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The Position of Index Sets of Identifiable
Sets in the Arithmetical Hierarchy

ULRIKE BRANDT
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Technische Hochschule Darmstadt, Federal Republic of Germany

We prove that every set of partial recursive functions which can be identified by
an inductive inference machine is included in some identifiable function set with
index set in X3 N IT;. An identifiable set is presented with index set in 2's N IT; but
neither in X, nor in I7,. Furthermore we show that there is no nonempty iden-
tifiable set with index set in X';. In /7, it is possible to locate this king of set. In the
last part of the paper we show that the problem to identify all partial recursive
functions and the halting problem are of the same degree of unsolvability. © 1986

Academic Press, Inc.

INTRODUCTION

Gold (1967), shows that there exists no inductive inference machine
identifying the set R of all recursive functions, and similarly there is none to
identify the set P of all partial recursive (p.r.) functions. The question is
how to characterize identifiable subsets of P. In this paper identifiable
function sets are studied in terms of their “complexity,” where the com-
plexity of a set M of p.r. functions is measured by the position of the
corresponding index set in Kleene’s arithmetical hierarchy. We shall show
that every identifiable set is included in an identifiable set with index set in
23 nII, and that there is no nonempty identifiable set with index set in 2.
It is easily shown that there is an identifiable set with index set in I7,.
Moreover we exhibit an identifiable set with index set in X'y n I7; but
neither in I7, nor in 2',. With respect to the topic also compare with Klette
(1976). He investigates identifiable subsets of R and shows that the
corresponding index sets are in X'; and that there exists an identifiable sub-
set of R with 2';-complete index set.

The paper is completed by the answer to the problem of how complex an
inductive inference machine must be to identify all partial recursive
functions. Clearly, these inference machines have to use oracles. Adleman
and Blum (1975) show that the problem to identify all recursive functions
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is strictly easier than the halting problem. We show that the problem to
identify all partial recursive functions and the halting problem are of
equivalent degree of unsolvability.

BAsiC NOTATIONS AND DEFINITIONS

We assume that the reader is familiar with the basic concepts and results
of recursion theory (Rogers, 1967). We adopt the notations of (Rogers,
1967); in particular an acceptable enumeration of the unary p.r. functions is
denoted by (4,) ,. For every p.r. function f we define the index set of f to
be the set Ind(f) = {i/¢, = f}. If M is a set of p.r. functions then Ind(M) =
{i/¢; € M} is the index set of M.

An inductive inference machine (INM) is an algorithmic device working
as follows: The machine starts in some initial state with blank memory.
From there, it proceeds autonomously except that, from time to time, the
device requests an input or produces an output. Possible inputs are pairs of
natural numbers (x, y) or *, while outputs are natural numbers (see
Fig. 1).

We demand that an INM requests during every computation infinitely
many inputs and that it outputs an infinite sequence of natural numbers.

Next, we define which partial recursive functions a given INM can iden-
tify. For this the following terminology introduced by (Blum and Blum,
1975) is useful: For any p.r. function f we say that f is an enumeration of f'if
and only f= {a,, a,,..,» is an infinite sequence where:

(i) a;eN?u {x} for every ie N and
(iil) f(x)=y<3ieN:a;,=(x, y).

If m is an INM, then m converges to z under input f=
{ay, ayy..,y (m[f]] z) if and only if m produces with input <{a,, a,,...,» an
output sequence iy, i,...y converging to z, that is: 3ye NVx > y (i, = z).

Otherwise we write m[f]1 and say that m under input f diverges.
m[f]] means that m converges to some natural number.

input
(X12Y7) [(X0u¥9)| ... V0] I
I * le 1) [(x9.Y7 | * l [(xn yn| } tape

memory
including work tapes| -

[ i i I l I output
0 l ...... e tupe

FIGURE 1
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m identifies a p.r. function fif and only if for every enumeration f of f there
is a z such that m[f]]z and ¢, is an extension of f (f<é¢,), ie,
#.(x)= f(x) for every x e Dom(f).

By M,, we denote the set of all p.r. functions which the INM m identifies.
A set M of p.r. functions is called identifiable if and only if there is an INM
m with M,, = M.

Now, we introduce a special kind of INMs, namely the sharp INMs. An
INM m is called sharp if and only if for every p.r. f ¢ M,, either m[f]7 for
every enumeration f of f or for every enumeration f of f there is an z such
that m[f]]lz and f £ ¢..

Blum and Blum (1975) show (see Theorem 2) that for every INM m
there is a sharp INM m’ with M,, < M,,.. Therefore we are particularly
interested in sharp INMs.

For every sharp INMm

K,={feP/f¢M, A¥f  enumeration of f:m[f]|}
and
D, ={feP/f¢M, nVf  enumeration of f:m[f]1}.

Observe that every sharp INM m the sets M,,, K,,, and D,, define a par-
tition of P.

In the set of sharp INMs we are particularly interested in so-called
“strong” and “weak” INMs. A sharp INMm is called strong if K,, = ¢ and
weak if D,, =¢. Thus a strong INM diverges for all input sequences of
functions not inferred whereas a weak INM conver)ges to indices of
functions which are not extensions of the given function. (In the literature
the term “reliable” is also used instead of “strong.”) A set M of p.r.
functions is called sharply (strongly, weakly) identifiable if and only if there
is a sharp (strong, weak) INMm with M,, = M.

An upper bound

In this section we use the classification of index sets in the X, , I7,,,-
hierarchy of (Hay, 1974). First we show that the index set of every sharply
identifiable set of p.r. functions is in X, , = IT,,, i.e, it is a difference of 2,
sets. To do this we define the limits of functions following the notation of
Gold, (1965). Given a recursive function g:N?2—> N and an ieN,
lim, g(i, x)=z will signify that there is an y such that, for all x>
¥, 8(i, x)=2z. In the case that Vy3dx> y(g(i, y)+# g(i, x)) we say that
lim, g(i, x) is undefined.

THEOREM 1. (a) For every sharp INMm Ind(M,,)e X,, =11,,.

(b) If ‘M is strongly identifiable then Ind(M)e X, and if M is weakly
identifiable then Ind(M)e IT,.
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Proof. Ind(M,)=Ind(D,,)—Ind(K,,) since D,, UK,,=M,,. We show
Ind(D,,) € IT, and Ind(K,,) e Z,.

Consider a recursive function D:N?—N?uU {x} such that for every i
{D(i, 0), D(i, 1),..., » is an enumeration of ¢;. Define the recursive function
g by g(i, x) =“xth output of m under the enumeration {D(i, 0), D(i, 1),...>
of ¢,.”

Since m is sharp we get

Ind(M,,) = {i/3zlim g(i, x) =z and ¢, = 4.},
Ind(K,,) = {i/3zlim g(i, x)=zand ¢, & 4.},

and

Ind(D,,) = {i/lim g(i, x) is undefined }.

Obviously Ind(D,,) € IT,, since

Ind(D,,)={iNx3y(y>x A g(i, x) # g(i, y)}.
To see that Ind(K,,) € X', observe that

Ind(K,,) = {i/Hz (liin gli, x)=z A ¢, 9§¢z>}

={i/3z3 y(Vx> y(g(i, x) =2)
A Ju(ue Dom(¢;)
A (ug Dom(4.) v ¢,(u) # ¢.(u)))) }
={i/3z 3y uVx((x> y=g(i, x) =z)
Au)l A (B(u)T v giu) #¢.(u)))}

which is in 2, by the Tarski-Kuratowski algorithm. |

COROLLARY. If M is sharply identifiable then Ind(M)e > 5 N I1,.

By the next theorem we show that the upper bound given in the
corollary is sharp in the sense that there exists a sharply identifiable
function set with index set in X'; N IT, but neither in X', nor in I7,. To do
this we introduce the following sets L and S of partial recursive functions.
Let F={feR/Vx(f(x)#1) and 3z(f(x)=z almost everywhere)} then
L={geP/3feF(g< f)}. Hence L contains every p.r. function which can
be extended to some almost everywhere constant recursive function never



INDEX SETS OF IDENTIFIABLE SETS 189

adopting 1 as its value. Let S be the set of all selfdescribing p.r. functions
that means S= {fe P/3z(f(z)=1) and

Vx(f(x)=1AVy(y<x=f(y)#1)=f<4.)}.

For every function in S the minimal x with f(x)=1 is an index of an
extension of f. Now we can show that SUL has just the announced
properties.

THEOREM 2. SU L is sharply identifiable and Ind(Su L)e (23 n113)—
(&, VIL).

Proof. There exists a sharp INMm with M,, =S U L. Let (f;)2, be an
effective enumeration of the total functions in L.

Then m works as follows: it requests inputs and conjectures the least x, if
any, such that (x, 1) occurs under the inputs received so far. If no such x
exists m outputs after requesting the nth input a,, the least i such that for
every j<n with a; = (x;, y;), fi(x;) = y;. m has the desired properties.

It converges for every f with fe SU L to an i with f < ¢, and for every f
with 1€ f(N) but f ¢S to an i with f &€ ¢,. m diverges for every f of an f
with /¢ f(N) which changes its value infinitely often. That
Ind(Su L)e X'y n 11, follows directly by the corollary to Theorem 1.

It remains to prove Ind(SuUL)¢ X, Ull,. Let FIN= {i/W, is finite},
INF =FIN. It suffices to show that FIN, INF < ,,Ind(S U L). Define

x+2 if |W;|>x,
P,iy(x) =

1 otherwise.

Then i€ FIN<>r(i) e Ind(L)<>r(i) e Ind(Su L), since /¢ range ¢,.;; hence
Ind(Su L) ¢ I,. To show INF <, Ind(Su L), define a recursive function f
by

1 if x=n

¢f(m,n)(x) = g

& a(x) otherwise.

According to the recursion theorem, for every m, an I can be effectively
found with ¢, = ¢,. Let g be the recursive function assigning to every m
this /. Define a recursive A(i, j) by

1 if x<g()),
¢h(i,j)(x) =(1 if x=g(j),

di(x) otherwise.
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Clearly, ¢, (x)=¢{x) for almost all x. Define, for every recursive
function 1, INC, = {(i, /)/¥Vx> t(j)(¢{x) | = ¢,(x) = ¢,(x))}. Then (i, j)e
INC, <y j) S bg;y<> h(i, j) € Ind(S). Finally, let

x if |W]>xorx=1,

Psi)(x) =

1 otherwise,
and ¢,(x)=x for all x. Then

ieINF<¢,, =4,
< (k, s(i)) e INC,
< h(k, s(i)) € Ind(S)
< h(k, s(i)) e Ind(SUL)
since 1 e range ¢, ), hence Ind(SUL)¢ X,. |
By Theorem 1 Ind(SUL)eZX,,. On the other hand Tnd(SUL)=
Ind(S)—1Ind(L)e X, , as well, since
Ind(L) = {i/Vy(¢i(y) #1)
AIx, zVp(y2x=(¢(y)| =¢(y)=2))}e2,
and
Ind(S) = {i/3z(¢,(z)=1)
AVX(($x) =1 AVY(y<x=¢(y)#1))=>¢,=¢,)}
={i[3z(¢(2)=1)
AVX(Bx)T v (dlx)] A dix)#1)
VIy(y<x Ayl Adly)=1)
vV YW(g(w)T v (dw)l A d(w)=¢.(w))))} €T,

by the help of the Tarski-Kuratowski algorithm. Thus Ind(SUL) cannot
be 2X,,-complete since Ind(SUL)<,Ind(SUL) means ¢, e SUL<
#7x)€ SUL for some recursive function f, which gives an immediate con-
tradiction using the recursion theorem. In conclusion Ind(SUL) is an
example of an index set not in X', U IT, which is a difference of X, sets but
not complete for such differences.

A Lower Bound

In this section we show that I7, is a lower bound for the position of
index sets of identifiable sets in the arithmetical hierarchy. No identifiable
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set can include a nonempty function set with index set in X';. Let E=

2 o (N?U {*})", and s, = {aq,.., a,y and s, = {bg,.., b,,» be elements
from E.

Then s, -5, = {agy..., Ay, bg,ry b,, ». We call s, an extension of s, and
write s, <s, if and only if there exists s; € E with s, -s; =5,. We write
s, <s, if 5, <s, and s, #s,. For every partial recursive function f we say
that s, is contained in f (notation: s, < f) if and only if VO<i<n(a; =
(x, y)= f(x)=y).

If s,<f and f= (e, ey,..,» is an enumeration of f we define the
enumeration s, - f of f by s, - f= {a,,.., a,, ey, ;,... ).

Let C= {s/s€ E and s is contained in some p.r. function }. Then for every
INM m and ¢ = {ay,..., a, y € C define m[c] to be the last output of m after
inspecting ay,..., 4, in this order and before requesting the next input.

Let (c;)2, be an effective enumeration of C. Define for every p.r.
function 4 and for every ne N such that Vx <n(h(x) | ), the finite sequence
¢ by ¢ = cpoy)and cit ' =ci - ¢4 4 1)- In the case where A is recursive we get
an infinite sequence ¢;° continuing this process infinitely often.

LEMMA 1. For every identifiable set M of p.r. functions and for every
xeN, {gePlc,cg} ¢ M.

Proof. Consider M <P identifiable and an INM m with M,, = M. We
proceed by contradiction. Assume that there exists x € N such that

X={gePlc,cg}=M.

Then m[g]| for every enumeration g of g € X. Define the function /4 by
h(0)=x and h(n+1)=pj(c)-c;e€ C and m[c;]#m[c} - c;]). To see that h
is recursive assume the contrary. Consider the minimal »n with A(n+1)1.
Then, for every z, c¢j<c, implies m[c;]=m[c.]. Consider Y=
{geP/ci< g}. Then there exist recursive functions f, f, € Y with f; # f,.
Let f, and f, be enumerations of /| and f,. Then ¢} - f, is an enumeration of
f1 and c?-f, is an enumeration of f,, and m[c}-f,]1]i and m[c}-f,]1]i
where i=m[c}].

So we can conclude since f; # f, that not both f; and f, are elements
from M,,. But c,=c<c? implies ¢, = f, and ¢, = f,. Thus f, f,eX
which is a subset of M,, by our assumption—a contradiction. Since 4 is
recursive ¢;° is defined and by construction it is an enumeration of some
feP. ¢, =c)<cpr implies f € M,,. But m[c¢;°]1 by construction of h—a
contradiction of fe M,,. §

By Lemma 1 we get the following theorem.
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THEOREM 3. For every identifiable set M of p.r. functions, M’ # ¢ and
Ind(M')e 2| implies M' & M.

Proof. By the Rice-Shapiro Theorem (Rogers, 1967) Ind(M')e X, if
and only if 3f recursive: M'={geP/3xe f(N)(c, < g)}. Thus, if M' # ¢
and Ind(M')e 2, {geP/c, = g} =M for some xeN. By Lemma 1 we
conclude M' € M. ||

By the last result index sets of identifiable sets of functions are not in X .
In I7, it is already possible to locate such sets. Consider, for example, the
set F={feP/Nx(f(x)| = f(x)=0)}. Then Ind(F)e IT,, and of course F
is (sharply) identifiable.

Inductive Inference Machines with Oracles

In the same way as oracle machines are defined as modified forms of
Turing machines, inductive inference machines with oracles may be
introduced. For a given set 4 an INM with oracle 4 (AINM) works like
an INM defined in the usual way; but in addition to the operations perfor-
med by an INM, an 4INM may require obtaining an answer to questions
of the form “x e A?.” All notations and definitions about inductive inference
machines given in the first part of this paper transfer to inductive inference
machines with oracles.

Let HALT = {(i, x)/#/(x) | } denote the halting problem. It is not dif-
ficult to see that there exists a HALT-INM m with P< M, : in every stage
n, m requests an input a, and outputs the least i such that <{aq,.., a,) is
contained in ¢;. More interesting is the question if an oracle 4 with
HALT < 14 is necessary to get P< M,, for some A INMm. We shall
answer this question affirmatively.

First, we prove some basic facts. In the following, d is the partial recur-
sive function defined by d(x)=¢.(x)+ 1.

LEMMA 2. For every p.r. function d' with d= d', Ind(d') n Dom(d’) = ¢.

Proof. Suppose that there exists some xeInd(d’)nDom(d’). Then
d.(x)=d'(x) and ¢.(x)|. Therefore d(x)=¢,.(x)+1=d'(x)+1, a con-
tradiction to d= d'. Thus, Ind(d')nDom(d’)=¢. |

LEMMA 3. For every p.r. function d' with d<d' there exists a recursive
function a such that

a(Dom(d)) < graph(d)

and

a«(Dom(d)) < graph(d')
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Proof. Obviously there exists a recursive function g: N2 — N2 such that
for every i

graph(d')u (N x {0}) if ieDom(d)

range(Ax.q(i, x)) =
. graph(d') otherwise
Define by the s7'theorem a recursive function f(i) as the index of the p.r.
function defined by

¢ﬂ(i)(x) = pa(uj: pi(q(i, j)) =x),

where p,, p,: N> > N are the projections to the first, respectively, to the
second component.

We show that (f(i), 1) ¢ graph(d’) if i¢ Dom(d) and (f(i), 1) € graph(d)
if ie Dom(d). Then a(i) = (B(i), 1) is the desired function.

Consider i¢ Dom(d). Then range(Ax.q(i, x)) = graph(d’), ie., @p;)=d
and therefore p(i)¢ Dom(d’) by Lemma2. In conclusion (B(i), 1)¢
graph(d').

Consider i e Dom(d). Then range(Ax.q(i, x)) = graph(d’) u (N x {0}).

Now, we proceed by contradiction to show ¢g,(8(i)) =0. Assume the
contrary. Then, ¢4.,(B(i))=d'(B(i)). On the other hand, ¢,,(B(i))!, ie.,
d(B(i)) = P4 (B(i)) + 1 =d'(B(i)) and therefore ¢p;)(B(i)) # d'(B(i))—a con-
tradiction.

Thus, ¢4,(B(i))=0 and therefore d(B(i))=1, yielding (B(i), 1)e
graph(d). |

Blum and Blum (1975) show that for every INM m and for every feP
with f e M, there exists some sequence c € C with c< fand m[c]=m[c']
for every extension ¢’ of ¢ contained in f. The proof transfers directly to
INM’s with oracles. (Assuming the contrary we can exhibit an A-effective
enumeration of some f' e M,, with [f]1, where 4 is the oracle of m.)

In the following we call ce C m-convergent for feP iff c< f and
Ve'(e<c' nc'c f=m[c]=m[c]).

By the above considerations, for every A-INMm and for every fe M,
there exists some ce C which is m-convergent for £ An INMm is called
consistent if and only if for every ce C, m[c] =i yields ¢(x)= y for all
pairs (x, y) in c.

Blum and Blum (1975) show that we can construct to every INMm a
consistent INMm' such that M,, = M., if { f e P/Dom(f) is finite} = M,,,.
Again, this proof transfers directly to INM’s with oracles. Using this result
we show

THEOREM 4. If m is an A-INM with P< M, then HALT < 7 A.
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Proof. By our remark we may assume without loss of generality that
m is consistent. Consider ce C which is m-convergent for d. Define an
A-recursive function y by

1 if m[C]=m[C'<x, }’)>],
0 otherwise

x(x, y)={

Since m is consistent, m[c- {x, y)>]=m[c- {x, z))] implies y =z. Thus x
is the characteristic function of the graph of the partial 4 recursive function
f defined by

Sx)=py:x(x, y)=1.
Let d' = ¢@,,;.1.- Then d< f =d’ because
(x, y)e graph(d)=m[c]=m[c" {(x, y))]
= (x, y) € graph(f)

= Pey(X)=y
= (x, y) e graph(d’).

By Lemma 3 there exists a recursive function o with
a(Dom(d)) < graph(d) < graph(f)

and

¢ «(Dom(d)) < graph(d) < graph(f).
Therefore, Dom(d) <,, graph(f), where graph(f) is A-recursive. In con-
clusion Dom(d) is A-recursive, i.e., HALT =1 Dom(d)< 1 4. ||
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