of NLL
(cf. Fig. 2). Note that although it takes more time to update the parameters of EncDec than those
of RNNm, EncDec ends up with better results. RNNb performs poorly especially in terms of maF1

regardless of the label permutations, suggesting that RNNb would need more parameter updates for
predicting rare labels. Notably, the advantage of EncDec is most pronounced for this specific task.

Detailed results of all methods on the test set are shown in Table 3. Clearly, EncDec perform best
across all measures. LP works better than BR and NN in terms of ACC as intended, but performs
behind them in terms of other measures. The reason is that LP, by construction, is able to more
accurately hit the exact label set, but, on the other hand, produces more false positives and false
negatives in our experiments in comparison to BR and NN when missing the correct label combination.
As shown in the table, RNNm performs better than its counterpart, i.e., RNNb, in terms of ACC, but
has clear weaknesses in predicting rare labels (cf. especially maF1). For PCC, our two permutations
of the labels do not affect much ACC due to the low label cardinality.

5.2 Experiments on RCV1-v2

In comparison to Reuters-21578, RCV1-v2 consists of a considerably larger number of documents.
Though the the number of unique labels (L) is similar (103 vs. 90) in both datasets, RCV1-v2 has a
higher C and LC is greatly increased from 468 to 14 921. Moreover, this dataset has the interesting
property that all labels from the root to a relevant leaf label in the label tree are also associated to the
document. In this case, we can also test a topological ordering of labels, as described in Section 3.1.
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Table 4: Performance comparison on RCV1-v2.

ACC HA ebF1 miF1 maF1

No label permutations
BR(NN) 0.5554 0.9904 0.8376 0.8349 0.6376
LP(NN) 0.5149 0.9767 0.6696 0.6162 0.4154
NN 0.5837 0.9907 0.8441 0.8402 0.6573
FastXML 0.5953 0.9910 0.8409 0.8470 0.5918

Frequent labels first (f2r)
PCC(NN) 0.6211 0.9904 0.8461 0.8324 0.6404
RNNm 0.6218 0.9903 0.8578 0.8487 0.6798
EncDec 0.6798 0.9925 0.8895 0.8838 0.7381

Rare labels first (r2f )
PCC(NN) 0.6300 0.9906 0.8493 0.8395 0.6376
RNNm 0.6216 0.9903 0.8556 0.8525 0.6583
EncDec 0.6767 0.9925 0.8884 0.8817 0.7413

topological sorting
PCC(NN) 0.6257 0.9904 0.8463 0.8364 0.6486
RNNm 0.6072 0.9898 0.8525 0.8437 0.6578
EncDec 0.6761 0.9924 0.8888 0.8808 0.7220

reverse topological sorting
PCC(NN) 0.6267 0.9902 0.8444 0.8346 0.6497
RNNm 0.6232 0.9904 0.8561 0.8496 0.6535
EncDec 0.6781 0.9925 0.8899 0.8797 0.7258

Table 5: Performance comparison on BioASQ.

ACC HA ebF1 miF1 maF1

No label permutations
FastXML 0.0001 0.9996 0.3585 0.3890 0.0570

Frequent label first (f2r)
RNNm 0.0001 0.9993 0.3917 0.4088 0.1435
EncDec 0.0004 0.9995 0.5294 0.5634 0.3211

Rare labels first (r2f )
RNNm 0.0001 0.9995 0.4188 0.4534 0.1801
EncDec 0.0006 0.9996 0.5531 0.5943 0.3363

topological sorting
RNNm 0.0001 0.9994 0.4087 0.4402 0.1555
EncDec 0.0006 0.9953 0.5311 0.5919 0.3459

reverse topological sorting
RNNm 0.0001 0.9994 0.4210 0.4508 0.1646
EncDec 0.0007 0.9996 0.5585 0.5961 0.3427

As RNNb takes long to train and did not show good results on the small dataset, we have no longer
considered it in these experiments. We instead include FastXML as a baseline.

Table 4 shows the performance of the methods with different label permutations. These results
demonstrate again the superiority of PCC and RNNm as well as EncDec against BR and NN in
maximizing ACC. Another interesting observation is that LP performs much worse than other
methods even in terms of ACC due to the data scarcity problem caused by higher LC. RNNm and
EncDec, which also predict label subsets but in a sequential manner, do not suffer from the larger
number of distinct label combinations. Similar to the previous experiment, we found no meaningful
differences between the RNNm and EncDec models trained on different label permutations on RCV1-
v2. FastXML also performs well except for maF1 which tells us that it focuses more on frequent
labels than rare labels. As noted, this is because FastXML is designed to maximize top-k ranking
measures such as prec@k for which the performance on frequent labels is important.

5.3 Experiments on BioASQ

Compared to Reuters-21578 and RCV1-v2, BioASQ has an extremely large number of instances and
labels, where LC is almost close to Ntr +Nts. In other words, nearly all distinct label combinations
appear only once in the dataset and some label subsets can only be found in the test set. Table 5
shows the performance of FastXML, RNNm and EncDec on the test set of BioASQ. EncDec
clearly outperforms RNNm by a large margin. Making predictions over several thousand labels
is a particularly difficult task because MLC methods not only learn label dependencies, but also
understand the context information in documents allowing us to find word-label dependencies and to
improve the generalization performance.

We can observe a consistent benefit from using the reverse label ordering on both approaches. Note
that EncDec does show reliable performance on two relatively small benchmarks regardless of the
choice of the label permutations. Also, EncDec with reverse topological sorting of labels achieves
the best performance, except for maF1. Note that we observed similar effects with RNNm in
our preliminary experiments on RCV1-v2, but the impact of label permutations disappeared once
we tuned RNNm with dropout. This indicates that label ordering does not affect much the final
performance of models if they are trained well enough with proper regularization techniques.

To understand the effectiveness of each model with respect to the size of the positive label set, we
split the test set into five almost equally-sized partitions based on the number of target labels in the
documents and evaluated the models separately for each of the partition, as shown in Fig. 4. The first
partition (P1) contains test documents associated with 1 to 9 labels. Similarly, other partitions, P2,
P3, P4 and P5, have documents with cardinalities of 10 ∼ 12, 13 ∼ 15, 16 ∼ 18 and more than 19,
respectively. As expected, the performance of all models in terms of ACC and HA decreases as the
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Figure 4: Comparison of RNNm and EncDec wrt. the number of positive labels T of test documents.
The test set is divided into 5 partitions according to T . The x-axis denotes partition indices. tps and
tps_rev stand for the label permutation ordered by topological sorting and its reverse.

number of positive labels increases. The other measures increase since the classifiers have potentially
more possibilities to match positive labels. We can further confirm the observations from Table 5
w.r.t. to different labelset sizes.

The margin of FastXML to RNNm and EncDec is further increased. Moreover, its poor performance
on rare labels confirms again the focus of FastXML on frequent labels. Regarding computational
complexity, we could observe an opposed relation between the used resources: whereas we ran
EncDec on a single GPU with 12G of memory for 5 days, FastXML only took 4 hours to complete
(on 64 CPU cores), but, on the other hand, required a machine with 1024G of memory.

6 Conclusion

We have presented an alternative formulation of learning the joint probability of labels given an
instance, which exploits the generally low label cardinality in multi-label classification problems.
Instead of having to iterate over each of the labels as in the traditional classifier chains approach, the
new formulation allows us to directly focus only on the positive labels. We provided an extension
of the formal framework of probabilistic classifier chains, contributing to the understanding of the
theoretical background of multi-label classification. Our approach based on recurrent neural networks,
especially encoder-decoders, proved to be effective, highly scalable, and robust towards different
label orderings on both small and large scale multi-label text classification benchmarks. However,
some aspects of the presented work deserve further consideration.

When considering MLC problems with extremely large numbers of labels, a problem often referred
to as extreme MLC (XMLC), F1-measure maximization is often preferred to subset accuracy maxi-
mization because it is less susceptible to the very large number of label combinations and imbalanced
label distributions. One can exploit General F-Measure Maximizer (GFM) [30] to maximize the
example-based F1-measure by drawing samples from P (y|x) at inference time. Although it is easy
to draw samples from P (y|x) approximated by RNNs, and the calculation of the necessary quantities
for GFM is straightforward, the use of GFM would be limited to MLC problems with a moderate
number of labels because of its quadratic computational complexity O(L2).

We used a fixed threshold 0.5 for all labels when making predictions by BR, NN and FastXML.
In fact, such a fixed thresholding technique performs poorly on large label spaces. Jasinska et al.
[10] exhibit an efficient macro-averaged F1-measure (maF1) maximization approach by tuning the
threshold for each label relying on the sparseness of y. We believe that FastXML can be further
improved by the maF1 maximization approach on BioASQ. However, we would like to remark that
the RNNs, especially EncDec, perform well without any F1-measure maximization at inference time.
Nevertheless, maF1 maximization for RNNs might be interesting for future work.

In light of the experimental results in Table 5, learning from raw inputs instead of using fixed input
representations plays a crucial role for achieving good performance in our XMLC experiments. As
the training costs of the encoder-decoder architecture used in this work depend heavily on the input
sequence lengths and the number of unique labels, it is inevitable to consider more efficient neural
architectures [8, 11], which we also plan to do in future work.
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