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ABSTRACT. Classification problems have been introduced by M. Ziegler as a generaliza-
tion of promise problems. In this paper we are concerned with solvability and unsolvability
questions with respect to a given set or language family, especially with cores of unsolvabil-
ity. We generalize the results about unsolvability cores in promise problems to classification
problems. Our main results are a characterization of unsolvability cores via cohesiveness
and existence theorems for such cores in unsolvable classification problems. In contrast
to promise problems we have to strengthen the conditions to assert the existence of such
cores. In general unsolvable classification problems with more than two components exist,
which possess no cores, even if the set family under consideration satisfies the assumptions
which are necessary to prove the existence of cores in unsolvable promise problems. But,
if one of the components is fixed we can use the results on unsolvability cores in promise
problems, to assert the existence of such cores in general. In this case we speak of condi-
tional classification problems and conditional cores. The existence of conditional cores can
be related to complexity cores. Using this connection we can prove for language families,
that conditional cores with recursive components exist, provided that this family admits
an uniform solution for the word problem.

INTRODUCTION

The concept of classsification problems was introduced by M. Ziegler ([1]) as a generalization
of promise problems due to S. Even ([5]). Promise problems are a generalization of decision
problems. A classification problem is a vector A = (Ay,..., A;) where the A; are pairwise
disjoint infinite subsets of a given basic set S. For a set family F C 2% such a classification
problem is F-solvable, if a vector Q = (Q1, ..., Q) exists with A; C Q;, Q; € F,QiNQ; =0
for1<i#j<kand Q1U---UQr=S5.If k=2 we are faced with promise problems. In
applications S = X™* where X is a finite nonempty alphabet and F = £ a language family
and/or a complexity class. From an algorithmic point of view solutions of classification
problems can be used to obtain constant size advices. In this case advices indicate the
inputs to belong to certain subsets (c.f. [1] for further details). We extend the results about
unsolvability cores in promise problems ([4]) to unsolvability cores in classification problems.
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Again cohesiveness is the characterizing indicator. For unsolvable promise problems we can
find in general unsolvability cores, if the set family is closed under union, intersection and
finite variation. But for unsolvable classification problems with k& > 2 the existence of
unsolvability cores needs further conditions. We show, that we can assert the existence of
unsolvability cores for £ > 2 under the same assumption as needed for promise problems, if
we fix one of the components. In this approach the fixed component is called the condition
for the classification problem. The results are proven under assumptions which involve
closure properties of F against some or all boolean operations union, intersection and
complementation. Moreover, we can relate unsolvability cores for conditional classification
problems to so called proper hard cores introduced by R. Book and D.-Z. Du in a general
form ([3]) and first defined by N. Lynch ([6]) for complexity classes. Using results and proof
techniques from [3] we can apply our results to language families and complexity classes.
Especially, we are able to construct unsolvability cores where the components are recursive.
To do this, the language family or complexity class under consideration must allow an
enumeration where the word problem has a uniform solution. We assume the reader to be
familiar with the theory of recursive functions, languages and complexity (cf.[2],[7]).

1. SET AND LANGUAGE FAMILIES, BASIC NOTATIONS

In the following an infinite basic set S is given. We assume that the elements of set families
F are subsets of S. Moreover, sets A, A’, B,B',C,---,Q,--- are always subsets of S and
singletons {s} are identified with s. We mainly deal with denumerable set families F; i.e. a
function er : Ny — 2° with ex(Ny) = F exists (enumeration of F). Consider the boolean
operations AU B union, AN B intersection and A® = S\ A complementation in connection
with set families F. These operations can be lifted to binary operations between set families
F1 and F» and unary operations for F. Define

FireF,={AUB|A € F and B € Fp},
FioF,={ANB|Aec F, and B € F}
and the closure operations
Fr={AU...UAn>1,4; € F for 1 <i<n}(union),
Fo={Ain...NAyn>1,4; € F for 1 <i<n}(intersection),
F ={A°|A € F}, F =F UF(complementation) and
FP = ((F)%)%(boolean closure).

We will frequently use F9¢ = FNF°. Note, that (F%)S = (F3)%(distributivity), (F°)* =
(F3)e°(deMorgan), (F°¢)4¢ = F° and (F°°)°® = F. Furthermore, F = F° ( F = FY,
F =F®) if and only if F = F° (Fa& F C F, F ®F C F, respectively).

Let fin(S) = {A C S|A finite}. Then F is closed under finite variation if F @ fin(S) C
F and F © fin(S)®® C F. We call F nontrivial if ), S € F and F is closed under finite
variation. In this case fin(S) C F. Note, that fin(S) = fin(S)P. Moreover, F¢¢, F® F3
and FP are nontrivial, if F is nontrivial.
Consider the case S = X*, where X* is the free monoid over X (a nonempty, finite alphabet)
with concatenation of words as monoid operation and 1 as identity. As usual L C X* is
called a language and £ C 2% a language family. For a word w = z1 ...z, (r; € X
for 1 < i < n) |w| = n is the length of w and |1] = 0. For languages L; and Lo the
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complex product is defined by LiLs = {wiwa|wy € L1,wy € La}. There are various kinds
of quotients available, for example the left quotient defined by L1_1L2 = {w| Jw; € Ly:
wiw € Li}. In this context we are mainly interested in handling leftmarkers, i.e. we
consider the products wL and the quotients w~!L where w € X* and L is a language. With
respect to language families £ we get the closure operations £'** = {wL|w € X* L € £} and
LM = Ly Ljw € X*,L € £}. In handling the leftmarkers (for example complementation
of a leftmarked language) we use variation by Lreg(X), the family of regular languages (for
details see [4]). A language family £ is closed under regular variation if £ ® Lyeg(X) C L
and L © Lyreg(X) C L.

Looking at (partial) orderings on X* the lexicographic ordering is important for our
purposes. For n > 0 let [n]o = {0,...,n — 1} and [n] = {1,...,n}. Given a bijection
w: X — [bo (b = #(X)) define w < v if and only if (jw| < |v| or (Jw| = |v| and
Vue X*z,ye X weurX* and v € uyX™* = w(x) <w(y))). This is a well-ordering,
hence we can define a successor function succ for w € X* by succ(w) = min{v € X*|w # v
and w < v} where the minimum is taken with respect to the lexicographic ordering. Then
Ni.lex (i) = succ’(1) defines a bijection lex : Ng — X* with inverse ord = lex !

Consider the language families Ly o.(X) (recursively enumerable languages) and Lyec(X)
= Lr.0.(X)9¢ (recursive languages). Let rec,(n > 0) be the set of n-ary recursive functions.
Using 0,1 € Ny as truth values define for a language L the function \i.d7 (i) = "lex(i) € L”.
Then a language L is recursive if and only if d; € rec; . Alternatively, a nonempty lan-
guage L is recursive if and only if a function f : Ny — X* exists such that Ai.ord(f(i))
is nondecreasing and recursive. Classical language families and complexity classes are al-
ways denumerable. Of special interest are families with enumerations which are in a certain
sense "effective”. For our purpose it is important to assert that these enumerations allow
a uniform solution for the word problem. More formular, we define for an enumeration e
of a language family £ the function Ai,j.worde(i,j) = "lex(j) € e(i)”. If worde € reco
then e is called WP-recursive. L is called WP-recursive, if a WP-recursive enumeration e
of L exists. Note, that any WP-recursive £ is a (proper) subfamily of Lyec(X) and every
complexity class with reasonable ressource bounds (time- and space-constructability [2]) is
WP-recursive.

2. SOLVABILITY OF CLASSIFICATION PROBLEMS

Let £ > 0. We consider vectors A = (Aj,...,Ag) with 4; C § for 1 < i < k. To
such an A we associate two functions set(A) = Ay U---U Ay and |A| = k. Moreover, if
B = (By,...,By,) with 1 <m < k is another vector, then B < A if and only if an injective
o : [m] — [k] exists with B; C Ay for 1 <4 < m. A is a classification problem if A; is
infinite and A; N A; =0 for all 1 <i# j < k. For a given F a vector Q = (Q1,..., Q) is
an F -partition if set(Q) =S5, Qi€ Fand Q;NQ;=0for 1 <i#j<k.

Definition 2.1. A classification problem A is F-solvable (A € classy(F)) if and only if
an F-partition Q exists with |Q| = k and A < Q, where k = |A|.

If S = Ny then F-solvability of promise problems corresponds to the separation principle
defined in [7] (exercise 5-33). Our definition of F-solvability for classification problems is
stronger than the definition of F-separability given in [1], where a classification problem A
is F-separable, if there exists a Q, which satisfies the conditions of Definition 2.1 except the
condition ”set(Q) = S”, which may not necessarily be valid. Note that for such a Q, we
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always obtain @y C (Q1U---UQk—1)°. Hence, the class of F-solvable classification problems
with more than one components is identical with the class of F-separable classification
problems, if F is a boolean algebra. That F-solvability is stronger than JF-separability,
follows from results in [7]. Consider Lye . (X) where X is a one-letter alphabet. Then
a promise problem (A, B) consisting of recursively enumerable sets exists, which is not
Ly.e.(X)-solvable ([7] exercise 5-34). But (A, B) is clearly Ly..(X)-separable. We also find
the interesting result that any promise problem (A, B) with A, B € Ly.e.(X)® is Ly.e.(X)°-
solvable ([7] exercise 5-33). Hence all promise problems, which are L, e (X)°-separable are
Ly.e.(X)-solvable. But Ly.e.(X) is not closed under complementation.

For k = 1 we identify A; with (A;). If F is nontrivial then every A; is F-solvable. If
k > 2 and F satisfies appropriate closure properties, then we can reduce the question of
solvability of classification problems to solvability of promise problems. Directly from the
definition we get

Proposition 2.2. If F = F" then for all classification problems A and B with B < A
A € classz|(F) implies B € class p|(F).

Proof. Suppose B < A < Q where Q is an F-partition. Let B = (Bi,...,Bp), A =
(A1,...,Ax) and Q = (Q1,...,Qk). Then we can assume without loss of generality B; C
A; C Q; for all i. Consider P = Q1 U---UQg. Then P® = Q41 U---UQy € F. Hence,
Q' =(Q1,...,Qr_1,Qr U P°) is an F-partition with B < Q’.

Lemma 2.3. If F = F* = F* and A = (Ay,...Ag) is a classification problem then
A € classi(F) if and only if (Ai, Aj) € classy(F) for all1 <i# j <k.

Proof. The ”if part” follows by Proposition 2.2. Suppose that (A4;, A;) € classa(F) for
1 <i# j < k. Now we proceed by induction over |A| = k. If k = 2 nothing is to prove.
Let A = (Ay,...,Ar+1) and suppose (Ay,...,Ar) € classip(F). Then an F-partition
Q = (Q),...,Q}) with (A4y,..., Ay) < Q' exists. Assume without loss of generality A; C Q)
for 1 < i < k. On the other side Q} € Fde exist with A; C Q7 and Axi1 C (QV)°
for 1 <4 < k. Consider P = Q{U---UQ]. Then A; C P € Fforl < i <k and
P = (QV)° N N (QY)° € F with Ay C P°. This shows Q = (@, N P,..., Q. N P, P°)
is an F-partition with A < Q. ]

]

As indicated in the introduction we generalize the notion of a classification problem
to conditional classification problems by fixing one component as condition. Consider C' C
S and a classification problem A. Then (C,A) is a conditional classification problem if
C N set(A) =0, referring to C as the problem condition. C could be finite, even empty. If
C*° is finite, then no conditional classification problems (C, A) exist.

Definition 2.4. A conditional classification problem (C, A) is F-solvable (A € cclassy(C, F))
if and only if an F-partition Q = (Qo, Q1, . . ., Q) exists with C C Qp and A < (Q1, ..., Q)
where k = |A].

The following facts follow directly from the definition

Proposition 2.5. Let F and k > 0 be given.
(1) C1 CCy C S = cclassy(Cy, F) C cclass(Cy, F).
(2) C€ € fin(S) = cclassy(C,F) = 0.
(3) D€ F = classi(F) C cclassi(0,F).
(4) F =F" = classi(F) = cclass(0,F).
(5) F nontrivial and C € fin(S) = cclass;(C,F) = cclassy(0, F).
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Example 2.6. Consider X = {a,b}. Let £ = L' = L% a nontrivial language family,
which is closed under regular variation. If A is a set with A, A ¢ L, then (A% A) ¢
classy(L) and by our assumption on £ (zA° xA) ¢ classo(L) for x = a,b (Lemma 5.4
in [4]). Clearly, (aA® bA) € classy(L), but (aA U bA® aA® bA) ¢ class3(L). Hence
(aA,bA) ¢ cclassa(aAUDAC, L).

3. UNSOLVABILITY CORES IN CLASSIFICATION PROBLEMS

As in the case of promise problems unsolvability of classification problems is closely related
to cohesiveness.

Definition 3.1. A C S is F-cohesive (A € cohestve(F)) if and only if A is infinite and
for all Q € F9¢ either AN Q or AN Q°C is finite (cf.[4] and [7]).

In [4] (Theorem 5.1.) it is proven, that for a promise problem (A, B) and a nontrivial set
family 7 AU B € cohesive(F) if and only if A, B € cohesive(F) and (A, B) ¢ classy(F).
This result leads to a much stronger one. In the theory of complexity we find the notion of
hard cores inside those sets which can be computed with bounded ressources (time, space,
e.t.c. [3]). Similarily, we can consider unsolvability cores of classification problems which
are not solvable.

Definition 3.2. For k£ > 1 a classification problem A with |A| = k is a k-core of F
(A € corey(F)) if and only if for all classification problems A’ with A’ < A and |A| > 1:
A’ ¢ class|pr(F).

Clearly, any subproblem of a core is itself a core. This is especially true for subproblems,
which are promise problems. This enables us to use the results about unsolvability cores
for promise problems from [4].

Lemma 3.3. If F = F* and A = (A1,..., Ag)(k > 1) is a classification problem then
A € corey(F) if and only if (A;, A;) € corex(F) for all1 <i# j < k.

Proof. Suppose A € corey(F), then by definition (A4;, A;) < A and therefore (4;, A;) €
cores(F). Conversely, suppose that A ¢ corer(F), i. e. A’ = (A],... ,Al)) exists with
A" <A, m>1and A’ € class|p(F). Since F = F" we know (A7, Ay) € classy(F).
Moreover, A} C A; and A5 C A; for some 1 < i # j < k. But then (A;, A;) ¢ cores(F). [

Now we can characterize cores by cohesiveness. Using Theorem 5.1. and Theorem 6.7.
of [4] we can prove

Theorem 3.4. If F = F“ is nontrivial and A a classification problem with |A| =k > 1
then A € corei(F) if and only if set(A) € cohesive(F).

Proof. If A = (A1,..., Ax) € corey(F), then (A;, Aj) € corex(F) forall 1 < i # j < k.
By Theorem 6.7. in [4] we know A; U A; € cohesive(F) for all 2 < i < k. But then
AiU---UA, = (A1 UAQ) J---u (Al UAk) Since A; C (Al UAi)ﬂ (A1 UAj) for all
2 <i# j <kand A is infinite, a simple induction proof shows set(A) € cohesive(F).
Conversely, if Aj U---U Ay € cohesive(F) then for all 1 < i # j < k, A;UA; €
cohesive(F). Again by Theorem 6.7. of [4] (A;, A;) € corez(F) and therefore by Lemma
3.3. A € corey(F). [
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We can find to any classification problem A with [A| =2 and A ¢ classa(F) aB < A
such that B € corey(F) if F = F* = F° is denumerable ([4]). But this is not true
for classification problems A with |A| > 2. To see this we prove the following theorem,
where we use S = X* with X = {a,b,c}. Define for A C X* the classification problem
C(A) = (Aaps Abe, Aca), where Ay = 2 AUyAC for z,y € X.

Theorem 3.5. Let £ be a nontrivial language family with £ = L* = LY = L% which is
closed under regular variation. If A C S with A ¢ L or A¢ ¢ L, then C(A) ¢ classs(L)
and for all B < C(A) with |B| =3 : B¢ cores(L).

Proof. (1) We know (A€, A) ¢ classa(L) ([4]). But then by Lemma 5.4 of [4] (zA®, zA) ¢
classy(L) for all z € X. Now (bA%,bA) < (A, Ape) , (A% cA) < (Ape, Aca) and
(aA® aA) < (Acq, Agp). This shows (Agy, Azz) ¢ classo(L) for all @ # y , 2z # y and
T # z.

(2) Suppose B < C(A) exists with B € core3(L). Then by Theorem 3.4 set(B) €
cohesive(L). Assume without loss of generality that B = (B(a,b), B(b,c), B(c,a)) and
B(xz,y) C Agy for z,y € X with  # y.. In the following let B'(z,y) = B(z,y) N zX* and
B"(z,y) = B(z,y) N (zX*)°.

Assertion : B'(z,y) € fin(X*) for all z,y € X with x # y.

Suppose to the contrary (without loss of generality) B’(a,b) ¢ fin(X*). But then B'(b,c) €
fin(X*). Otherwise we obtain (B'(a,b), B'(b,¢)) < (aX*,06X*) < (aX™, (aX*)®). Since
Lreg € L, B ¢ corez(L) - a contradiction. But now B”(b,c) is infinite and B”(b,c) C
cX* C (aX*)¢, hence both set(B)NaX™* and set(B)N (aX*)¢ are infinite - a contradiction
to set(B) € cohesive(L).
Now consider B”(a,b) and B”(c,a). Then both sets are infinite and (B”(a,b), B"(¢,a)) <
(bX*,aX*) < (bX™, (bX™)°) - a contradiction to B € cores(L). This completes the proof.
[

Remark 3.6. The basic idea behind the proof of Theorem 3.5. is due to M. Ziegler ([1]).
Note, that complexity classes and most of the known language families satisfy the conditions
of Theorem 3.5.

Using conditional unsolvability, we can derive an existence theorem for cores.

Theorem 3.7. Let F = F* = F* be denumerable and nontrivial. If A = (Ai,..., Ax)
is a classification problem and C' C set(A)¢ is F-cohesive with (C,A;) ¢ classa(F) for
1 <i <k, then there exists B< A with |B| =k and B € corey(F).

Proof. Since (C, A;) ¢ classa(F), we can find C; C C and B; C A; with (Cy, B;) € corea(F)
(Theorem 6.14 in [4]). By Theorem 3.5. C; U B; € cohesive(F) and therefore B; €
cohesive(F). Now (C, B;) ¢ classa(F) and C € cohesive(F). By Theorem 5.1. in [4] we
know C' U B; € cohesive(F). But then CUBU---UBp = (CUBy)U---U(CUBy) €
cohesive(F), since for all 1 < i # j < k C is infinite and C' C (C'U B;) N (C U By). It
follows By U---U By, € cohesive(F) and we obtain B = (By, ..., B;) < A and by Theorem
3.4 B € corei(F). OJ

Remark 3.8. Consider the situation of Theorem 3.5. Then set(C(A)) = X X* and there is
no room for an infinite condition C' to make the conditional classification problem (C, C(A))

L-solvable.
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4. CORES IN CONDITIONAL CLASSIFICATION PROBLEMS

Unsolvability of conditional classification problems can be related to cohesiveness, too.

Definition 4.1. Let C;A C S. Then A is F-cohesive under condition C (in short: A €
ccohesive(C, F)), if and only if A is infinite and for all Q € F9¢ with Q C C either ANQ
or AN QF is finite.

Clearly, if Cy C Cy C S, then ccohesive(Cy, F) C ccohesive(C1, F). Especially, we
get ccohesive (S, F) = cohesive(F) and therefore cohesive(F) C ccohesive(C,F) for
all C C S. Rewriting the definition, we also find ccohesive(C,F)) = cohesive(F(C))
where F(C) = {Q| Q C C and @ € F}. Analogously, we define conditional cores by

Definition 4.2. Let C' C S and A a classification problem. Then A is a C-conditional core
of F (A € ccore 5 |(C, F)) if and only if for all A’ < A with [A’] > 0: A’ ¢ cclass|a/(C, F).

In contrast to the definition of core(F) subproblems A’ with |A’| = 1 are considered,
too. Note, that (C,A’) is a conditional-classification problem, if A’ < A. Moreover,
if A € ccorejp|(C,F), then A" € ccorep(C,F). The following lemma characterize
A € ccore;(C,F) by conditional cohesiveness.

Lemma 4.3. Let F be nontrivial and C, A C S with A infinite and ANC = 0. Then the
following statements are equivalent

(i) A € ccore; (C, F)

(ii) A ¢ cclassi(C,F) and A € ccohesive(C€, F).

Proof. (i) = (ii): Suppose A € ccore(C,F). Then A ¢ cclassi(C,F). Assume to the
contrary that A ¢ ccohesive(C¢, F). Then Q € F9¢ exists with Q C C¢, AN Q ¢ fin(9)
and ANQ°® ¢ fin(S). Let B=ANQ. Then B C Q, but @ C C€, hence C C Q°. Moreover,
Q,Q° € F,ie. B e cclassi(C,F).

(ii) = (i): Suppose that A ¢ cclassi(C, F) and A € ccohesive(C¢, F). Assume to the
contrary that an infinite set B C A exists, such that B C Q° and C' C Q for some Q € F9¢.
Then Q¢ C C°. Since BN Q° ¢ fin(S), ANQ° ¢ fin(S), too. Hence ANQ € fin(S),
because A € ccohesive(C€, F). Consider Q' = Q°U(ANQ). Since F is nontrivial, Q' € F.
Note that A = (ANQ)U(ANQ®) CQR°U(ANQ) = Q. On the other side, Q¢ C C° and
ANQ C ACCe ie Q CC° Hence C C Q. This shows that A ¢ cclassi(C,F) - a
contradiction. L]

Theorem 4.4. Let F be nontrivial with F = F* and (C, A) a conditional k-classification
problem. If A = (Ay,...,Ag) then the following statements are equivalent

(i) A € ccorex(C,F)

(ii) A; ¢ cclassi(C, F) and A; € ccohesive(C¢, F) for all 1 < i <k.

Proof. (i) = (ii): Suppose that A € ccorey(C,F). Then for all 1 < i < k: (C,A;) €
ccore1(C, F), since A; < A. Applying Lemma 4.3. we get the result.

(ii) = (i): Let the A; be given according to the assumption. Assume to the contrary
that B < A exists with B = (By,..., By,) € cclass;(C, F). Then an injective o : [m]| — [k]
exists with B; C A, for 1 <i < k. Since F = F", B; € cclassi(C,F). But A, €
core1(C,F) and B; C A,(;). This is a contradiction. O
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Now, we are able to assert the existence of conditional cores in the case that both C
and C° are infinite. Observe that under this assumption A € cclass;(C,F) if and only if
(C, A) considered as a promise problem is solvable for F, i.e. (C,A) € classi(F).

Lemma 4.5. Let F be denumerable and nontrivial with F = F* = F*. If A ¢ fin(9),
C ¢ fin(S), ANC =0 and A ¢ cclass)(C,F), then B C A exists with B € ccore;(C, F).

Proof. If A ¢ cclass,(C,F),ie. (C,A) ¢ classi(F). By cor.6.17. in[4] we can find B C A
such that for all infinite B’ C B (C, B’) ¢ classa(F), i.e. B € ccore,(C,F). O

Using this lemma in connection with Theorem 4.4. we get

Lemma 4.6. Let F be denumerable and nontrivial with F = F* = F* and (C,A) a
conditional classification problem where C' and C¢ are infinite. If A = (Aq,..., Ag) with
A; ¢ cclass(C,F) for1 <i <k then a B< A exists with |B| =k and B € ccorei(C,F).

Proof. By Lemma 4.5. we find for each 1 < i < k B; € ccore;(C,F) and B; C A;. Let
B = (By,...,By). Then B < A and |B| = k. By Theorem 4.4. B € ccorey(C, F). ]

5. CONDITIONAL CORES AND HARD CORES

For WP-recursive language families we can prove a much stronger result. This depends on
the relation between A € ccore;(C, F) and proper hard cores introduced by N. Lynch [6]
for complexity classes and in a very general form by R. Book- D.-Z. Du [3].

Definition 5.1. B is a F-hardcore of A if and only if B is infinite and for all C' € F(A):
BNC € fin(S). If additionally B C A then B is a proper F-hardcore of A. (Remind
F(A)={Q CA| Qe F}for Fand A.)

Note, that for A’ C A with A’ infinite every F-hardcore of A is a F-hardcore of A’.
Rephrasing Lemma 7.2 of [4] we get the following

Lemma 5.2. If F is nontrivial with F = F° and (C, A) a conditional classification problem
then A is a proper F-hardcore of C€ if and only if A € ccorey(C,F).

Now we can use a construction for proper hard cores from [3] in a modified form.

Theorem 5.3. If £ is a nontrivial and WP-recursive language family with £ = L£® and
(C, A) a conditional classification problem with A ¢ cclass|(C, L) and C, A are recursive
then a recursive B C A ezists with B € ccore,(C, L).

Proof. Consider an enumeration e of £ such that worde € recs. Furthermore, let 6,04 €
reci. Now define for all n > 0 B(n), cancel(n) and card(n) by the following algorithm:

if lex(0) € C then
cancel(0) :=0

end if

if lex(0) € A and lex ¢ e(0) then
B(0) :=0; card(0) :=1

end if

n:=1;

while n # 0 do
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B(n) := B(n — 1); cancel(n) := cancel(n — 1); card(n) := card(n — 1);
if lex(n) € C then
cancel(n) := cancel(n) U {i|0 < i < card(n) and lex(n) € e(i)}
end if
if lex(n) € Aand V 0 <i < card(n) : (i ¢ cancel(n) = lex(n) ¢ e(i)) then
B(n) := B(n) U lex(n);card(n) := card(n) + 1
end if;
n=n+1
end while

(For A = C° we get the construction of [3]).

Now, let B = |J;2,B(n) and cancel = [J;2, cancel(z). Assume for the moment that
B is infinite. B is recursive and B C A, since all basic functions are recursive, cancel(n)
is finite for all n and the elements of B are added in increasing order with respect to lex.
Moreover, lim,,_,.card(n) = co. Hence {k|e(k) N C' # (0} = cancel and we get e(i) C C°
and by construction e(i) N B € fin(X™*) for ¢ ¢ cancel (cf. [3]). In conclusion, B is a proper
L-hardcore of C¢ and by Lemma 4.9. B € ccore;(C, L). It remains to show the

Assertion: B ¢ fin(X™).
Suppose to the contrary, that B is finite. Then M exists with card(n) = M for almost
all n. Moreover, for every i € [M + 1]p with e(i) N C # 0 there must exist K (i) with
i € cancel(K(i)). Let K = maz{K (i)|i € [M + 1]o with e(¢) N C # (}}. Then we know that
for all i € [M +1]o with i ¢ cancel(K (7)) : e(i) C C°. Choose N > K sufficiently large such
that additionally card(n) = M for every n > N. Consider lex(n) € A with n > N. Since
lex(n) ¢ B, i € [M + 1]y exists with lex(n) € e(i). This shows A C {lex(k)|k < N and
lex(k) € A} U Uz‘]\imz‘gcancel e(i) = Q C C° and therefore C' C Q°. Since L is nontrivial and
L =L" we know Q € L. Moreover, £ = £ implies Q¢ € L, hence A ¢ cclass1(C, L) - a
contradiction. 0]

Now we can derive a stronger result than Lemma 4.6.:

Theorem 5.4. Let £ be a nontrivial and WP-recursive language family with £ = £b and
(C, A) a conditional k-classification problem. If C' is recursive and A = (Ay, ..., Ay) such
that A; € cclassi(C, L) and A; is recursive for 1 < i <k then B = (B,...,By) exists with
B < A, B € ccore,(C, L) and B; is recursive for 1 <i < k.

Proof. By Theorem 5.3. we find for each 1 < i < k B; € cclass (C, L) with B; C A; and B;
is recursive. Let B = (By, ..., Bi). Then B < A and by Theorem 4.4. B € ccorey(C, L).[]

Remark 5.5. The B;’s constructed in Theorem 5.4. are all infinite. By the Dekker-Myhill
theorem (12.3 Theorem VI in [7]), we can find in every B; a L-cohesive B, but we cannot
show, that B/ is recursive under the conditions of Theorem 5.4. The best result to our
knowledge is the result of Friedberg (§12.4 Theorem XI in [7]). The construction (due to
Yates) in the proof given in [7] can be easily modified in such a way, that to any infinite,
recursive A a Ly.e.(X)-cohesive subset B with B¢ € Ly (X) can be found. Since any
WP-recursive language family £ is a subfamily of £, e.(X) this B is L-cohesive, too.

CONCLUDING REMARKS

This paper continues our research about unsolvability cores in promise problems ([4]) gen-
eralizing the results to classification problems. Our approach is very general, though the
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applications in this paper deal mainly with language families and complexity classes. The
main open problem in our approach is to construct cohesive sets with ”nice” properties.
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Referee no 2:

* The paper can be accepted for Logical Methods in Computer Science after minor

revisions

Promise problems are a generalization of languages as decision problems
in that the behavior (terminate, output yes/no) of an algorithmic solution
is prescribed only on certain subset of all possible input strings.
Classification problems extend this further from Boolean (yes/no)

to a fixed number k>2 of possible answers.

A (hard) core of a classical decision problem L is essentially a
sub-problem all whose infinite sub-problems are algorithmically
difficult to solve. Previous work [4] has generalized this
concept to promise problems and explored its properties and
in particular existence; and the present submission extends
these considerations to classification problems.

The approach taken by the authors is impressively general:

Fixing a class F of languages to define 'easy' leads to generic

Definitions 2.1 (F-solvable classification problem), 3.1

(F-cohesive), 3.3 (F-core) and so on. This covers all practical

cases such as F=P (polynomial-time decidable languages), PSPACE, EXP
etc. as well as for instance levels 3 and 1 of Chomsky's hierarchy.

Of course some conditions have to be imposed on F, such as
closure under binary unions/intersections, complements, finite
variation, prefixes/suffixes, containing all regular languages,
or being effectively enumerable (WP-recursive, end of Section 1):

The authors take particular care in their results to invoke as
few of these prerequisites as possible.

However Theorem 3.6 demonstrates that even under strong hypothesis
classification (as opposed to promise) problems do not contain cores;
which leads the paper to consider conditional classification problems
(Section 4, in particular Lemma 4.6) and hard cores in the sense of

Book&Du (Section 5, in particular Theorem 5.3).



The paper fits well into the scope of LMCS. It is carefully and concisely
written, and I recommend publication subject to only few minor comments:
Intro 1.4: "basic (usually infinite) set S": remove (usually infinite) done
S.11.1: "and we assume for set families F" ?? text revised
p21-7:L {1,2} > L 1,L 2 done
p-2 1.-1: "Handling the leftmarkers we make use of another
kind of variation": Could not make sense of that, sorry. text revised
p.31L4:[n]=[1..n] or {1,...n} ? it is the same, we corrected to the second form
p.3 L.6: Everybody "knows" what the lexicographic ordering is, lenghth condition |w| = |[v| was missing
but your formalization differs from that and in fact fails in the second case, corrected
linearity and implies for instance "01 <= 0".
Prop 2.5(3): need hypothesis such as $\emptyset\in\mathcal {F}$ ? done
Thm 3.2 may be renamed Fact 2.5 since it is proven elsewhere we cite the result and erased the theorem
p.5 1.2: open bracket without closing counterpart ~ done
p.5 11.9+10 only repeat Def 3.3: omit This was an error, correction and text revision *)
Theorem 3.6 may be be renamed Example 3.6 sep **)
p.5 1.-4 and 1.-6: "set(B) in cohesive(L)" occurs twice corrected

Proof of Thm 3.8 open ended corrected

Typesetting details (the really few cases where the
otherwise impeccable formatting may be reconsidered):

* "lex" appears sometimes in italic bold, sometimes upright bold
we used italic bold for functions and upright bold for

relations. Since this occurs only for “lex*, we skipped it
* succ, ord, rec_n, word_e, class_k, set. for the lexicographic ordering

* similarly for "min" (p.3 L.8),

* Using le., th. as abbreviations for Lemma and Theorem abbreviation replaced
* Writing - instead of -- (dash),

for instance in 1.4 of Remark 5.5 or title of Section 1  done

The presentation is sometimes maybe a bit overly formal, for

my taste, and short of motivations of definitions. For instance

* Intro 1.6: Why demand that the Qi cover S? The reader might See new text after Definition 2.1.
appreciate some motivation here (such as Proposition 2.2)

* Def 3.3: why allow |[A'| <|A| ? same thing as *) see new text after def.3.2

* Abstract: What are the main results? abstract has been revised

**) We disagree with the referee at this point. The construction of an unsolvable classification problem

without cores is quite general and can be applied to nearly all interesting language families and complexity classes.
We revised the following remark to point to this fact. Moreover, the nontrivial proof is in our view

too lengthy for an example.
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General Comments

A classification problem is a k-tuple A = (Ay, -, Ay) of pairwise disjoint infinite
subsets A; C S for some given set S. Given a class F C 2%, a classification problem
A = (Ay, -+, Ag) is called F-solvable if there is a partition Q = (Qq, -+ ,Qy) of S
(ie, S=Q1U---UQgand Q;NQ; =0 if i # j) such that A; C Q; and Q; € F for
all 1 < < k. In this case, Q is a solution of the classification problem A. If £ = 2,
then the corresponding classification problems are called promise problems.

Two classification problems A = (Ay,--- , Ax) and B = (By, -, B,,) can be com-
pared in the following way. We say B < A if m < k and there is an injective mapping
o:{1l,---,m} = {1,--- ,k} such that B; C A,(; for all 1 <i < m. (We will call B
a subproblem of A in this review.) If F is closed under the union operation, then the
F-solvability of A implies the F-solvability of B (Proposition 2.2). So, in some sense,
this means that B is “less unsolvable” than A. In other words, the unsolvability of
A seems not necessarily imply the unsociability of B. Surprisingly, there are clas-
sification problems so that this implication does hold. These classification problems
are called “cores” or “unsolvability cores”. More precisely, A classification problem
A is called a k-core of F if all subproblems of A is not F-solvable, where k = |A|.
This paper mainly investigates the existence and their characterizations of cores of
different properties.

For example, it shows that (Theorem 3.5), if F contains () and S and is closed
under the union operation, then a classification problem A, with |A| > 1, is an F-core
iff the set |J A is an F-cohesive sets. Where an infinite set A C S is called F-cohesive
if there is no set @) can split A into two infinite parts (i.e., both AN @ and AN Q°
are infinite), if both @ and Q¢ are in F.

For k=2, the authors proved in a previous paper that, if A is an F-unsolvable
classification problem, then there exists a B < A such that B is a 2-core of F as
long as F is closed under union and intersection operations. However, for k > 2, this
paper proves that, for some F, there is an F-unsolvable classification problem A such
that no B < A is a core of F (Theorem 3.6).



The classification problems are extended to the conditional classification problems
by fixing one of its components. Corresponding results are also proved in the paper.
All these are new and theoretically interesting. The proofs are sound. For me, the
only drawback of the paper is that it is written in a very technical way with very few
explanations. For readers like myself will find it difficult to read first time. But still it

is in general a paper of high quality. I recommend to accept the paper for publication
in LMCS.

Other Comments

1.

. Page 2, line 1 of section 1:

Page 1, line 4: If A; is an infinite subset of S, then S will be infinite automati-
cally. done

. Page 1, line 5: “ such a classification problem is F-solvable, if ---.” Without

the prefix it might be confused. done

. Page 1, line -4: The statement “- -- we cannot find in general unsolvability cores

in unsolvability classification problems with &£ > 27 is not accurate. Theorem
3.6 shows only some special problem B (i.e., B < C(A) for some A) that
cannot be 3-cores. But Theorem 3.8 does show the existence of k-core (k may

be greater than 2) in general. see revised text on page 2

“

- we assume that the set family F C 257

see revised text on page 2
Page 2, line -7: Ly 5 should be Ly, Ly € X*. done

Page 3, line -10: “an F-partition” (similar problems in several places)

done, we hope that we found all of them
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